Journal articles on the topic 'Voxel-based morphometry'

To see the other types of publications on this topic, follow the link: Voxel-based morphometry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Voxel-based morphometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Scarpazza, Cristina, and Maria De Simone. "Voxel-based morphometry: current perspectives." Neuroscience and Neuroeconomics Volume 5 (July 2016): 19–35. http://dx.doi.org/10.2147/nan.s66439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lagopoulos, Jim. "Voxel-based morphometry made simple." Acta Neuropsychiatrica 19, no. 3 (June 2007): 213–14. http://dx.doi.org/10.1111/j.1601-5215.2007.00213.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BRENNEIS, C., E. BRANDAUER, B. FRAUSCHER, M. SCHOCKE, T. TRIEB, W. POEWE, and B. HOGL. "Voxel-based morphometry in narcolepsy." Sleep Medicine 6, no. 6 (November 2005): 531–36. http://dx.doi.org/10.1016/j.sleep.2005.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yasuda, Clarissa Lin, Luiz Eduardo Betting, and Fernando Cendes. "Voxel-based morphometry and epilepsy." Expert Review of Neurotherapeutics 10, no. 6 (June 2010): 975–84. http://dx.doi.org/10.1586/ern.10.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ashburner, John, and Karl J. Friston. "Voxel-Based Morphometry—The Methods." NeuroImage 11, no. 6 (June 2000): 805–21. http://dx.doi.org/10.1006/nimg.2000.0582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lai, Kuan-Lin, David M. Niddam, Jong-Ling Fuh, Wei-Ta Chen, Jaw-Ching Wu, and Shuu-Jiun Wang. "Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses." Cephalalgia 40, no. 6 (April 16, 2020): 575–85. http://dx.doi.org/10.1177/0333102420920005.

Full text
Abstract:
Background Previous voxel- or surface-based morphometric analysis studies have revealed alterations in cortical structure in patients with chronic migraine, yet with inconsistent results. The discrepancies may be derived partly from the sample heterogeneity. Employing both methods in a clinically homogenous group may provide a clearer view. Methods Structural MRI data from 30 prevention-naïve patients with chronic migraine without medication overuse headache or a history of major depression and 30 healthy controls were analyzed. Vertex-wise (surface-based) or voxel-wise (voxel-based) linear models were applied, after controlling for age and gender, to investigate between-group differences. Averaged cortical thicknesses and volumes from regions showing group differences were correlated with parameters related to clinical profiles. Results Surface-based morphometry showed significantly thinner cortices in the bilateral insular cortex, caudal middle frontal gyrus, precentral gyrus, and parietal lobes in patients with chronic migraine relative to healthy controls. Additionally, the number of migraine days in the month preceding MRI examination was correlated negatively with right insular cortical thickness. Voxel-based morphometry (VBM) did not show any group differences or clinical correlations. Conclusion Patients with chronic migraine without medication overuse headache, major depression, or prior preventive treatment had reduced cortical thickness in regions within the pain-processing network. Compared to voxel-based morphometry, surface-based morphometry analysis may be more sensitive to subtle structural differences between healthy controls and patients with chronic migraine.
APA, Harvard, Vancouver, ISO, and other styles
7

Akhmadullina, D. R., Yu A. Shpilyukova, R. N. Konovalov, E. Yu Fedotova, and S. N. Illarioshkin. "Voxel-Based Morphometry in Frontotemporal Dementia." Human Physiology 46, no. 8 (December 2020): 912–20. http://dx.doi.org/10.1134/s0362119720080137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghosh-Dastidar, Samanwoy, Hojjat Adeli, and Nahid Dadmehr. "Voxel-based morphometry in Alzheimer's patients." Journal of Alzheimer's Disease 10, no. 4 (December 13, 2006): 445–47. http://dx.doi.org/10.3233/jad-2006-10414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baxter, Leslie C., and Marwan N. Sabbagh. "Voxel-based morphometry in Alzheimer's patients." Journal of Alzheimer's Disease 10, no. 4 (December 13, 2006): 449. http://dx.doi.org/10.3233/jad-2006-10415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Busatto, Geraldo F., Breno S. Diniz, and Marcus V. Zanetti. "Voxel-based morphometry in Alzheimer’s disease." Expert Review of Neurotherapeutics 8, no. 11 (November 2008): 1691–702. http://dx.doi.org/10.1586/14737175.8.11.1691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Scharmüller, Wilfried, and Anne Schienle. "Voxel-based morphometry of disgust proneness." Neuroscience Letters 529, no. 2 (November 2012): 172–74. http://dx.doi.org/10.1016/j.neulet.2012.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wabnegger, Albert, Sonja Übel, and Anne Schienle. "Voxel-based morphometry of disgust sensitivity." Social Neuroscience 13, no. 2 (February 6, 2017): 241–45. http://dx.doi.org/10.1080/17470919.2017.1288657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Salmond, C. H., J. Ashburner, F. Vargha-Khadem, A. Connelly, D. G. Gadian, and K. J. Friston. "Distributional Assumptions in Voxel-Based Morphometry." NeuroImage 17, no. 2 (October 2002): 1027–30. http://dx.doi.org/10.1006/nimg.2002.1153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bakulin, I. S., R. N. Konovalov, M. V. Krotenkova, N. A. Suponeva, and M. N. Zakharova. "Voxel-based morphometry in amyotrophic lateral sclerosis." Journal of radiology and nuclear medicine 99, no. 6 (January 2, 2019): 287–94. http://dx.doi.org/10.20862/0042-4676-2018-99-6-287-294.

Full text
Abstract:
Objective:to investigate changes in grey matter volume in patients with classical amyotrophic lateral sclerosis (ALS) and lower motor neuron syndrome (LMNS) with voxel-based morphometry (VBM).Material and methods. 30 patients with classical ALS, 22 patients with LMNS and 23 age and gender matched healthy controls were enrolled in this study. All participants underwent a T1MPR (multiplanar reconstruction) magnetic resonance imaging with post-processing included spatial normalization, segmentation and smoothing. VBM was used to investigate changes in grey matter volume across the groups.Results. There was a significant decrease in grey matter volume of middle part of left pre- and postcentral gyri, middle part of right precentral gyrus, right and left occipital lobes in patients with classical ALS compared to healthy subjects. There was no difference in grey matter volume between patients with LMNS and healthy controls. Patients with classical ALS showed a significant decrease in grey matter volume of middle part of left preand postcentral gyri, upper part of left precentral gyrus, middle and upper parts of right precentral gyrus, right and left occipital lobes compared to patients with LMNS. There was no significant correlation between grey matter volume and clinical findings in patients with ALS and LMNS.Conclusion.VBM reveals a decrease in grey matter volume of motor and nonmotor brain regions in patients with classical ALS, but not in patients with LMNS.
APA, Harvard, Vancouver, ISO, and other styles
15

Salmond, C. H., J. Ashburner, F. Vargha-Khadem, D. G. Gadian, and K. J. Friston. "Detecting bilateral abnormalities with voxel-based morphometry." Human Brain Mapping 11, no. 3 (2000): 223–32. http://dx.doi.org/10.1002/1097-0193(200011)11:3<223::aid-hbm80>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gitelman, Darren R., John Ashburner, Karl J. Friston, Lorraine K. Tyler, and Cathy J. Price. "Voxel-Based Morphometry of Herpes Simplex Encephalitis." NeuroImage 13, no. 4 (April 2001): 623–31. http://dx.doi.org/10.1006/nimg.2000.0734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ashburner, John, and Karl J. Friston. "Why Voxel-Based Morphometry Should Be Used." NeuroImage 14, no. 6 (December 2001): 1238–43. http://dx.doi.org/10.1006/nimg.2001.0961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Jinfeng, Yonghao Wang, Zhengyang Xu, Tiefang Liu, Xiao Zang, Meng Li, and Lin Ma. "Whole-brain morphometric studies in alcohol addicts by voxel-based morphometry." Annals of Translational Medicine 7, no. 22 (November 2019): 635. http://dx.doi.org/10.21037/atm.2019.10.90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tzarouchi, Loukia C., Loukas G. Astrakas, Spyridon Konitsiotis, Sofia Tsouli, Persefoni Margariti, Anastasia Zikou, and Maria I. Argyropoulou. "Voxel-Based Morphometry and Voxel-Based Relaxometry in Parkinsonian Variant of Multiple System Atrophy." Journal of Neuroimaging 20, no. 3 (January 29, 2009): 260–66. http://dx.doi.org/10.1111/j.1552-6569.2008.00343.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hutton, Chloe, Bogdan Draganski, John Ashburner, and Nikolaus Weiskopf. "A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging." NeuroImage 48, no. 2 (November 2009): 371–80. http://dx.doi.org/10.1016/j.neuroimage.2009.06.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Peng, P., H. Gu, W. Xiao, L. F. Si, J. F. Wang, S. K. Wang, R. Y. Zhai, and Y. X. Wei. "A voxel-based morphometry study of anosmic patients." British Journal of Radiology 86, no. 1032 (December 2013): 20130207. http://dx.doi.org/10.1259/bjr.20130207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Watkins, K. E., T. Paus, A. Zijdenbos, D. L. Collins, J. P. Lerch, P. Neelin, K. J. Worsley, and A. C. Evans. "Detecting structural brain asymmetries using voxel-based morphometry." NeuroImage 11, no. 5 (May 2000): S548. http://dx.doi.org/10.1016/s1053-8119(00)91479-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kotikalapudi, Raviteja, Pascal Martin, Michael Erb, Klaus Scheffler, Justus Marquetand, Benjamin Bender, and Niels K. Focke. "MP2RAGE multispectral voxel‐based morphometry in focal epilepsy." Human Brain Mapping 40, no. 17 (August 12, 2019): 5042–55. http://dx.doi.org/10.1002/hbm.24756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yoon, Hyo-Woon. ""The Reduced Brain Volume on Anti-social Adolescents using Voxel Based Morphometry(VBM)*"." Journal of Special Education & Rehabilitation Science 61, no. 2 (June 30, 2022): 287–98. http://dx.doi.org/10.23944/jsers.2022.06.61.2.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Specht, Karsten, Martina Minnerop, Jonas Müller-Hübenthal, and Thomas Klockgether. "Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry." NeuroImage 25, no. 1 (March 2005): 287–93. http://dx.doi.org/10.1016/j.neuroimage.2004.11.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

GOTO, Masami, Osamu ABE, Hiroyuki KABASAWA, Hidemasa TAKAO, Tosiaki MIYATI, Naoto HAYASHI, Tomomi KUROSU, et al. "Effects of Image Distortion Correction on Voxel-based Morphometry." Magnetic Resonance in Medical Sciences 11, no. 1 (2012): 27–34. http://dx.doi.org/10.2463/mrms.11.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Abe, O., S. Aoki, N. Hayashi, T. Miyati, H. Takao, H. Matsuda, F. Yamashita, et al. "Influence of Parameter Settings in Voxel-based Morphometry 8." Methods of Information in Medicine 54, no. 02 (2015): 171–78. http://dx.doi.org/10.3414/me14-01-0049.

Full text
Abstract:
Summary Objectives: To investigate whether reproducibility of gray matter volumetry is influenced by parameter settings for VBM 8 using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) with region-of-interest (ROI) analyses. Methods: We prepared three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects. All subjects were imaged with each of five MRI systems. Voxel-based morphometry 8 (VBM 8) and WFU PickAtlas software were used for gray matter volumetry. The bilateral ROI labels used were those provided as default settings with the software: Frontal Lobe, Hippocampus, Occipital Lobe, Orbital Gyrus, Parietal Lobe, Putamen, and Temporal Lobe. All 3D-T1WIs were segmented to gray matter with six parameters of VBM 8, with each parameter having between three and eight selectable levels. Reproducibility was evaluated as the standard deviation (mm3) of measured values for the five MRI systems. Results: Reproducibility was influenced by ‘Bias regularization (BiasR)’, ‘Bias FWHM’, and ‘De-noising filter’ settings, but not by ‘MRF weighting’, ‘Sampling distance’, or ‘Warping regularization’ settings. Reproducibility in BiasR was influenced by ROI. Superior reproducibility was observed in Frontal Lobe with the BiasR1 setting, and in Hippocampus, Parietal Lobe, and Putamen with the BiasR3*, BiasR1, and BiasR5 settings, respectively. Conclusion: Reproducibility of gray matter volumetry was influenced by parameter settings in VBM 8 using DARTEL and ROI. In multi-center studies, the use of appropriate settings in VBM 8 with DARTEL results in reduced scanner effect.
APA, Harvard, Vancouver, ISO, and other styles
28

Good, Catriona, Ingrid Johnsrude, John Ashburner, Karl Friston, and Richard Frackowiak. "Voxel based morphometry of 465 normal adult human brains." NeuroImage 11, no. 5 (May 2000): S607. http://dx.doi.org/10.1016/s1053-8119(00)91537-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Huppertz, Hans-Jürgen, Jan Kassubek, Freimut D. Juengling, and Andreas Schulze-Bonhage. "Detection of focal cortical dysplasia by voxel-based morphometry." NeuroImage 13, no. 6 (June 2001): 156. http://dx.doi.org/10.1016/s1053-8119(01)91499-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sluming, Vanessa, Thomas Barrick, and N. Roberts. "A voxel based morphometry study of symphony orchestra musicians." NeuroImage 13, no. 6 (June 2001): 606. http://dx.doi.org/10.1016/s1053-8119(01)91949-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Modinos, G., A. Mechelli, J. Ormel, N. A. Groenewold, A. Aleman, and P. K. McGuire. "Schizotypy and brain structure: a voxel-based morphometry study." Psychological Medicine 40, no. 9 (November 17, 2009): 1423–31. http://dx.doi.org/10.1017/s0033291709991875.

Full text
Abstract:
BackgroundSchizotypy is conceptualized as a subclinical manifestation of the same underlying biological factors that give rise to schizophrenia and other schizophrenia spectrum disorders. Individuals with psychometric schizotypy (PS) experience subthreshold psychotic signs and can be psychometrically identified among the general population. Previous research using magnetic resonance imaging (MRI) has shown gray-matter volume (GMV) abnormalities in chronic schizophrenia, in subjects with an at-risk mental state (ARMS) and in individuals with schizotypal personality disorder (SPD). However, to date, no studies have investigated the neuroanatomical correlates of PS.MethodSix hundred first- and second-year university students completed the Community Assessment of Psychic Experiences (CAPE), a self-report instrument on psychosis proneness measuring attenuated positive psychotic experiences. A total of 38 subjects with high and low PS were identified and subsequently scanned with MRI. Voxel-based morphometry (VBM) was applied to examine GMV differences between subjects with high and low positive PS.ResultsSubjects with high positive PS showed larger global volumes compared to subjects with low PS, and larger regional volumes in the medial posterior cingulate cortex (PCC) and the precuneus. There were no regions where GMV was greater in low than in high positive PS subjects.ConclusionsThese regions, the PCC and precuneus, have also been sites of volumetric differences in MRI studies of ARMS subjects and schizophrenia, suggesting that psychotic or psychotic-like experiences may have common neuroanatomical correlates across schizophrenia spectrum disorders.
APA, Harvard, Vancouver, ISO, and other styles
32

Balough, B. J. "Voxel-Based Morphometry Depicts Central Compensation after Vestibular Neuritis." Yearbook of Otolaryngology-Head and Neck Surgery 2011 (January 2011): 144–46. http://dx.doi.org/10.1016/j.yoto.2011.03.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Valfrè, Walter, Innocenzo Rainero, Mauro Bergui, and Lorenzo Pinessi. "Voxel-Based Morphometry Reveals Gray Matter Abnormalities in Migraine." Headache: The Journal of Head and Face Pain 48, no. 1 (December 20, 2007): 109–17. http://dx.doi.org/10.1111/j.1526-4610.2007.00723.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brenneis, Christian, Sylvia M. Bösch, Michael Schocke, Gregor K. Wenning, and Werner Poewe. "Atrophy pattern in SCA2 determined by voxel-based morphometry." NeuroReport 14, no. 14 (October 2003): 1799–802. http://dx.doi.org/10.1097/00001756-200310060-00008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Betting, Luiz Eduardo, Susana Barreto Mory, Li Min Li, Iscia Lopes-Cendes, Marilisa M. Guerreiro, Carlos A. M. Guerreiro, and Fernando Cendes. "Voxel-based morphometry in patients with idiopathic generalized epilepsies." NeuroImage 32, no. 2 (August 2006): 498–502. http://dx.doi.org/10.1016/j.neuroimage.2006.04.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rotzer, S., K. Kucian, E. Martin, M. von Aster, P. Klaver, and T. Loenneker. "Optimized voxel-based morphometry in children with developmental dyscalculia." NeuroImage 39, no. 1 (January 2008): 417–22. http://dx.doi.org/10.1016/j.neuroimage.2007.08.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ridgway, Gerard R., Susie M. D. Henley, Jonathan D. Rohrer, Rachael I. Scahill, Jason D. Warren, and Nick C. Fox. "Ten simple rules for reporting voxel-based morphometry studies." NeuroImage 40, no. 4 (May 2008): 1429–35. http://dx.doi.org/10.1016/j.neuroimage.2008.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Josephs, Keith A., Jennifer L. Whitwell, Dennis W. Dickson, Bradley F. Boeve, David S. Knopman, Ronald C. Petersen, Joseph E. Parisi, and Clifford R. Jack. "Voxel-based morphometry in autopsy proven PSP and CBD." Neurobiology of Aging 29, no. 2 (February 2008): 280–89. http://dx.doi.org/10.1016/j.neurobiolaging.2006.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Whitwell, Jennifer L., and Keith A. Josephs. "Voxel-based morphometry and its application to movement disorders." Parkinsonism & Related Disorders 13 (2007): S406—S416. http://dx.doi.org/10.1016/s1353-8020(08)70039-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

García-Martí, Gracián, Eduardo J. Aguilar, Juan J. Lull, Luis Martí-Bonmatí, María J. Escartí, José V. Manjón, David Moratal, Montserrat Robles, and Julio Sanjuán. "Schizophrenia with auditory hallucinations: A voxel-based morphometry study." Progress in Neuro-Psychopharmacology and Biological Psychiatry 32, no. 1 (January 2008): 72–80. http://dx.doi.org/10.1016/j.pnpbp.2007.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schnack, HG, NEM van Haren, M. Picchioni, M. Weisbrod, H. Sauer, T. Cannon, M. Huttunen, R. Murray, RS Kahn, and HE Hulshoff Pol. "Reliability of Multicenter Voxel-based Morphometry: A Calibration Study." NeuroImage 47 (July 2009): S99. http://dx.doi.org/10.1016/s1053-8119(09)70833-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

da Silva, C. Bonilha, C. L. Yasuda, A. D'Abreu, I. Lopes-Cendes, F. Cendes, and M. C. França. "Voxel-based morphometry in Friedreich's ataxia: A prospective study." Journal of the Neurological Sciences 333 (October 2013): e659-e660. http://dx.doi.org/10.1016/j.jns.2013.07.2285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Focke, N. K., G. Helms, S. Kaspar, C. Diederich, V. Tóth, P. Dechent, A. Mohr, and W. Paulus. "Multi-site voxel-based morphometry — Not quite there yet." NeuroImage 56, no. 3 (June 2011): 1164–70. http://dx.doi.org/10.1016/j.neuroimage.2011.02.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Koolschijn, P. Cédric M. P., Neeltje E. M. van Haren, Hugo G. Schnack, Joost Janssen, Hilleke E. Hulshoff Pol, and René S. Kahn. "Cortical thickness and voxel-based morphometry in depressed elderly." European Neuropsychopharmacology 20, no. 6 (June 2010): 398–404. http://dx.doi.org/10.1016/j.euroneuro.2010.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hölzel, Britta K., Ulrich Ott, Tim Gard, Hannes Hempel, Martin Weygandt, Katrin Morgen, and Dieter Vaitl. "Investigation of mindfulness meditation practitioners with voxel-based morphometry." Social Cognitive and Affective Neuroscience 3, no. 1 (December 3, 2007): 55–61. http://dx.doi.org/10.1093/scan/nsm038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bilo, L., M. F. De Leva, R. Meo, F. Tortora, F. Esposito, A. Aragri, and A. Elefante. "Voxel-Based Morphometry in Patients with Cryptogenic Occipital Epilepsies." Neuroradiology Journal 23, no. 1 (February 2010): 28–34. http://dx.doi.org/10.1177/197140091002300104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cha, Yoon-Hee, and Shruthi Chakrapani. "Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome." PLOS ONE 10, no. 8 (August 7, 2015): e0135021. http://dx.doi.org/10.1371/journal.pone.0135021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pennanen, C. "A voxel based morphometry study on mild cognitive impairment." Journal of Neurology, Neurosurgery & Psychiatry 76, no. 1 (January 1, 2005): 11–14. http://dx.doi.org/10.1136/jnnp.2004.035600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

zu Eulenburg, Peter, Peter Stoeter, and Marianne Dieterich. "Voxel-based morphometry depicts central compensation after vestibular neuritis." Annals of Neurology 68, no. 2 (August 2, 2010): 241–49. http://dx.doi.org/10.1002/ana.22063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Diaz-de-Grenu, Lara Z., Julio Acosta-Cabronero, Guy B. Williams, and Peter J. Nestor. "Comparing voxel-based iterative sensitivity and voxel-based morphometry to detect abnormalities in T2-weighted MRI." NeuroImage 100 (October 2014): 379–84. http://dx.doi.org/10.1016/j.neuroimage.2014.06.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography