Journal articles on the topic 'VORONOVSKAYA THEOREM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'VORONOVSKAYA THEOREM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Agrawal, Purshottam, Dharmendra Kumar, and Behar Baxhaku. "On the rate of convergence of modified \(\alpha\)-Bernstein operators based on q-integers." Journal of Numerical Analysis and Approximation Theory 51, no. 1 (September 17, 2022): 3–36. http://dx.doi.org/10.33993/jnaat511-1244.
Full textKajla, Arun, S. A. Mohiuddine, and Abdullah Alotaibi. "Approximation by α-Baskakov−Jain type operators." Filomat 36, no. 5 (2022): 1733–41. http://dx.doi.org/10.2298/fil2205733k.
Full textAcar, Tuncer. "Quantitative q-Voronovskaya and q-Grüss–Voronovskaya-type results for q-Szász operators." Georgian Mathematical Journal 23, no. 4 (December 1, 2016): 459–68. http://dx.doi.org/10.1515/gmj-2016-0007.
Full textGalt, S. G. "VORONOVSKAYA-TYPE THEOREM FOR POSITIVE LINEAR OPERATORS BASED ON LAGRANGE INTERPOLATION." Annals of the Academy of Romanian Scientists Series on Mathematics and Its Application 15, no. 1-2 (2023): 86–93. http://dx.doi.org/10.56082/annalsarscimath.2023.1-2.86.
Full textIvan, Mircea, and Ioan Raşa. "A Voronovskaya-type theorem." Journal of Numerical Analysis and Approximation Theory 30, no. 1 (February 1, 2001): 47–54. http://dx.doi.org/10.33993/jnaat301-680.
Full textBraha, Naim Latif, Toufik Mansour, and Mohammad Mursaleen. "Some Properties of Kantorovich-Stancu-Type Generalization of Szász Operators including Brenke-Type Polynomials via Power Series Summability Method." Journal of Function Spaces 2020 (August 14, 2020): 1–15. http://dx.doi.org/10.1155/2020/3480607.
Full textBraha, Naim L. "Some properties of modified Szász–Mirakyan operators in polynomial spaces via the power summability method." Journal of Applied Analysis 26, no. 1 (June 1, 2020): 79–90. http://dx.doi.org/10.1515/jaa-2020-2006.
Full textGrewal, Brijesh, and Meenu Goyal. "Approximation by a family of summation-integral type operators preserving linear functions." Filomat 36, no. 16 (2022): 5563–72. http://dx.doi.org/10.2298/fil2216563g.
Full textUysal, Gümrah. "ON MODIFIED MOMENT-TYPE OPERATORS." Advances in Mathematics: Scientific Journal 10, no. 12 (December 18, 2021): 3669–77. http://dx.doi.org/10.37418/amsj.10.12.9.
Full textGupta, Vijay, and P. N. Agrawal. "Approximation by modified Păltănea operators." Publications de l'Institut Math?matique (Belgrade) 107, no. 121 (2020): 157–64. http://dx.doi.org/10.2298/pim2021157g.
Full textMarsden, M. J. "A Voronovskaya Theorem for Variation-Diminishing Spline Approximation." Canadian Journal of Mathematics 38, no. 5 (October 1, 1986): 1081–93. http://dx.doi.org/10.4153/cjm-1986-053-0.
Full textCiupa, Alexandra. "A Voronovskaya-type theorem for a positive linear operator." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–7. http://dx.doi.org/10.1155/ijmms/2006/42368.
Full textTunç, Tuncay, and Burcu Fedakar. "On Approximation Properties of a Stancu Generalization of Szasz-Mirakyan-Bernstein Operators." Ukrainian Mathematical Bulletin 18, no. 4 (November 12, 2021): 569–82. http://dx.doi.org/10.37069/1810-3200-2021-18-4-8.
Full textLiu, Yu-Jie, Wen-Tao Cheng, Wen-Hui Zhang, and Pei-Xin Ye. "Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators." Axioms 12, no. 1 (December 21, 2022): 5. http://dx.doi.org/10.3390/axioms12010005.
Full textBaşcanbaz-Tunca, Gülen, and Ayçegül Erençin. "A Voronovskaya type theorem for q-Szász-Mirakyan-Kantorovich operators." Journal of Numerical Analysis and Approximation Theory 40, no. 1 (February 1, 2011): 14–23. http://dx.doi.org/10.33993/jnaat401-947.
Full textMishra, Vishnu Narayan, and Rishikesh Yadav. "Approximation on a new class of Szász–Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties." Georgian Mathematical Journal 29, no. 2 (January 28, 2022): 245–73. http://dx.doi.org/10.1515/gmj-2021-2135.
Full textARI, DIDEM AYDIN, ALI ARAL, and DANIEL CARDENAS-MORALES. "A note on Baskakov operators based on a function ϑ." Creative Mathematics and Informatics 25, no. 1 (2016): 15–27. http://dx.doi.org/10.37193/cmi.2016.01.03.
Full textAslan, Reşat, and Aydın İzgi. "Approximation by One and Two Variables of the Bernstein-Schurer-Type Operators and Associated GBS Operators on Symmetrical Mobile Interval." Journal of Function Spaces 2021 (May 3, 2021): 1–12. http://dx.doi.org/10.1155/2021/9979286.
Full textRempulska, Lucyna, and Mariola Skorupka. "On the degree of approximation of functions of two variables by some operators." Acta et Commentationes Universitatis Tartuensis de Mathematica 9 (December 31, 2005): 51–64. http://dx.doi.org/10.12697/acutm.2005.09.07.
Full textBraha, Naim L., and Valdete Loku. "Statistical Korovkin and Voronovskaya type theorem for the Cesaro second-order operator of fuzzy numbers." Studia Universitatis Babes-Bolyai Matematica 65, no. 4 (November 26, 2020): 561–74. http://dx.doi.org/10.24193/subbmath.2020.4.06.
Full textLampa-Baczynska, Magdalena. "A Voronovskaya Type Theorem for Bernstein-Durrmeyer Type Operators." British Journal of Mathematics & Computer Science 10, no. 3 (January 10, 2015): 1–6. http://dx.doi.org/10.9734/bjmcs/2015/18471.
Full textMohiuddine, S. A., Bipan Hazarika, and Mohammed Alghamdi. "Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems." Filomat 33, no. 14 (2019): 4549–60. http://dx.doi.org/10.2298/fil1914549m.
Full textErdogan, S., and A. Olgun. "Approximation properties of modified Jain-Gamma operators." Carpathian Mathematical Publications 13, no. 3 (December 7, 2021): 651–65. http://dx.doi.org/10.15330/cmp.13.3.651-665.
Full textHussein, Sara Adel. "Approximation by General Family of Summation Baskakov-Type Operators Preserving the Exponential Functions." BASRA JOURNAL OF SCIENCE 39, no. 3 (December 1, 2021): 329–38. http://dx.doi.org/10.29072/basjs.2021301.
Full textQasim, Mohd, M. Mursaleen, Zaheer Abbas, and Asif Khan. "Approximation by generalized Szász-Mirakjan-Kantorovich type operators." Publications de l'Institut Math?matique (Belgrade) 111, no. 125 (2022): 89–99. http://dx.doi.org/10.2298/pim2225089q.
Full textNeer, Trapti, and P. N. Agrawal. "A genuine family of Bernstein-Durrmeyer type operators based on Polya basis functions." Filomat 31, no. 9 (2017): 2611–23. http://dx.doi.org/10.2298/fil1709611n.
Full textQasim, M., A. Khan, Z. Abbas, and M. Mursaleen. "Convergence properties of generalized Lupaş-Kantorovich operators." Carpathian Mathematical Publications 13, no. 3 (December 30, 2021): 818–30. http://dx.doi.org/10.15330/cmp.13.3.818-830.
Full textAktaş, Rabia, Bayram Çekim, and Fatma Taşdelen. "A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials." Journal of Function Spaces and Applications 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/935430.
Full textAnastassiou, George A., and Razvan A. Mezei. "A Voronovskaya Type Theorem for Poisson–Cauchy Type singular operators." Journal of Mathematical Analysis and Applications 366, no. 2 (June 2010): 525–29. http://dx.doi.org/10.1016/j.jmaa.2010.01.015.
Full textJIANG, YANJIE, and JUNMING LI. "THE RATE OF CONVERGENCE OF q-BERNSTEIN–STANCU POLYNOMIALS." International Journal of Wavelets, Multiresolution and Information Processing 07, no. 06 (November 2009): 773–79. http://dx.doi.org/10.1142/s0219691309003215.
Full textAral, Ali, Emre Deniz, and Vijay Gupta. "On the modification of the Szaśz–Durrmeyer operators." Georgian Mathematical Journal 23, no. 3 (September 1, 2016): 323–28. http://dx.doi.org/10.1515/gmj-2016-0031.
Full textRao, Nadeem, and Abdul Wafi. "Stancu-variant of generalized Baskakov operators." Filomat 31, no. 9 (2017): 2625–32. http://dx.doi.org/10.2298/fil1709625r.
Full textQASIM, MOHD, M. MURSALEEN, ASIF KHAN, and ZAHEER ABBAS. "On some Statistical Approximation Properties of Generalized Lupas-Stancu Operators." Kragujevac Journal of Mathematics 46, no. 5 (2022): 797–813. http://dx.doi.org/10.46793/kgjmat2205.797q.
Full textIcoz, Gurhan, and Seda Demir. "Approximation Properties of a New Type of Gamma Operator Defined with the Help of k -Gamma Function." Journal of Function Spaces 2022 (August 2, 2022): 1–9. http://dx.doi.org/10.1155/2022/5493056.
Full textAgrawal, Deepika, and Vijay Gupta. "Generalized hybrid operators preserving exponential functions." Asian-European Journal of Mathematics 12, no. 07 (November 18, 2019): 1950089. http://dx.doi.org/10.1142/s179355711950089x.
Full textBardaro, Carlo, and Ilaria Mantellini. "A Voronovskaya-Type Theorem for a General Class of Discrete Operators." Rocky Mountain Journal of Mathematics 39, no. 5 (October 2009): 1411–42. http://dx.doi.org/10.1216/rmj-2009-39-5-1411.
Full textSiddiqui, Mohammad Arif, and Raksha Rani Agrawal. "A Voronovskaya Type Theorem on Modified Post-Widder Operators Preserving x2." Kyungpook mathematical journal 51, no. 1 (March 31, 2011): 87–91. http://dx.doi.org/10.5666/kmj.2011.51.1.087.
Full textQasim, Mohd, Mohammad Mursaleen, Asif Khan, and Zaheer Abbas. "Convergence of Generalized Lupaş-Durrmeyer Operators." Mathematics 8, no. 5 (May 24, 2020): 852. http://dx.doi.org/10.3390/math8050852.
Full textAcar, Tuncer, Ali Aral, and Ioan Raşa. "Approximation by k-th order modifications of Szász—Mirakyan operators." Studia Scientiarum Mathematicarum Hungarica 53, no. 3 (September 2016): 379–98. http://dx.doi.org/10.1556/012.2016.53.3.1339.
Full textYilmaz, Ovgu Gurel, Vijay Gupta, and Ali Aral. "On Baskakov operators preserving the exponential function." Journal of Numerical Analysis and Approximation Theory 46, no. 2 (November 8, 2017): 150–61. http://dx.doi.org/10.33993/jnaat462-1110.
Full textMursaleen, M., A. A. H. Al-Abied, and Khursheed Ansari. "On approximation properties of Baskakov-Schurer-Szász-Stancu operators based on q-integers." Filomat 32, no. 4 (2018): 1359–78. http://dx.doi.org/10.2298/fil1804359m.
Full textRempulska, L., and M. Skorupka. "The Voronovskaya theorem for some linear positive operators in exponential weight spaces." Publicacions Matemàtiques 41 (July 1, 1997): 519–26. http://dx.doi.org/10.5565/publmat_41297_16.
Full textASLAN, Reşat. "Approximation by Szasz-Mirakjan-Durrmeyer operators based on shape parameter $\lambda$." Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics 71, no. 2 (June 30, 2022): 407–21. http://dx.doi.org/10.31801/cfsuasmas.941919.
Full textKARA, Mustafa. "Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators." Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics 71, no. 4 (December 30, 2022): 1135–67. http://dx.doi.org/10.31801/cfsuasmas.1067635.
Full textDeniz, Emre, Ali Aral, and Gulsum Ulusoy. "New integral type operators." Filomat 31, no. 9 (2017): 2851–65. http://dx.doi.org/10.2298/fil1709851d.
Full textSofyalıoğlu, Melek, and Kadir Kanat. "Approximation by Szász-Baskakov operators based on Boas-Buck-type polynomials." Filomat 36, no. 11 (2022): 3655–73. http://dx.doi.org/10.2298/fil2211655s.
Full textQasim, M., Asif Khan, Zaheer Abbas, Princess Raina, and Qing-Bo Cai. "Rate of Approximation for Modified Lupaş-Jain-Beta Operators." Journal of Function Spaces 2020 (August 3, 2020): 1–7. http://dx.doi.org/10.1155/2020/5090282.
Full textBodur, Murat. "Modified Lupaş-Jain operators." Mathematica Slovaca 70, no. 2 (April 28, 2020): 431–40. http://dx.doi.org/10.1515/ms-2017-0361.
Full textCheng, Wen-Tao, and S. A. Mohiuddine. "Construction of a new modification of Baskakov operators on (0,∞)." Filomat 37, no. 1 (2023): 139–54. http://dx.doi.org/10.2298/fil2301139c.
Full textSucu, Sezgin, Gürhan İçöz, and Serhan Varma. "On Some Extensions of Szasz Operators Including Boas-Buck-Type Polynomials." Abstract and Applied Analysis 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/680340.
Full text