Journal articles on the topic 'Von Neumann stability condition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Von Neumann stability condition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kamel, Aladin H. "A stability checking procedure for finite-difference schemes with boundary conditions in acoustic media." Bulletin of the Seismological Society of America 79, no. 5 (October 1, 1989): 1601–6. http://dx.doi.org/10.1785/bssa0790051601.
Full textLi, Yong Heng, and Xia Li. "Extension of Von Neumann Model of National Economic System." Applied Mechanics and Materials 55-57 (May 2011): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.101.
Full textHaney, Matthew M. "Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case." GEOPHYSICS 72, no. 5 (September 2007): SM35—SM46. http://dx.doi.org/10.1190/1.2750639.
Full textWu, Xiu Mei, Tao Zi Si, and Lei Jiang. "Stable Computer Control Algorithm of Von Neumann Model." Advanced Materials Research 634-638 (January 2013): 4026–29. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.4026.
Full textWESSELING, P. "von Neumann stability conditions for the convection-diffusion eqation." IMA Journal of Numerical Analysis 16, no. 4 (1996): 583–98. http://dx.doi.org/10.1093/imanum/16.4.583.
Full textM. Jemimah, M. Alpha, and Abubakar Alkasim. "Exact Solution of Couple Burgers’ Equation using Cubic B-Spline Collocation Method for Fluid Suspension/Colloid under the Influence of Gravity." African Journal of Advances in Science and Technology Research 14, no. 1 (April 30, 2024): 73–85. http://dx.doi.org/10.62154/ymthy538.
Full textHafiz, Khandaker Md Eusha Bin, and Laek Sazzad Andallah. "Second Order Scheme For Korteweg-De Vries (KDV) Equation." Journal of Bangladesh Academy of Sciences 43, no. 1 (July 16, 2019): 85–93. http://dx.doi.org/10.3329/jbas.v43i1.42237.
Full textQuintana-Murillo, J., and S. B. Yuste. "An Explicit Numerical Method for the Fractional Cable Equation." International Journal of Differential Equations 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/231920.
Full textLuiz, Kariston Stevan, Juniormar Organista, Eliandro Rodrigues Cirilo, Neyva Maria Lopes Romeiro, and Paulo Laerte Natti. "Numerical convergence of a Telegraph Predator-Prey system." Semina: Ciências Exatas e Tecnológicas 43, no. 1Esp (November 30, 2022): 51–66. http://dx.doi.org/10.5433/1679-0375.2022v43n1espp51.
Full textErkurşun Özcan, Nazife. "On ergodic properties of operator nets on the predual of von neumann algebras." Studia Scientiarum Mathematicarum Hungarica 55, no. 4 (December 2018): 479–86. http://dx.doi.org/10.1556/012.2018.55.4.1414.
Full textFukuyo, Kazuhiro. "Conditional stability of Larkin methods with non-uniform grids." Theoretical and Applied Mechanics 37, no. 2 (2010): 139–59. http://dx.doi.org/10.2298/tam1002139f.
Full textLarkin, Eugene, Alexey Bogomolov, and Sergey Feofilov. "Stability of digital feedback control systems." MATEC Web of Conferences 161 (2018): 02004. http://dx.doi.org/10.1051/matecconf/201816102004.
Full textLezani, Nadine Mulya, and Ummu Habibah. "Numerical Solution of Burgers Equation using Cubic B-Spline Collocation Method and Neumann Boundary Condition." Indonesian Journal of Mathematics and Applications 1, no. 2 (September 30, 2023): 25–34. http://dx.doi.org/10.21776/ub.ijma.2023.001.02.3.
Full textKrivovichev, Gerasim Vladimirovich. "On the stability of lattice boltzmann equations for one-dimensional diffusion equation." International Journal of Modeling, Simulation, and Scientific Computing 08, no. 01 (January 10, 2017): 1750013. http://dx.doi.org/10.1142/s1793962317500131.
Full textCastillo, Paul, and Sergio Gómez. "Análisis de Von Neumann para el métodoLocal Discontinuous Galerkin en 1D." Revista Integración 37, no. 2 (August 2, 2019): 199–217. http://dx.doi.org/10.18273/revint.v37n2-2019001.
Full textOwino, Benard, Fredrick Nyamwala, and David Ambogo. "Stability of Krein-von Neumann self-adjoint operator extension under unbounded perturbations." Annals of Mathematics and Computer Science 23 (April 26, 2024): 29–47. http://dx.doi.org/10.56947/amcs.v23.300.
Full textRaed, Raed. "On The Numerical Solutions of the Neutrosophic One-Dimensional Sine-Gordon System." International Journal of Neutrosophic Science 25, no. 1 (2025): 25–36. http://dx.doi.org/10.54216/ijns.250303.
Full textLiu, Yingfan. "An Optimal Lower Eigenvalue System." Abstract and Applied Analysis 2011 (2011): 1–20. http://dx.doi.org/10.1155/2011/208624.
Full textMousa, Mohamed M., and Wen-Xiu Ma. "Efficient modeling of shallow water equations using method of lines and artificial viscosity." Modern Physics Letters B 34, no. 04 (December 19, 2019): 2050051. http://dx.doi.org/10.1142/s0217984920500517.
Full textPAN, X. F., AIGUO XU, GUANGCAI ZHANG, and SONG JIANG. "LATTICE BOLTZMANN APPROACH TO HIGH-SPEED COMPRESSIBLE FLOWS." International Journal of Modern Physics C 18, no. 11 (November 2007): 1747–64. http://dx.doi.org/10.1142/s0129183107011716.
Full textO’Brien, Gareth S. "3D rotated and standard staggered finite-difference solutions to Biot’s poroelastic wave equations: Stability condition and dispersion analysis." GEOPHYSICS 75, no. 4 (July 2010): T111—T119. http://dx.doi.org/10.1190/1.3432759.
Full textAgnes, Agnes. "On the Numerical Solutions Based On Exponential Finite Difference Method for Kuramoto-Sivashinsky Equation and Numerical Stability Analysis." Neutrosophic and Information Fusion 4, no. 2 (2024): 30–44. http://dx.doi.org/10.54216/nif.040204.
Full textKim, Dojin. "A Modified PML Acoustic Wave Equation." Symmetry 11, no. 2 (February 2, 2019): 177. http://dx.doi.org/10.3390/sym11020177.
Full textLines, Larry R., Raphael Slawinski, and R. Phillip Bording. "A recipe for stability of finite‐difference wave‐equation computations." GEOPHYSICS 64, no. 3 (May 1999): 967–69. http://dx.doi.org/10.1190/1.1444605.
Full textTodor, Radu, Ionuţ Chiose, and George Marinescu. "Morse inequalities for covering manifolds." Nagoya Mathematical Journal 163 (September 2001): 145–65. http://dx.doi.org/10.1017/s0027763000007947.
Full textHutchinson, A. J., C. Harley, and E. Momoniat. "Numerical Investigation of the Steady State of a Driven Thin Film Equation." Journal of Applied Mathematics 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/181939.
Full textBHATTACHARYA, ANINDYA, and AMIT K. BISWAS. "STABILITY OF THE CORE IN A CLASS OF NTU GAMES: A CHARACTERIZATION." International Game Theory Review 04, no. 02 (June 2002): 165–72. http://dx.doi.org/10.1142/s0219198902000628.
Full textMugheri, Abdul Qadir. "Numerical Simulation of One-Dimensional Advection Diffusion Equation by New Hybrid Explicit Finite Difference Schemes." Volume 21, Issue 1 21, no. 1 (June 30, 2023): 54–62. http://dx.doi.org/10.52584/qrj.2101.07.
Full textNawaz, Yasir, Muhammad Shoaib Arif, Wasfi Shatanawi, and Muhammad Usman Ashraf. "A Fourth Order Numerical Scheme for Unsteady Mixed Convection Boundary Layer Flow: A Comparative Computational Study." Energies 15, no. 3 (January 27, 2022): 910. http://dx.doi.org/10.3390/en15030910.
Full textGROGGER, HERWIG A. "OPTIMIZED ARTIFICIAL DISSIPATION TERMS FOR ENHANCED STABILITY LIMITS." Journal of Computational Acoustics 15, no. 02 (June 2007): 235–53. http://dx.doi.org/10.1142/s0218396x07003329.
Full textMomoniat, E., M. M. Rashidi, and R. S. Herbst. "Numerical Investigation of Thin Film Spreading Driven by Surfactant Using Upwind Schemes." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/325132.
Full textRedouane, Kelthoum Lina, Nouria Arar, Abdellatif Ben Makhlouf, and Abeer Alhashash. "A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation." Mathematical Problems in Engineering 2023 (April 19, 2023): 1–13. http://dx.doi.org/10.1155/2023/4753873.
Full textAl-Khateeb, Areen. "Efficient Numerical Solutions for Fuzzy Time Fractional Convection Diffusion Equations Using Two Explicit Finite Difference Methods." Axioms 13, no. 4 (March 26, 2024): 221. http://dx.doi.org/10.3390/axioms13040221.
Full textYokuş, Asıf. "Truncation and convergence dynamics: KdV Burgers model in the sense of Caputo derivative." Boletim da Sociedade Paranaense de Matemática 40 (January 26, 2022): 1–7. http://dx.doi.org/10.5269/bspm.47472.
Full textBaber, Muhammad Zafarullah, Nauman Ahmed, Muhammad Waqas Yasin, Muhammad Sajid Iqbal, Ali Akgül, Alicia Cordero, and Juan R. Torregrosa. "Comparisons of Numerical and Solitary Wave Solutions for the Stochastic Reaction–Diffusion Biofilm Model including Quorum Sensing." Mathematics 12, no. 9 (April 24, 2024): 1293. http://dx.doi.org/10.3390/math12091293.
Full textAliyi, Kedir, and Hailu Muleta. "Numerical Method of the Line for Solving One Dimensional Initial- Boundary Singularly Perturbed Burger Equation." Indian Journal of Advanced Mathematics 1, no. 2 (October 10, 2021): 4–14. http://dx.doi.org/10.35940/ijam.b1103.101221.
Full textAliyi, Kedir, and Hailu Muleta. "Numerical Method of the Line for Solving One Dimensional Initial- Boundary Singularly Perturbed Burger Equation." Indian Journal of Advanced Mathematics 1, no. 2 (October 10, 2021): 4–14. http://dx.doi.org/10.54105/ijam.b1103.101221.
Full textFournié, Michel, and Alain Rigal. "High Order Compact Schemes in Projection Methods for Incompressible Viscous Flows." Communications in Computational Physics 9, no. 4 (April 2011): 994–1019. http://dx.doi.org/10.4208/cicp.230709.080710a.
Full textSochacki, James, Robert Kubichek, John George, W. R. Fletcher, and Scott Smithson. "Absorbing boundary conditions and surface waves." GEOPHYSICS 52, no. 1 (January 1987): 60–71. http://dx.doi.org/10.1190/1.1442241.
Full textGinzburg, Irina. "Truncation Errors, Exact And Heuristic Stability Analysis Of Two-Relaxation-Times Lattice Boltzmann Schemes For Anisotropic Advection-Diffusion Equation." Communications in Computational Physics 11, no. 5 (May 2012): 1439–502. http://dx.doi.org/10.4208/cicp.211210.280611a.
Full textHuntul, M. J. "Recovering a source term in the higher-order pseudo-parabolic equation via cubic spline functions." Physica Scripta 97, no. 3 (February 23, 2022): 035004. http://dx.doi.org/10.1088/1402-4896/ac54d0.
Full textDevi, Rekha, and Shilpa Sood. "Numerical Investigation of Three-Dimensional Magnetohydrodynamic Flow of Ag H2O Nanofluid Over an Oscillating Surface in a Rotating Porous Medium." Indian Journal Of Science And Technology 17, no. 8 (February 15, 2024): 679–90. http://dx.doi.org/10.17485/ijst/v17i8.2892.
Full textSHORT, M., I. I. ANGUELOVA, T. D. ASLAM, J. B. BDZIL, A. K. HENRICK, and G. J. SHARPE. "Stability of detonations for an idealized condensed-phase model." Journal of Fluid Mechanics 595 (January 8, 2008): 45–82. http://dx.doi.org/10.1017/s0022112007008750.
Full textYokus, Asif, Bülent Kuzu, and Uğur Demiroğlu. "Investigation of solitary wave solutions for the (3 + 1)-dimensional Zakharov–Kuznetsov equation." International Journal of Modern Physics B 33, no. 29 (November 20, 2019): 1950350. http://dx.doi.org/10.1142/s0217979219503508.
Full textКривовичев, Г. В., and М. П. Мащинская. "Stability analysis of the implicit finite-difference-based upwind lattice Boltzmann schemes." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 2 (March 28, 2019): 116–27. http://dx.doi.org/10.26089/nummet.v20r212.
Full textZureigat, Hamzeh, Saleh Alshammari, Mohammad Alshammari, Mohammed Al-Smadi, and M. Mossa Al-Sawallah. "An in-depth examination of the fuzzy fractional cancer tumor model and its numerical solution by implicit finite difference method." PLOS ONE 19, no. 12 (December 20, 2024): e0303891. https://doi.org/10.1371/journal.pone.0303891.
Full textLee, Hyoung In, and El Hang Lee. "The Minimum Wave Damping Selects the Most Favored Solution from Multiple Ones to Acoustic-Like Problems." Materials Science Forum 673 (January 2011): 11–20. http://dx.doi.org/10.4028/www.scientific.net/msf.673.11.
Full textPeris, Josep E., and Begoña Subiza. "A reformulation of von Neumann–Morgenstern stability: -stability." Mathematical Social Sciences 66, no. 1 (July 2013): 51–55. http://dx.doi.org/10.1016/j.mathsocsci.2013.01.001.
Full textKawasaki, Ryo. "Roth–Postlewaite stability and von Neumann–Morgenstern stability." Journal of Mathematical Economics 58 (May 2015): 1–6. http://dx.doi.org/10.1016/j.jmateco.2015.02.002.
Full textXu, Fang Qin, and Lei Jiang. "Modeling of Stochastic Von Neumann Model of Mobile Service." Key Engineering Materials 474-476 (April 2011): 11–14. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.11.
Full text