Academic literature on the topic 'Volatile organic compound degradation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volatile organic compound degradation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volatile organic compound degradation"

1

Atkinson, Roger, and Janet Arey. "Atmospheric Degradation of Volatile Organic Compounds." Chemical Reviews 103, no. 12 (December 2003): 4605–38. http://dx.doi.org/10.1021/cr0206420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Jing, Wei Li Ong, Jie Hong Ho, and Ghim Wei Ho. "Inorganic-organic Hybrid Membranes for Photocatalytic Hydrogen Generation and Volatile Organic Compound Degradation." Procedia Engineering 215 (2017): 202–10. http://dx.doi.org/10.1016/j.proeng.2017.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gasca-Tirado, J. R., A. Manzano-Ramírez, P. A. Vazquez-Landaverde, E. I. Herrera-Díaz, M. E. Rodríguez-Ugarte, J. C. Rubio-Ávalos, V. Amigó-Borrás, and M. Chávez-Páez. "Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound." Materials Letters 134 (November 2014): 222–24. http://dx.doi.org/10.1016/j.matlet.2014.07.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mora, Lucas D., Larissa F. Bonfim, Lorrana V. Barbosa, Tiago H. da Silva, Eduardo J. Nassar, Katia J. Ciuffi, Beatriz González, et al. "White and Red Brazilian São Simão’s Kaolinite–TiO2 Nanocomposites as Catalysts for Toluene Photodegradation from Aqueous Solutions." Materials 12, no. 23 (November 28, 2019): 3943. http://dx.doi.org/10.3390/ma12233943.

Full text
Abstract:
The presence of volatile organic compounds in groundwater is a major concern when it is used as a drinking water source because many of these compounds can adversely affect human health. This work reports on the preparation and characterization of white and red Brazilian São Simão’s kaolinite-TiO2 nanocomposites and their use as catalysts in the photochemical degradation of toluene, a significant volatile organic compound. The nanocomposites were prepared by a sol-gel procedure, using titanium bis(triethanolaminate)diisopropoxide as a precursor. Thermal treatments of the nanocomposites led to different polymorphic titania phases, while the clay changed from kaolinite to metakaolinite. This structural evolution strongly affected the photocatalytic degradation behavior—all the solids efficiently degraded toluene and the solid calcined at 400 °C, formed by kaolinite and anatase, showed the best behavior (90% degradation). On extending the photochemical treatment up to 48 h, high mineralization levels were reached. The advantage of photodegradation using the nanocomposites was confirmed by comparing the results from isolated components (titanium dioxide and kaolinite) to observe that the nanocomposites displayed fundamental importance to the photodegradation pathways of toluene.
APA, Harvard, Vancouver, ISO, and other styles
5

Lomans, B. P., A. Pol, and H. J. M. Op den Camp. "Microbial cycling of volatile organic sulfur compounds in anoxic environments." Water Science and Technology 45, no. 10 (May 1, 2002): 55–60. http://dx.doi.org/10.2166/wst.2002.0288.

Full text
Abstract:
Microbial cycling of volatile organic sulfur compounds (VOSC) is investigated due to the impact these compounds are thought to have on environmental processes like global temperature control, acid precipitation and the global sulfur cycle. Moreover, in several kinds of industries like composting plants and the paper industry VOSC are released causing odor problems. Waste streams containing these compounds must be treated in order to avoid the release of these compounds to the atmosphere. This paper describes the general mechanisms for the production and degradation of methanethiol (MT) and dimethyl sulfide (DMS), two ubiquitous VOSC in anaerobic environments. Slurry incubations indicated that methylation of sulfide and MT resulting in MT and DMS, respectively, is one of the major mechanisms for VOSC in sulfide-rich anaerobic environments. An anaerobic bacterium that is responsible for the formation of MT and DMS through the anaerobic methylation of H2S and MT was isolated from a freshwater pond after enrichment with syringate as a methyl group donating compound and sole carbon source. In spite of the continuous formation of MT and DMS, steady state concentrations are generally very low. This is due to the microbial degradation of these compounds. Experiments with sulfate-rich and sulfate-amended sediment slurries demonstrated that besides methanogens, sulfate-reducing bacteria can also degrade MT and DMS, provided that sulfate is available. A methanogen was isolated that is able to grow on DMS as the sole carbon source. A large survey of sediments slurries of various origin demonstrated that both isolates are commonly occurring inhabitants of anaerobic environments.
APA, Harvard, Vancouver, ISO, and other styles
6

Chiarelotto, Maico, Willian Chucchi Bottin, Cristian Eduardo Spicker, Savio Silva Duarte, Marilete Chiarelotto, and Marlene Magnoni Bortoli. "Composting of household organic waste: effect on control parameters and final compound quality." REVISTA AGRO@MBIENTE ON-LINE 12, no. 4 (December 30, 2018): 272. http://dx.doi.org/10.18227/1982-8470ragro.v12i4.5126.

Full text
Abstract:
It is estimated that 51% of Brazilian urban solid waste is composed of organic material, which has a high recyclability potential via alternative processes. One means of optimization and recycling this fraction would be the popularization of household composting and the dissemination of means of attaining it. The current study objective, therefore, was to evaluate control characters of the household organic residue composting process, test final organic compound product quality and investigate the feasibility of conducting such processes in urban dwellings. Organic residues were collected for three days, distributed over a week, in 20 residences of the urban area of Marmeleiro municipality, Paraná State, southern Brazil. A compost heap was set up with an initial mass of 137.21 kg of organic material. During the degradation process, temperature, dry mass, volume, pH, electrical conductivity, phytotoxicity, volatile solids, total organic carbon exothermic accumulation, and loss of organic matter were measured. At the end of the process, the CTC, CTC:COT, total nitrogen and C:N ratio were also determined. Throughout the composting process it was recorded that the germination index went from 45.27 to 109.43, as the material changed from being dominated by phytotoxic compounds to phytostimulants. In addition, organic compound CTC increased from 27.2 to 57.8, showing organic material degradation occurred in only 37 days. The experimental analysis of the degradation process, has shown that treatment of urban organic waste in compost heaps is both viable and safe under domestic circumstances.
APA, Harvard, Vancouver, ISO, and other styles
7

Cline, Patricia V., and Daniel R. Viste. "Migration and Degradation Patterns of Volatile Organic Compounds." Waste Management & Research 3, no. 1 (January 1985): 351–60. http://dx.doi.org/10.1177/0734242x8500300143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

CLINE, P., and D. VISTE. "Migration and degradation patterns of volatile organic compounds." Waste Management & Research 3, no. 4 (1985): 351–60. http://dx.doi.org/10.1016/0734-242x(85)90128-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ZUO, G., Z. CHENG, H. CHEN, G. LI, and T. MIAO. "Study on photocatalytic degradation of several volatile organic compounds." Journal of Hazardous Materials 128, no. 2-3 (February 6, 2006): 158–63. http://dx.doi.org/10.1016/j.jhazmat.2005.07.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wojtasik-Kalinowska, Iwona, Arkadiusz Szpicer, Weronika Binkowska, Monika Hanula, Monika Marcinkowska-Lesiak, and Andrzej Poltorak. "Effect of Processing on Volatile Organic Compounds Formation of Meat—Review." Applied Sciences 13, no. 2 (January 4, 2023): 705. http://dx.doi.org/10.3390/app13020705.

Full text
Abstract:
Meat is a rich source of different volatile compounds. The final flavor of meat products depends on the raw material and processing parameters. Changes that occur in meat include pyrolysis of peptides and amino acids, degradation of sugar and ribonucleotides, Maillard’s and Strecker’s reactions, lipid oxidation, degradation of thiamine and fats, as well as microbial metabolism. A review of the volatile compounds’ formation was carried out and divided into non-thermal and thermal processes. Modern and advanced solutions such as ultrasounds, pulsed electric field, cold plasma, ozone use, etc., were described. The article also concerns the important issue of determining Volatile Organic Compounds (VOCs) markers generated during heat treatment.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Volatile organic compound degradation"

1

Grira, Asma. "Atmospheric degradation of oxygenated Volatile Organic Compounds." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S017.

Full text
Abstract:
Les composés organiques volatils oxygénés (COVO), principalement émis par des sources biogènes, jouent un rôle majeur dans la chimie de l'atmosphère, le changement climatique, l'environnement et la santé. Il a été récemment démontré que ces émissions augmentent en cas de stress biotique et/ou abiotique. Les COVO biogéniques peuvent subir une variété de réactions, tant chimiques que photolytiques, et ils sont impliqués dans la formation d'Aérosols Organiques Secondaires (AOS). Ces composés ont été détectés dans diverses régions, mais il y a très peu d’informations sur leurs processus de dégradation sous conditions troposphériques. La compréhension des mécanismes d'oxydation de ces espèces est d'un intérêt fondamental et fournit des données cruciales pour les modèles atmosphériques qui sont utilisés par les responsables politiques pour formuler et décider des stratégies d'amélioration de la qualité de l'air. Cette thèse vise à améliorer les connaissances actuelles sur le comportement de ces COVO, pour une meilleure compréhension de leur impact sur la chimie atmosphérique. Dans ce travail, nous avons présenté une étude détaillée de la dégradation atmosphérique des aldéhydes insaturés en C5-C7 et des alcools insaturés en C5-C8 par ozone, l’atome Cl et le radical OH. Les principaux objectifs étaient de mieux comprendre le mécanisme de réaction et de mettre en évidence leur potentiel à former des AOS. Pour atteindre ces objectifs, nous nous sommes concentrés sur quatres volets : (i) détermination du spectre IR et UV des aldéhydes insaturés en C5-C7, (ii) détermination de la constante de vitesse pour les systèmes COVO + Oxydant étudiés à température ambiante, (iii) identification et quantification des produits en phase gazeuse, (iv) détermination des rendements en AOS. Les études sur les produits ont été menées avec et sans ajout d'un piégeur des radicaux OH. Les expériences ont été réalisées dans huit réacteurs différents, statiques (chambres) ou dynamiques (flux), et diverses techniques analytiques ont été utilisées pour étudier les produits de réaction (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) et la formation de SOA (SMPS, FMPS)
Oxygenated Volatile Organic Compounds (OVOCs), mainly released from biogenic sources, play a major role in atmospheric chemistry, climate change, environment, and health. These emissions have been recently shown to increase in the case of biotic and/or abiotic stresses. Biogenic OVOCs may undergo a wide variety of reactions, both chemical and photolytic, and they contribute in the formation of Secondary Organic Aerosols (SOAs). These compounds have been detected in various areas, but little is known about their degradation processes under tropospheric conditions. Understanding the oxidation mechanisms of these species is of fundamental interest and yields crucial data for atmospheric models used by policymakers in formulating and deciding strategies for improving air quality. This dissertation aims to improve the current knowledge of those OVOCs behaviors to better understand their impact on atmospheric chemistry. This work reports a detailed study of the atmospheric degradation of C5-C7 unsaturated aldehydes and C5-C8 unsaturated alcohols by ozone, Cl atom, and OH radical. The main objectives were to better understand the reaction mechanism and to feature the SOA formation potential. To achieve these objectives, we focused on four topics: (i) determination of IR and UV spectrum of C5-C7 unsaturated aldehydes, (ii) determination of the rate constant for the studied OVOCs + Oxidant at room temperature, (iii) identification and quantification of the gas-phase products, (iv) determination of the SOA yields. The product studies were investigated both with and without adding an OH radical scavenger. Experiments were performed in eight different static (chambers) or dynamic (flow) reactors, and various analytical techniques were used to investigate the reaction products (FTIR, GC-FID/MS, SPME-GC/MS, HPLC, PTR-ToF-MS, SIFT-MS, PLP-LIF) and SOA formation (SMPS, FMPS)
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Yujie. "Atmospheric measurements and degradation mechanisms of a number of volatile organic compounds." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2048.

Full text
Abstract:
Les composés organiques carbonylés et les BTEX (Benzène, Toluène, Éthylbenzène et Xylènes) représentent une classe importante de composés organiques volatils dans l’atmosphère. Ils sont émis par des sources anthropogénique et biogéniques. Leur dégradation atmosphérique conduit à la formation d’ozone, de phooxidants et d’aérosols organiques affectant ainsi la qualité de l’air aux échelles locales et régionales ainsi que la santé humaine. Il est donc important de mesurer leurs concentrations et évaluer leur devenir atmosphérique. Dans la présente thèse, nous avons conduit une étude systématique qui a permis de mesurer les concentrations de ces composés et identifier leurs sources à Pékin (Juillet 2008-Août 2010) et évaluer l’importance des caractéristiques météo. Nous avons aussi mené des études sur la dégradation atmosphérique de trois formates (isoproyle, isobutyle et n-propyle) en utilisant la chambre de simulation atmosphérique d’ICARE (CNRS, Orléans)
Carbonyls and BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) represent an important class of VOCs (volatile organic compounds) in the atmosphere. They are emitted into the atmosphere through anthropogenic and biogenic sources. Their atmospheric degradation leads to the formation of ozone, photooxidants and organic aerosols affecting the air quality at the local and regional scales and human health. It is, hence, of importance to measure their atmospheric concentrations and investigate their fate. In the present thesis, we have conducted a systematic measurement study of carbonyls and BTEX in Beijing during the period of Jul 2008-Aug 2010 in order to evaluate their ambient levels, possible sources and the influence of characteristic weather conditions. In a separate work, we performed a series of experimental studies on the OH-initiated oxidation of isopropyl formate, isobutyl formate, and n-propyl isobutyrate using the ICARE-CNRS (Orleans) simulation chamber from which we derived the product yields. The data obtained are presented and discussed
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarze, Susann. "Volatile organic compounds in landfill gas as indicators of waste degradation processes." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yooyen, Juthatip. "Degradation of volatile organic compounds by various bacteria isolated from the environment." Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Madelyn M. "Cometabolic Degradation of Halogenated Aliphatic Hydrocarbons by Aerobic Microorganisms Naturally Associated with Wetland Plant Roots." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341854406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baker, Schuyler Denton. "Eco-friendly driven remediation of the indoor air environment: the synthesis of novel transition metal doped titania/silica aerogels for degradation of volatile and semi-volatile organic compounds." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/13348.

Full text
Abstract:
Master of Science
Department of Chemistry
Kenneth Klabunde
Remediation of the indoor environment led to the development of novel catalysts which can absorb light in the visible range. These catalysts were prepared using the wet chemistry method known as sol-gel chemistry because preparation via sol-gel provides a homogeneous gel formation, which can be treated via supercritical drying to produce an aerogel. These aerogels have been found to have high surface areas when a combination of titania/silica is used. The increase in surface area has been shown to enhance the activity of the catalysts. Mixed metal oxide systems were prepared using titanium isopropoxide and tetraethyl orthosilicate to yield a 1:1 system of titania/silica (TiO2/SiO2). These systems were doped during the initial synthesis with transition metals (Mn or Co) to create mixed metal oxide systems which absorb light in the visible light range. These materials were assessed for potential as heterogeneous catalysts via gas-solid phase reactions with acetaldehyde. Degradation of acetaldehyde as well as the formation of CO2 was monitored via gas chromatography-mass spectrometery. To increase the activity, visible light was introduced to the system. Experiments have shown that a 10 mol % manganese doped titania/silica system, in the presence of light, can degrade acetaldehyde. The cobalt doped counterpart showed dark activity in the presence of acetaldehyde resulting in the formation of CO2 without the addition of visible light. In the hope of increasing surface area a mixed solvent (toluene/methanol) synthesis procedure was applied to the manganese doped catalyst. The resulting materials were of a low surface area but showed a significant increase in degradation of acetaldehyde. Examination of the interactions between mixed metal oxide systems and semivolatile organic compounds (SVOCs) was studied. The pollutant, triphenyl phosphate, was dissolved in n-pentane and exposed to 10 mg of a given catalyst. These reactions were monitored using UVVis. All systems but the manganese doped titania/silica system resulted in the observation of no activity with triphenyl phosphate. The manganese doped catalyst shown a peculiar activity, the increase in absorbance of the triphenyl phosphate peaks as well as the formation of a new peak.
APA, Harvard, Vancouver, ISO, and other styles
7

Kersten, Hendrik [Verfasser]. "Development of an Atmospheric Pressure Ionization source for in situ monitoring of degradation products of atmospherically relevant volatile organic compounds / Hendrik Kersten." Wuppertal : Universitätsbibliothek Wuppertal, 2011. http://d-nb.info/1011395789/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Messaadia, Lyamine. "Etudes théoriques et expérimentales de la dégradation atmosphérique des composés organiques oxygénés." Thesis, Reims, 2013. http://www.theses.fr/2013REIMS036/document.

Full text
Abstract:
Cette thèse porte sur l'étude de dégradation atmosphérique de quelques composés organiques volatils oxygénés par les principaux oxydants atmosphériques OH, Cl, et NO3. Ce travail, comporte, d'une part la détermination des spectres d'absorption UV-Visible des composés hydroxycarbonylés (Hydroxyacétone (HAC), 4-hydroxy-2-butanone (4HB), 3-hydroxy-2-butanone (3HB) et 3-methyl-3-hydoxy-2-butanone (3H3M2B) et d'autre part les mesures cinétiques de la réaction du composé HAC avec le chlore atomique et le radical nitrate. Les réactions entre 4HB et 3H2B avec les radicaux OH et le chlore atomique ont aussi été étudié. Les mesures d'absorption ont été réalisées dans la gamme de température 250 et 363 K à l'aide d'une lampe D2 couplé à un monochromateur. Les valeurs de section obtenues sont utilisées pour calculer la constante de photolyse et d'estimer les durées de vie dans la troposphère des composés étudiés. Les résultats suggèrent que la photolyse pourrait être un processus important pour ces espèces dans la troposphère. Les résultats des études cinétiques, montrent une légère variation des constantes de vitesse avec la température. Nous avons aussi étudié les composés dicétones : 2,4-pentanedione et 2,3-pentanedione. Cette étude porte sur la détermination des spectres d'absorption UV-Visible des composés dicétones et l'étude cinétique de leur réaction avec les radicaux OH en fonction de température. Pour les deux composés une variation de température de plus de 60 % est observée. Les calculs théoriques ont été effectués avec deux programmes différents. Avec logiciel Gaussian 03 nous avons réalisé une optimisation de la géométrie des minima, complexes et états de transition au niveau B3LYP/6-311G++(2d, pd). La méthode composite de haut niveau CBS-QB3 a été utilisée. Et avec le logiciel ChemRate pour les calculs cinétique, et la détermination des constantes de vitesse en phase gazeuse de la réaction étudié en fonction de la température. Les calculs des niveaux d'énergies montrent l'existence d'une étape réactionnelle où il se produit d'un complexe intermédiaire suivi d'une abstraction d'un atome d'hydrogène
This thesis focuses on the study of atmospheric degradation of some Oxygenated Volatile Organic Compounds by major atmospheric oxidants OH, Cl, and NO3. This work comprises firstly determining the spectra of UV-Visible absorption hydroxycarbonyl compounds (hydroxyacetone (HAC), 4-hydroxy-2-butanone (4HB), 3-hydroxy-2-butanone (3HB) and 3-methyl-3-hydoxy-2-butanone (3H3M2B) and secondly measures the kinetics of the reaction of the compound HAC with the atomic chlorine and nitrate radical.Reactions between 4HB and 3H2B with OH radicals and atomic chlorine were also studied.The UV absorption cross-sections of hydroxyacetone, 3-hydroxy 2-butanone, 4-hydroxy 2-butanone and 3-hydroxy 3-methyl 2-butanone have been measured. The experiments have been carried out between 250 and 363 K using a D2 lamp coupled to a monochromator. This work provides the first UV cross-section measurements for 3-hydroxy 2-butanone, 4-hydroxy 2-butanone and 3-hydroxy 3-methyl 2-butanone. The obtained cross-section values are used to calculate the photolysis rates and to estimate the tropospheric lifetimes of the studied compounds. The results suggest that photolysis could be an important removal process for these species in the troposphere. The results of kinetic studies show a slight variation of the rate constants with temperature.We also studied the diketones compounds: 2,4-pentanedione and 2,3-pentanedione. This study focuses on the determination of UV-Visible absorption spectra of diketones compounds and kinetic study of their reaction with OH radicals according to temperature. For both compounds a temperature variation of more than 60% is observed.The theoretical calculations were performed with two different programs: With Gaussian 03 software we performed a geometry optimization minima complex and transition states at B3LYP/6-311G + + level (2d, pd). The high-level composite method CBS-QB3 was used. And with the software ChemRate for kinetic calculations and the determination of rate constants for gas phase reaction according to the studied temperature. Calculations of energy levels show the existence of a reaction step where there is an intermediate complex followed by abstraction of a hydrogen atom
APA, Harvard, Vancouver, ISO, and other styles
9

Vincent, Guillaume. "Procédé d'élimination de la pollution de l'air par traitement photocatalytique : application aux COVs." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL037N/document.

Full text
Abstract:
L’oxydation photocatalytique des Composés Organiques Volatils (COVs) apparaît comme un procédé très prometteur pour la réduction de la pollution atmosphérique. Ce travail avait pour objectif d’étudier l’oxydation photocatalytique de plusieurs COVs au sein d’un réacteur annulaire: méthyléthylcétone (MEK), acétone, 1-propanol ou encore triéthylamine (TEA). Dans une première partie, l’influence de plusieurs paramètres cinétiques tels que la concentration en polluant, l’intensité lumineuse, le temps de contact et le taux d’humidité a été étudiée. Un mécanisme de dégradation photocatalytique a été établi pour chaque polluant en fonction des sous-produits détectés par GC/MS. Dans une seconde partie, la diffusion de radicaux hydroxyles OH• dans la phase gazeuse, après activation photonique du TiO2, a été mise en évidence par Fluorescence Induite par Laser (LIF). Pour la première fois, ces radicaux OH• ont été détectés à des pressions proches des conditions atmosphériques. Dans ce cas, nous pouvons en conclure que la dégradation photocatalytique des COVs pourrait être partiellement due à une réaction en phase gazeuse entre les COVs et les radicaux OH•
Photocatalytic oxidation of airborne contaminants appears to be a promising process for remediation of air polluted by Volatile Organic Compounds (VOCs). The aim of our study is the photocatalytic oxidation of several VOCs using an annular reactor: methylethylketone (MEK), acetone, 1-propanol and triethylamine (TEA). First, the influence of different kinetic parameters such as pollutant concentration, incident light irradiance, contact time and humidity has been studied. A mechanistic pathway has been indeed proposed for each pollutant according to the produced intermediates species detected by GC/MS. Second, the diffusion of hydroxyls radicals OH• in gas phase, after photonic activation of TiO2, has been highlighted using Laser-Induced Fluorescence (LIF). For the first time, OH• radicals have been detected at atmospheric pressures, close to the major photocatalytic oxidation conditions, leading to the assumption that the photocatalytic degradation of VOCs might be at least partially occurs between pollutants and OH• radicals in gas-phase
APA, Harvard, Vancouver, ISO, and other styles
10

Tsui, Kin-yin Jeanie. "Biogenic volatile organic compound emissions in Hong Kong." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38029182.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Volatile organic compound degradation"

1

Hunt, D. B. Measurement of volatile organic compound capture efficiency. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sheryl, Watkins, ed. Controlling volatile organic compound emissions from industrial wastewater. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hewitt, Alan D. Preparing soil samples for volatile organic compound analysis. Hanover, N.H: US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

S, Jennings M., and Radian Corporation, eds. Catalytic incineration for control of volatile organic compound emissions. Park Ridge, N.J., U.S.A: Noyes Publications, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Environmental Protection Agency. Emission Standards Division, ed. Control of volatile organic compound emissions from batch processes. Research Triangle Park, N.C: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. Environmental Protection Agency. Office of Air Quality Planning and Standards, ed. Study of volatile organic compound emissions from consumer and commercial products. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

E, Lewis Timothy, United States. Environmental Protection Agency. Office of Research and Development, and United States. Environmental Protection Agency. Office of Solid Waste and Emergency Response, eds. Soil sampling and analysis for volatile organic compounds. [Washington, D.C.]: U.S. Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Environmental Protection Agency. Emission Standards Division, ed. Control of volatile organic compound emissions from volatile organic liquid storage in floating and fixed roof tanks. Research Triangle Park, N.C: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Niinemets, Ülo, and Russell K. Monson, eds. Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6606-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jennings, M. S. Volatile organic compound emission projection model user's manual (version 1.8). Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Volatile organic compound degradation"

1

Chu, Hsin, Yi Hsing Lin, and Ting Ke Tseng. "Chapter 11 Photocatalytic degradation of volatile organic compounds." In Clean Room Technology in ART Clinics, 133–58. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372464-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwanke, Anderson Joel, Rosana Balzer, and Sibele Pergher. "Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica." In Handbook of Ecomaterials, 1–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_71-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwanke, Anderson Joel, Rosana Balzer, and Sibele Pergher. "Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica." In Handbook of Ecomaterials, 607–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

López-Fernández, Olalla, Rubén Domínguez, Laura Cutillas, Paulo E. S. Munekata, Laura Purriños, José Manuel Lorenzo, Nestor Sepúlveda, Alfredo Teixeira, and Mirian Pateiro. "Volatile Organic Compound Profile." In Methods to Assess the Quality of Meat Products, 133–40. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2002-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baraldi, Rita, Francesca Rapparini, Osvaldo Facini, Claudia Justina Kemper Pacheco, Giorgio Matteucci, Enzo Brancaleoni, and Paolo Ciccioli. "Biogenic Volatile Organic Compound Emissions." In The Greenhouse Gas Balance of Italy, 47–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-32424-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ashworth, Kirsti, Christophe Boissard, Gerd Folberth, Juliette Lathière, and Guy Schurgers. "Global Modelling of Volatile Organic Compound Emissions." In Tree Physiology, 451–87. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6606-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McKee, Lauren Sara, and Annie Rebekah Inman. "Secreted Microbial Enzymes for Organic Compound Degradation." In Microorganisms for Sustainability, 225–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9117-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rutter, Abigail V., and Josep Sulé-Suso. "Analysis Of Volatile Organic Compounds For Cancer Diagnosis." In Volatile organic compound analysis in biomedical diagnosis applications, 53–78. Toronto; New Jersey : Apple Academic Press, 2019.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9780429433580-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parenti, Paolo, and Giancarlo Cicerone. "Volatile Organic Compound (VOC) Air Stripping Pilot Restoration Program." In Contaminated Soil ’90, 1069–70. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nigiz, Filiz Ugur, and Nilufer Durmaz Hilmioglu. "Clean Technology for Volatile Organic Compound Removal from Wastewater." In Causes, Impacts and Solutions to Global Warming, 709–19. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7588-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Volatile organic compound degradation"

1

Mishra, Amit, and Soumen Basu. "Microwave synthesis of clay/TiO2composites and their application in photocatalytic degradation of volatile organic compounds." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Huili, Kaili Zhang, and Carole Rossi. "Theoretical Investigation on Nano TiO2 Photocatalytic Oxidation of VOCs." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21406.

Full text
Abstract:
Controlling mechanisms for photocatalytic degradation of volatile organic compounds by nano TiO2 catalyst are found to be mass transfer, diffusion, adsorption and photochemistry. A mathematical model for the degradation process is developed by incorporating these mechanisms in a plane plate air purification physical model. Finite difference method is employed to solve the governing equation and boundary conditions. The computation results are validated using the data from experiments. The model is then used to investigate the effects of some key factors on the degradation of formaldehyde including UV light intensity, UV light attenuation coefficient, adsorption, catalyst thickness, and flow rate.
APA, Harvard, Vancouver, ISO, and other styles
3

Sano, Taizo, Nobuaki Negishi, Koji Takeuchi, and Sadao Matsuzawa. "Degradation of VOCs With Pt-TiO2 Photocatalyst and Concentrated Sunlight." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65072.

Full text
Abstract:
A Parabolic trough concentrator (PTC) and a photocatalytic reactor with Pt-deposited TiO2 Photocatalyst were designed and constructed for the degradation of volatile organic compounds (VOCs). The temperature of photocatalyst coated on the sunlight receiver was easily elevated to around 473 K by PTC, and 79% of toluene or 93% of acetaldehyde was removed continuously, when gaseous toluene (15ppm) or acetaldehyde (400ppm) was passed through the reactor. The combination of sunlight concentrator and Pt-TiO2 catalyst exhibited the enhancement of complete degradation of VOCs, the inhibition of deactivation, and the reactivation of photocatalyst. The contributions of photocatalytic and catalytic activities of Pt-TiO2 were analyzed by using UV lamp and electric heater. Acetaldehyde was thermocatalytically degraded by photodeposited Pt on TiO2 at 343–463 K without UV irradiation, however the UV irradiation was necessary for the complete oxidation of acetaldehyde into CO2.
APA, Harvard, Vancouver, ISO, and other styles
4

Lall, Pradeep, Hao Zhang, and Lynn Davis. "Prognostics Health Management Model for LED Package Failure Under Contaminated Environment." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48724.

Full text
Abstract:
The reliability consideration of LED products includes both luminous flux drop and color shift. Previous research either talks about luminous maintenance or color shift, because luminous flux degradation usually takes very long time to observe. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphor-converted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable error-bounds (20%) after a short training of the estimator.
APA, Harvard, Vancouver, ISO, and other styles
5

Gordon, John D., Richard H. Selfridge, and Stephen M. Schultz. "D-Fiber volatile organic compound sensor." In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Vijay K. Varadan. SPIE, 2007. http://dx.doi.org/10.1117/12.715298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keutsch, Frank N., Joshua B. Paul, Joshua P. DiGangi, and Samuel B. Henry. "Atmospheric Volatile Organic Compound Sensing with Lasers." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.ath3l.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Bo, and David N. Lambeth. "Nanostructured polymer transistors for volatile organic compound detection." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stewart, Scott. "Manufacturing constraints — reducing Volatile Organic Compound air emissions." In 2007 International Symposium on Semiconductor Manufacturing. IEEE, 2007. http://dx.doi.org/10.1109/issm.2007.4446795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bunding Lee, K. A., G. P. Ananth, A. L. Hood, J. A. Schroeder, and A. L. Clobes. "Volatile organic compound and respirable particle monitoring in residences." In Optical Sensing for Environmental and Process Monitoring, edited by Orman A. Simpson. SPIE, 1995. http://dx.doi.org/10.1117/12.210790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Calvert, C., R. Lawrence, J. Hudnall, M. Duling, S. Berardinelli, and C. Coffey. "253. Volatile Organic Compound Comparison of Several Ventilation Systems." In AIHce 2003. AIHA, 2003. http://dx.doi.org/10.3320/1.2758025.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Volatile organic compound degradation"

1

Yamazaki-Nishida, S., H. W. Read, J. K. Nagano, M. A. Anderson, S. Cervera-March, T. R. Jarosch, and C. A. Eddy-Dilek. Gas phase photocatalytic degradation on TiO{sub 2} pellets of volatile chlorinated organic compounds from a soil vapor extraction well. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10194560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zylkowski, Steve, and Charles Frihart. Volatile organic compound emissions from engineered wood products. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2017. http://dx.doi.org/10.2737/fpl-rn-350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bair, Kimberly. Volatile organic compound (VOC) retardation in ground water. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/576739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, X., S. Sourirajan, H. Tezel, T. Matsuura, and B A Farnand. Separation of volatile organic compound/nitrogen mixtures by polymeric membranes. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katz, Robert W. Low Volatile Organic Compound (VOC) Chemical Agent Resistant Coating (CARC). Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada608313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peterson, Robert E., Bruce A. Williams, and Ronald M. Smith. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/936597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hewltt, Alan D. Laboratory Study of Volatile Organic Compound Partitioning, Vapor/Aqueous/Soil. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada337494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lafferman, Fred, Daniel Pope, and John Escarsega. Low Volatile Organic Compound Containing Wash Primer for Letterkenny Army Depot. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada579701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peck, Hugh E. The Impact of Volatile Organic Compound (VOC) Regulations on Shipbuilding and Ship Repair. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada444200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henley, M. V., and R. M. Weber. Evaluation of Volatile Organic Compound Emissions from Line-X XS-350 Polymer Coating. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada408296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography