Academic literature on the topic 'Volatile in magmas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volatile in magmas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volatile in magmas"

1

Degruyter, Wim, Andrea Parmigiani, Christian Huber, and Olivier Bachmann. "How do volatiles escape their shallow magmatic hearth?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (January 7, 2019): 20180017. http://dx.doi.org/10.1098/rsta.2018.0017.

Full text
Abstract:
Only a small fraction (approx. 1–20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface. Here, we use multiscale physical modelling to identify and quantify the main mechanisms of gas escape from crystallizing magma bodies. We show that most of the outgassing occurs at intermediate to high crystal fraction, when the system has reached a mature mush state. It is particularly true for shallow volatile-rich systems that tend to exsolve volatiles through second boiling, leading to efficient construction of gas channels as soon as the crystallinity reaches approximately 40–50 vol.%. We, therefore, argue that estimates of volatile budgets based on volcanic activity may be misleading because they tend to significantly underestimate the magmatic volatile flux and can provide biased volatile compositions. Recognition of the compositional signature and volumetric dominance of intrusive outgassing is, therefore, necessary to build robust models of volatile recycling between the mantle and the surface. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.
APA, Harvard, Vancouver, ISO, and other styles
2

Perinelli, Cristina, Silvio Mollo, Mario Gaeta, Serena De Cristofaro, Danilo Palladino, and Piergiorgio Scarlato. "Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano." Minerals 8, no. 11 (October 25, 2018): 482. http://dx.doi.org/10.3390/min8110482.

Full text
Abstract:
Magma dynamics at Mt. Etna volcano are frequently recognized as the result of complex crystallization regimes that, at shallow crustal levels, unexpectedly change from H2O-undersaturated to H2O-saturated conditions, due to the impulsive and irregular arrival of volatile-rich magmas from mantle depths. On this basis, we have performed hydrous crystallization experiments for a quantitative understanding of the role of H2O in the differentiation of deep-seated trachybasaltic magmas at the key pressure of the Moho transition zone. For H2O = 2.1–3.2 wt %, the original trachybasaltic composition shifts towards phonotephritic magmas never erupted during the entire volcanic activity of Mt. Etna. Conversely, for H2O = 3.8–8.2 wt %, the obtained trachybasalts and basaltic trachyandesites reproduce most of the pre-historic and historic eruptions. The comparison with previous low pressure experimental data and natural compositions from Mt. Etna provides explanation for (1) the abundant release of H2O throughout the plumbing system of the volcano during impulsive ascent of deep-seated magmas; (2) the upward acceleration of magmas feeding gas-dominated, sustained explosive eruptions; (3) the physicochemical changes of gas-fluxed magmas ponding at shallow crustal levels; and (4) the huge gas emissions measured at the summit craters and flank vents which result in a persistent volcanic gas plume.
APA, Harvard, Vancouver, ISO, and other styles
3

Rasmussen, Daniel J., Terry A. Plank, Diana C. Roman, and Mindy M. Zimmer. "Magmatic water content controls the pre-eruptive depth of arc magmas." Science 375, no. 6585 (March 11, 2022): 1169–72. http://dx.doi.org/10.1126/science.abm5174.

Full text
Abstract:
Vanguard efforts in forecasting volcanic eruptions are turning to physics-based models, which require quantitative estimates of magma conditions during pre-eruptive storage. Below active arc volcanoes, observed magma storage depths vary widely (~0 to 20 kilometers) and are commonly assumed to represent levels of neutral buoyancy. Here we show that geophysically observed magma depths (6 ± 3 kilometers) are greater than depths of neutral buoyancy, ruling out this commonly assumed control. Observed depths are instead consistent with predicted depths of water degassing. Intrinsically wetter magmas degas water and crystallize deeper than dry magmas, resulting in viscosity increases that lead to deeper stalling of ascending magma. The water–depth relationship provides a critical constraint for forecasting models by connecting depth of eruption initiation to its volatile fuel.
APA, Harvard, Vancouver, ISO, and other styles
4

Nizametdinov, I. R., D. V. Kuzmin, S. Z. Smirnov, A. V. Rybin, and I. Yu Kulakov. "Water in parental basaltic magmasof the Menshiy Brat volcano (Iturup Island, Kurile islands)." Доклады Академии наук 486, no. 1 (May 10, 2019): 93–97. http://dx.doi.org/10.31857/s0869-5652486193-97.

Full text
Abstract:
The paper presents study of the liquidus assemblage of olivine and spinel in high-magnesian basalts (MgO up to 10 mas. %) of the Menshiy Brat volcano (Iturup Island). It was possible to reconstruct the water content and evolution of volatile components in the primary parental magmas that took part in the formation of the Medvezhya Caldera, Iturup Islands. It is shown that the initial water content in the primary melts could reach 5 mas. % with oxygen fugacity corresponding to oxygen buffer NNO + 0.4 log. units. The evolution of magmas involved continuous degassing while magma rises to the surface. The water-rich fluid, which is constantly separated by evolving magma, could play a significant role in the formation of large siliceous magma chambers, which participated in catastrophic caldera eruptions.
APA, Harvard, Vancouver, ISO, and other styles
5

Boudreau, Alan E. "The Stillwater Complex, Montana – Overview and the significance of volatiles." Mineralogical Magazine 80, no. 4 (June 2016): 585–637. http://dx.doi.org/10.1180/minmag.2016.080.063.

Full text
Abstract:
AbstractThe geology of the 2.7 Ga Stillwater Complex in South-Central Montana is reviewed with a focus on the role of volatiles in locally modifying both the crystallization sequence of the evolving parent magma and the initially precipitated solid assemblages to favour olivine ± chromite. A secondary origin for these two minerals is particularly probable for the olivine-bearing rocks of the Banded series and, at a minimum, also increasing their modal abundance in the Peridotite zone of the Ultramafic series. Direct evidence for volatiles includes the presence of high-temperature fluid inclusions in pegmatoids and hydrous melt inclusions (now crystallized) in chromite and olivine from both the Ultramafic and the Banded series rocks. Indirect evidence includes the boninitic character of the parent magma, the presence of volatile-bearing minerals including high-temperature carbonates, rock textures, and Cl / F variations in apatite. Mechanisms which favour the formation of olivine (± chromite) over pyroxene include volatile phase boundary shifts induced by added H2O, incongruent melting of pyroxene by hydration of a partly-molten mush, and the near- to sub-solidus replacement of pyroxene by olivine and chromite by silica-undersaturated fluids. These mechanisms cast doubt that magmas with different liquid lines of descent were involved in the crystallization of the Stillwater Complex. A dry Stillwater magma would have been mineralogically and modally much less varied and lacking in high-grade platinum-group element and chromium deposits.
APA, Harvard, Vancouver, ISO, and other styles
6

Russell, J. Kelly, R. Stephen J. Sparks, and Janine L. Kavanagh. "Kimberlite Volcanology: Transport, Ascent, and Eruption." Elements 15, no. 6 (December 1, 2019): 405–10. http://dx.doi.org/10.2138/gselements.15.6.405.

Full text
Abstract:
Kimberlite rocks and deposits are the eruption products of volatile-rich, silica-poor ultrabasic magmas that originate as small-degree mantle melts at depths in excess of 200 km. Many kimberlites are emplaced as subsurface cylindrical-to-conical pipes and associated sills and dykes. Surficial volcanic deposits of kimberlite are rare. Although kimberlite magmas have distinctive chemical and physical properties, their eruption styles, intensities and durations are similar to conventional volcanoes. Rates of magma ascent and transport through the cratonic lithosphere are informed by mantle cargo entrained by kimberlite, by the geometries of kimberlite dykes exposed in diamond mines, and by laboratory-based studies of dyke mechanics. Outstanding questions concern the mechanisms that trigger and control the rates of kimberlite magmatism.
APA, Harvard, Vancouver, ISO, and other styles
7

Holloway, John R., and Sigurdur Jakobsson. "Volatile solubilities in magmas: Transport of volatiles from mantles to planet surfaces." Journal of Geophysical Research: Solid Earth 91, B4 (March 30, 1986): 505–8. http://dx.doi.org/10.1029/jb091ib04p0d505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martin, Audrey M., Etienne Médard, Kevin Righter, and Antonio Lanzirotti. "Intraplate mantle oxidation by volatile-rich silicic magmas." Lithos 292-293 (November 2017): 320–33. http://dx.doi.org/10.1016/j.lithos.2017.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Macdonald, R., and B. Bagiński. "The central Kenya peralkaline province: a unique assemblage of magmatic systems." Mineralogical Magazine 73, no. 1 (February 2009): 1–16. http://dx.doi.org/10.1180/minmag.2009.073.1.1.

Full text
Abstract:
The review focuses on the evolution of five contiguous peralkaline salic complexes in the south-central Kenya Rift Valley, stressing new developments of general significance to peralkaline magmatism. The complexes have evolved dominantly by combinations of fractional crystallization and magma mixing; volatile-melt interactions, remobilization of plutonic rocks and crystal mushes, and carbonate-silicate liquid immiscibility have been additional petrogenetic processes. Geochemical and experimental studies have shown that pantelleritic magmas can be generated by fractional crystallization of trachyte and high-silica rhyolite. Melts of comenditic composition were also formed by fractionation of trachyte but also locally by partial meltingof syenites. Studies of apparent partition coefficients have provided some of the first data on element distribution between phenocrysts and peralkaline silicic melts. Compositional zonation has been ubiquitous in the complexes, probably a result of the very low viscosity of the magmas.
APA, Harvard, Vancouver, ISO, and other styles
10

Madon, Baptiste, Lucie Mathieu, and Jeffrey H. Marsh. "Oxygen Fugacity and Volatile Content of Syntectonic Magmatism in the Neoarchean Abitibi Greenstone Belt, Superior Province, Canada." Minerals 10, no. 11 (October 28, 2020): 966. http://dx.doi.org/10.3390/min10110966.

Full text
Abstract:
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Volatile in magmas"

1

Wayman, Matthew C. "The Transfer of Volatiles Within Interacting Magmas and its Effect on the Magma Mingling Process." Kent State University Honors College / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1312924338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Le, Gall Nolwenn. "Ascension et dégazage des magmas basaltiques : approche expérimentale." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2044/document.

Full text
Abstract:
Afin de parvenir à une meilleure compréhension de la dynamique d’ascension et d’éruption des magmas basaltiques, nous avons réalisé des expériences de décompression à haute pression (200–25 MPa) et haute température (1200°C) spécifiquement orientées pour documenter la nucléation des bulles de gaz ; ce processus, qui constitue la première étape du dégazage magmatique, conditionne l’évolution de la phase gazeuse (force motrice des éruptions explosives) dans le conduit volcanique. Quatre principaux ensembles d’expériences ont été menés afin de mieux comprendre le rôle des volatils majeurs (H2O, CO2, S), ainsi que les effets de la vitesse d’ascension et de la présence de cristaux sur la cinétique de vésiculation (nucléation, croissance, coalescence) des bulles dans les magmas basaltiques. L’objectif est de comprendre les mécanismes qui contrôlent les caractéristiques texturales (nombre, taille, forme des bulles) et chimiques (teneur en volatils dissous, composition des gaz) des produits naturels et de les approcher expérimentalement. Dans ce sens, les verres expérimentaux ont été analysés avant et après décompression sur le plan textural (microtomographie par rayons X, MEB) et chimique (FTIR, microsonde électronique). Nos résultats démontrent une forte influence du CO2 sur les processus ainsi que sur le mode (équilibre vs. déséquilibre) de dégazage des magmas basaltiques, en lien avec des différences de solubilité et de diffusivité entre les espèces volatiles. Nos données, obtenues dans des conditions voisines des conditions naturelles, ont des implications volcanologiques pour l’interprétation des textures de bulles et des mesures de gaz en sortie de conduit, ainsi que, plus spécifiquement, pour la dynamique des éruptions paroxysmales au Stromboli
For a better understanding of the dynamics of ascent and eruption of basaltic magmas, we have performed high pressure (200–25 MPa) and high temperature (1200°C) decompression experiments specifically oriented to document gas bubble nucleation processes. Bubble nucleation occurs first during magma degassing and, so, it is critical to understand bubble nucleation processes to constrain the evolution of the gas phase (which is the driving force of explosive eruptions) in the volcanic conduit. Four main sets of experiments were conducted to better assess the role of the major volatiles (H2O, CO2, S), as well as the effects of ascent rate and crystals, on bubble vesiculation (nucleation, growth, coalescence) kinetics in basaltic magmas. The aim of the study is to understand the mechanisms which control the textural (number, size, shape of bubbles) and the chemical (dissolved volatile concentrations, gas composition) characteristics of natural products, and also to approach them experimentally. In this way, experimental melts, before and after decompression, were analysed texturally (by X-ray microtomography and MEB) and chemically (by FTIR and electron microprobe). Our results demonstrate a strong influence of CO2 on degassing mode (equilibrium vs. disequilibrium) and mechanisms, which are shown to be controlled by differences in solubility and diffusivity between the main volatile species. Finally, our data, obtained under conditions closely approaching natural eruptions, have volcanological implications for the interpretation of bubble textures and gas measurements, as well as, more specifically, for the dynamics of Strombolian paroxysms
APA, Harvard, Vancouver, ISO, and other styles
3

Leroy, Clémence. "L'iode et le xénon dans les magmas : deux comportements différents." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066094/document.

Full text
Abstract:
La présence de magmas en profondeur permet de contraindre des processus géologiques passés et actuels. Ces magmas (i.e. liquides silicatés) participent aux cycles géochimiques des éléments volatils comme vecteur de matière.Nous étudions deux éléments volatils complémentaires : l'iode (I), un halogène, et le xénon (Xe), un gaz rare. Leur système radioactif éteint 129I/129Xe (T1/2 = 15.7Ma) est utilisé pour dater les processus hadéens et la formation de l'atmosphère, issu de l'évolution d'un océan magmatique. Or on connait peu le comportement de l'iode et du xénon dans les magmas en profondeur à haute pression et température.Notre protocole expérimental vise l'étude de l'incorporation de l'iode et du xénon et de leur solubilité dans les magmas. Pour étudier l'incorporation, la structure des silicates liquides a été caractérisée par diffraction de rayons X avec des expériences in situ réalisées dans des cellules à enclumes de diamant et dans des presses Paris-Édimbourg. Les teneurs de solubilité de l'iode et du xénon ainsi que l'eau ont été mesurés par les méthodes PIXE et ERDA.À hautes pressions, l'iode possède une forte solubilité (quelques %pds) dans les magmas. Les résultats préliminaires sur son incorporation dans du basalte montrent que l'iode ne formerait pas des liaisons covalentes. À haute pression et température (T>300°C - P>1GPa), le xénon forme une liaison covalente Xe-O avec les oxygènes des anneaux de 6 tétraèdres SiO44-. Le xénon a une solubilité élevée dans les magmas (4pds% - 1600°C - 3.5GPa).Les modèles de datation et des cycles géochimiques de l'iode et du xénon doivent être revus en tenant compte de leur comportement différentiel dans les magmas
The presence of magmas at depth helps to constrain past and actual geological processes. Magmas (i.e. silicate melts) participate in geochemical cycles of volatile elements, as vectors of chemical transfers. We study two complementary volatile elements: iodine (I), a halogen, and xenon (Xe), a noble gas. Their extinct 129I/129Xe isotopic system (half-life of 15.7Ma) is used to date Hadean processes and Earth’s atmosphere formation since the atmosphere originated from the Magma Ocean’s evolution. However, little is known about the behavior of both iodine and xenon in silicate melts at depth, under HT and HP conditions. Our experimental protocol aims at elucidating the incorporation process of xenon and iodine in silicate melts, and their solubility. To understand the incorporation of iodine and xenon in magmas, the structure of silicate melts was investigated by in situ diamond anvil cells and Paris-Edinburgh press experiments coupled with X-ray diffraction characterization. Iodine and xenon’s solubility, along with water content are obtained by PIXE and ERDA methods using a nuclear microprobe. At high pressure, iodine has a high solubility (about few wt.%) in magmas. Preliminary results on iodine incorporation in basaltic melt show an absence of covalent bond. At high pressure and temperature conditions (T>300°C – P>1GPa), xenon forms a Xe-O covalent bond with the oxygens of the 6-membered-rings of the melt network. Its solubility in silicate melts is also high (about 4wt.% in haplogranite melts at 1600°C and 3.5GPa). Considering the xenon and iodine differential behavior in melts at depth, a revision of dating models in xenon and iodine cycles must be considered
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, Emily Renee. "Volatiles in basaltic magmas from central Mexico : from subduction to eruption /." Thesis, Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8331.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2008.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 153-167). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
5

Hunt, Emma J. "Magma chamber dynamics in the peralkaline magmas of the Kakortokite Series, South Greenland." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6900.

Full text
Abstract:
Understanding crystallisation in magma chambers is a key challenge for igneous petrology. It is particularly important to understand the origins of layering in peralkaline rocks, e.g. the kakortokite (nepheline syenite), Ilímaussaq Complex, S. Greenland, as these are commonly associated with high value multi-element economic deposits. The kakortokite is a spectacular example of macrorhythmic (>5 m) layering. Each unit consists of three layers comprising arfvedsonite-rich (sodic-amphibole) black kakortokite at the base, grading into eudialyte-rich (sodic-zirconosilicate) red kakortokite, then alkali feldspar- and nepheline-rich white kakortokite. Each unit is numbered -19 to +17 relative to a characteristic well-developed horizon (Unit 0), however there is little consensus on their development. This project applies a multidisciplinary approach through field observations combined with petrography, crystal size distributions (CSDs), mineral and whole rock chemistries on Units 0, -8 to -11 and a phonolite/micro-nephelinolite (“hybrid”) sequence that crosscuts the layered kakortokite. Textures and compositions are laterally consistent across outcrop and indicators of current activity are rare. CSDs indicate in situ crystallisation with gravitational settling as a minor process. Chemical discontinuities occur across unit boundaries. The layering developed through large-scale processes under exceptionally quiescent conditions. The discontinuities reflect open-system behaviour; units were formed by an influx of volatile-rich magma that initiated crystallisation in a bottom layer. Nucleation was initially suppressed by high volatile element concentrations, which decreased to allow for crystallisation of arfvedsonite, followed by eudialyte, then alkali feldspar and nepheline to form each tripartite unit. The chemistry of the hybrid indicates mixing between a primitive (sub-alkaline) magma and kakortokite. Thus injections of magmas of varying compositions occurred, indicating a complex plumbing system below current exposure. The lessons learned at Ilímaussaq, which is extremely well exposed and preserved, are relevant to understanding magma chamber dynamics in the more common instances of pervasively altered peralkaline rocks.
APA, Harvard, Vancouver, ISO, and other styles
6

ESPOSITO, ROSARIO. "Geochemical study of the Solchiaro (Procida Island, Campi Flegrei) eruptive products by microthermometry and microanalysis of fluid and melt inclusions." Doctoral thesis, Università degli Studi di Napoli Federico II, 2010. http://hdl.handle.net/10281/349383.

Full text
Abstract:
In this study is presented the work I have done during the 4 years of a PhD program that was part of the internationalization programme of the Italian research system approved by the Ministero della Ricerca e dell’Università (MIUR) between the Università degli Studi di Napoli “Federico II”, (Dipartimento di Scinze della Terra) and the Virginia Polytechnic Institute and State University (Department of Geosciences). 107 selected MI, 77 open glasses, 80 olivines and 7 bulk rocks (from 4 representative samples of Solchiaro eruption) were analyzed for major/trace element and volatiles. Mostly, olivine compositions vary from Fo82 to Fo88 with one maximum value of Fo90. 2 group of MI were recognized based on major element composition: 1) K2O-rich MI with composition that is the same of bulk rock in the literature and 2) K2O-poor MI that instead have been never reported from previous study of the PVD (Phlegrean Volcanic District). The first group consists of 95% of the melt and relates mostly to within plate setting whereas the second group consists of around 5% of the melt and relates to subduction setting. Magma associated with Solchiaro eruption evolved under open system processes as suggested by petrographic evidence and glass compositions. H2O-CO2 concentrations dissolved in glass suggest that magma was saturated in volatiles at least at 12.5 km depth and continuously degassed during the Solchiaro eruption. Maximum depths are in agreement with other studies based on different approaches. Volatile correlations suggest that during closed system degassing, as the Solchiaro eruption progressed, maximum S contents decreased and minimum Cl and F contents increased. The major, trace and volatile evolution of crystals, glass, and MI is consistent with a model that involves either continuous or episodic recharge of the magma chamber ponded at least at 12.5 km depth
APA, Harvard, Vancouver, ISO, and other styles
7

ESPOSITO, ROSARIO. "Studies of volatile evolution in magmatic systems using melt inclusions." Doctoral thesis, Virginia Polytechnic Institute and State University, 2012. http://hdl.handle.net/10281/349369.

Full text
Abstract:
Understanding volatile evolution associated with active volcanic magmatic systems is of paramount importance because volatiles control and determine the magnitude of an eruption owing to the large change in molar volume that volatile species show depending on their physical state (volatiles dissolved in silicate melts vs. volatiles exsolved as vapor). For active volcanic systems studying the volatile evolution can help to assess the potential hazard associated to a certain locality. Also, volatile evolution in magmatic system controls the formation of certain ore deposits. Despite the importance of understanding volatile evolution of magmatic systems, concentrations of volatiles of evolving magmas are not easily available especially for magmas originated in the deep crust. Fortunately, sample of melts can be entrapped as melt inclusion (MI) into growing igneous minerals in crystalizing magma chamber. After the entrapment, the crystal works as an insulating capsule from the external magmatic environment. Researchers have started to use MI because they provide some advantages in respect to the classical whole rock approach to petrological studies. One of the most important advantages is that MI often represent sample of a deep and non-degassed melt (glass) available at Earth’s surface. This dissertation is a compilation of four publications produced during six years of research and is addressed to give a contribution in understanding the volatile evolution in magmatic systems and also to improve the present understanding of information that can be obtained using the melt inclusions technique. In the first chapter, I present an alternative interpretation of H2O-CO2 trends obtained from MI. In this study, we demonstrate that these trends can be due to post entrapment crystallization on the wall of the MI and not to magma ascent. This alternative view is more realistic especially for cases where in the same phenocrysts MI show strongly different CO2 concentrations. In the second chapter, I present a study to test for the MI reliability in recording volatile concentrations. We used the approach of the melt inclusion assemblage (MIA) that consists of analyzing groups of MI presumably entrapped at the same time and, thus, at same chemical and physical conditions. The results show that most of the MIA studied show consistent volatile concentrations corroborating the reliability of the MI technique. CO2 shows the highest degrees of variability and we have assessed this behavior mostly to C-contamination in the surface of the sample. The third chapter is a study case (the Solchiaro eruption in Southern Italy) that shows the potential uses of MI to understanding the volatile evolution. I present a model showing the dynamic of the magma based on MI. This study also discusses the origin of anomalous MI and which MI provide the best information. The final chapter is dedicated to test the applicability of the new Linkam TS1400XY heating stage. I was able to show how this new microthermometric tool is capable of homogenizing MI at high temperature and to quench MI to a homogeneous glass state
APA, Harvard, Vancouver, ISO, and other styles
8

Chamboredon, René. "Caractérisation et origine des magmas alcalins et des fluides sous le massif volcanique du Jbel Saghro, Anti Atlas, Maroc." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS070/document.

Full text
Abstract:
Les laves alcalines sous-saturées riches en éléments volatils sont les marqueurs du rôle important des fluides dans le manteau et des interactions fluide-roche et magma-roche, processus clés pour comprendre la dynamique du manteau convectif et les interactions asthénosphère-lithosphère en domaine intracontinental. L’objectif de cette thèse est d’apporter de nouvelles contraintes sur la genèse des magmas alcalins en caractérisant les conditions de cristallisation, la source et les processus de fusion partielle à l’origine des néphélinites à olivine, des néphélinites à pyroxène et des basanites du champ volcanique du Jbel Saghro dans l’Anti-Atlas marocain. L’étude pétrologique et géochimique des roches et des minéraux, couplée à l’analyse des inclusions fluides a permis de contraindre les conditions pré-éruptives des néphélinites de Saghro à 1.7–2.2 GPa et ~1350 °C. Les minéraux montrent que les magmas néphélinitiques sont riches en éléments volatils (Cl, F, S), et les inclusions fluides indiquent que les magmas étaient saturés en fluide riche en CO2 à des pressions > 590 MPa. Les différents assemblages minéralogiques des néphélinites et la présence de xénolites péridotitiques suggèrent une ascension rapide des néphélinites à olivine et des processus plus complexes en profondeur pour les néphélinites à pyroxène. La modélisation des processus de cristallisation fractionnée et de fusion partielle des laves mafiques de Saghro a permis de déterminer qu’elles sont issues de faibles taux de fusion partielle (0.6–2.5 %) d’une péridotite carbonatée enrichie en éléments incompatibles, au niveau de la transition grenat–spinelle (~80–85 km) et en présence d’amphibole. Les néphélinites de Saghro montrent une évolution temporelle avec une légère augmentation du taux de fusion et une diminution de la quantité d’amphibole au résidu des plus anciennes (néphélinites à olivine, 9.6 Ma) aux plus récentes (néphélinites à pyroxène, 2.9 Ma). Les basanites forment un système indépendant des néphélinites et sont issues de taux de fusion plus élevés. Les fortes variations dans leur composition chimique suggèrent qu’elles ont subi de la cristallisation fractionnée lors de leur ascension. Les caractéristiques particulières des néphélinites et basanites de Saghro (enrichissement en éléments incompatibles, anomalies négatives en K, Zr, Hf et Ti, rapports Ca/Al et Zr/Hf élevés) indiquent que leur source a subi un métasomatisme principalement carbonatitique. L’influence de ce métasomatisme est plus forte pour les néphélinites à pyroxène que pour les néphélinites à olivine, impliquant une évolution temporelle de l’intensité du métasomatisme. Ces résultats suggèrent des interactions fluide-roche sous le craton Nord-Ouest Africain, entraînant la formation d'un manteau métasomatisé par des composants carbonatitiques riches en CO2 au niveau de la transition lithosphère-asthénosphère. L’origine du métasomatisme provoquant l’enrichissement de la source et la formation de veines d’amphibole pourrait être liée à la fusion de reliquats de croûte océanique subductée. Les températures de fusion relativement faibles (< 1350 °C) suggèrent l’absence d’anomalie thermique sous le Jbel Saghro, et favorisent donc un modèle de délamination de la lithosphère comme initiateur du volcanisme. Cependant, l’augmentation du taux de fusion partielle au cours du temps, également observée dans le Moyen Atlas, et les similitudes isotopiques et géochimiques avec les laves alcalines des îles Canaries ne permettent pas d’exclure une influence du panache des Canaries sur la source du volcanisme alcalin du Jbel Saghro
Volatile-rich, silica-undersaturated alkaline lavas record the important role of fluids during fluid-rock and magma-rock interactions in the mantle, which are key processes to understand the dynamics of the convective mantle and lithosphere-asthenosphere interactions in intracontinental settings. The aim of this thesis is to bring new constraints on the genesis of alkaline magmas by characterizing the crystallization conditions, the source and the partial melting processes taking part in the genesis of olivine nephelinites, pyroxene nephelinites and basanites from the Jbel Saghro volcanic field in the Moroccan Anti Atlas. The petrological and geochemical study of rocks and minerals coupled with the analysis of fluid inclusions constrains the pre-eruptive conditions of Saghro nephelinites to 1.7–2.2 GPa and ~1350 °C. Minerals show that nephelinitic magmas are rich in volatile elements (Cl, F, S), and fluid inclusions indicate that magmas were saturated with a CO2-rich fluid at pressures > 590 MPa. The various mineralogical assemblages and the presence of peridotite xenoliths suggest a rapid ascent for olivine nephelinites and more complex processes at depth for pyroxene nephelinites. Fractional crystallization and partial melting modelling of Saghro mafic lavas indicate that they are low-degree melts (0.6–2.5 %) of an amphibole-bearing carbonated peridotite enriched in incompatible elements, at the garnet-spinel transition (~80–85 km). Saghro nephelinites display a temporal evolution with a slight increase of the degree of melting and a decrease of the amount of residual amphibole from the oldest (olivine nephelinites, 9.6 Ma) to the most recent (pyroxene nephelinites, 2.9 Ma). Basanites form a system that is independent from nephelinites and are slightly higher-degree melts. Important variations in their chemical composition suggest variable amounts of fractional crystallization during ascent. The peculiar characteristics of Saghro nephelinites and basanites (enrichment in incompatible elements, negative anomalies in K, Zr, Hf and Ti, high Ca/Al and Zr/Hf ratios) indicate that their source was affected by carbonatitic metasomatism. The influence of this metasomatism is stronger for pyroxene nephelinites than for olivine nephelinites. These results suggest fluid-rock interactions beneath the Northwest African Craton, leading to the formation of a metasomatized mantle by CO2-rich carbonatitic components at the lithosphere-asthenosphere transition. The origin of the metasomatism inducing source enrichment and the formation of amphibole veins could be attributed to the melting of relict subducted oce anic lithosphere. The relatively low melting temperatures (< 1350 °C) suggest the absence of a thermal anomaly beneath the Jbel Saghro, and thus support a lithosphere delamination model as precursor of Saghro volca0,3nism. However, the increasing degree of partial melting over time, also observed in the Middle Atlas, together with the isotopic and geochemical similarities with Canary Islands alkaline lavas does not allow us to discard the influence of a deviation of the Canary mantle plume beneath northwest Africa
APA, Harvard, Vancouver, ISO, and other styles
9

Berg, Sylvia. "Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits: an Experimental Approach." Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160266.

Full text
Abstract:
Xenoliths preserve evidence of magma-crust interactions in magmatic reservoirs and conduits. They reveal processes of partial melting of country rock, and disintegration into magma. Widespread evidence for frothy xenoliths in volcanic deposits exists, and these evidently indicate processes of gas liberation, bubble nucleation and bubble growth. This report focuses on textural analysis of frothy sandstone xenoliths from Krakatau in Indonesia, Cerro Negro in Nicaragua, Cerro Quemado in El Salvador and from Gran Canaria, Canary Islands, and involves attempts to experimentally reproduce xenolith textures. To achieve this, magmatic conditions acting upon country rock in volcanoes are simulated by subjecting sandstones to elevated temperature and pressure in closed system-autoclaves. Subsequent decompression imitates magma ascent following xenolith entrainment, and is largely responsible for the formation of frothy xenolith textures. The experiments show a range of successive features, such as partial melting, gas-pressure build up, bubble nucleation, growth and development of bubble networks. The experiments closely reproduced textures of natural xenoliths and help to assess the controlling P-T parameters that encourage efficient bubble growth. Conditions proved ideal between 850˚C and 870˚C and pressure release from 1 kbar. Such conditions limit bubble overprinting by secondary crystallization and melt infilling. Country rock lithology proved vital regarding gas pressure build-up and resulting bubble nucleation during decompression. In particular, increased water content and relict crystals in the melt produced appear to ease and promote gas liberation by enabling early and effective bubble nucleation. Moreover, experiments confirm a decisive role for bubble coalescence. These results attest to the great potential of country rock to develop interconnected bubble networks upon magma contact, exsolving large amounts of crustal volatiles into the magma. Volatile input involves a change in magma viscosity and thus an accompanied change in disruptive behaviour, and may hence be responsible for increased potential to cause explosive volcanic eruptions. Moreover, H2O and CO2 vapour are severe greenhouse gases, which seems to be added to the atmosphere from crustal rocks via recycling by volcanic activity, and may have yet underappreciated effects on Earth’s climate.
APA, Harvard, Vancouver, ISO, and other styles
10

Laumonier, Mickaël. "Mélange de magmas à HP-HT : contraintes expérimentales et application au magmatisme d'arc." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-00859628.

Full text
Abstract:
Trois magmas (haplotonalite synthétique, basalte et dacite de Santorin) ont été juxtaposés et déformés à l'aide d'une presse de type Paterson pour contraindre les conditions de mélange de magmas à haute pression (300 MPa). Ces trois magmas ont été utilisés en conditions sèches ou hydratées et dans une gamme de température comprise entre 600 et 1200°C, permettant d'obtenir plusieurs fractions cristallines et contrastes de viscosité. Les textures de mélange produites lors des expériences dépendent de la fraction cristalline et sont similaires aux textures rencontrées dans la nature. Les textures de mélange mécanique (mingling) produites sont la ségrégation de cristaux depuis leur magma source, la formation d'enclaves par détachement et de filaments par étirement de parcelles de magma. Le mélange chimique (mixing) est illustré par des zones d'interactions comportant une large variété de liquides intermédiaires et la cristallisation de nouvelles phases. Le mélange est produit en l'absence d'une charpente cristalline dans l'un ou l'autre des magmas, si le contraste de viscosité est faible (< 0,3 unité log) et en dessous d'un seuil de viscosité absolue, déterminé entre 107 et 108 Pa.s. Par ailleurs, l'eau joue un rôle important sur les propriétés rhéologiques des magmas, et donc sur leurs capacités de mélanges : elle abaisse le seuil de mélange de près de 200°C entre des magmas saturés en eau, et son exsolution (présence de bulles) entraîne une réduction significative des viscosités promouvant le mélange à des fractions cristallines plus faibles. Les conditions rhéologiques favorables aux mélanges entre le magma d'un réservoir et un magma plus chaud qui le recharge ont été déterminées selon la fraction de magma injecté. Cette fraction est de 0,5 minimum pour la majorité des réservoirs typiques du contexte d'arc. La comparaison avec des systèmes plutoniques et volcaniques exposant des figures de mélange montre que les conditions favorables aux mélanges sont atteintes avec des fractions inférieures. Ceci suggère que le fonctionnement d'un réservoir magmatique est influencé par ses styles et taux de recharge, ainsi que la quantité de volatils.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Volatile in magmas"

1

Edmonds, M., Georg F. Zellmer, and S. M. Straub. The role of volatiles in the genesis, evolution and eruption of arc magmas. London: The Geological Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Carroll Michael, and Holloway John R, eds. Volatiles in magmas. Washington, D.C: Mineralogical Society of America, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lloyd, Alexander. Timescales of magma ascent during explosive eruptions: Insights from the re-equilibration of magmatic volatiles. [New York, N.Y.?]: [publisher not identified], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems" (1991 Kagoshima-shi, Japan, and Ebino-shi, Japan). Magmatic contributions to hydrothermal systems: Extended abstracts of the Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems", held at Kagoshima and Ebino, November, 1991 and The behavior of volatiles in magma : abstracts of the 4th Symposium on Deep-crustal Fluids "The behavior of Volatiles in Magma", held at Tsukuba, November, 1991. Tsukuba-shi: Geological Survey of Japan, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carroll, Michael R., and John R. Holloway, eds. Volatiles in Magmas. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holloway, John R., and Michael R. Carroll. Volatiles in Magmas. de Gruyter GmbH, Walter, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Volaties in Magmas (Reviews in Mineralogy,). Mineralogical Society of America, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Volatile in magmas"

1

Watson, E. Bruce. "Chapter 10. DIFFUSION IN VOLATILE-BEARING MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 371–412. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jambon, Albert. "Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 479–518. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Métrich, Nicole. "10. Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions." In Minerals, Inclusions And Volcanic Processes, edited by Keith D. Putirka and Frank J. Tepley III, 363–402. Berlin, Boston: De Gruyter, 2008. http://dx.doi.org/10.1515/9781501508486-011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Symonds, Robert B., William I. Rose, Gregg J. S. Bluth, and Terrrence M. Gerlach. "Chapter 1. VOLCANIC-GAS STUDIES: METHODS, RESULTS, AND APPLICATIONS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 1–66. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ihinger, Phillip D., Richard L. Hervig, and Paul F. McMillan. "Chapter 2. ANALYTICAL METHODS FOR VOLATILES IN GLASSES." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 67–122. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burnham, C. Wayne. "CHAPTER 3. DEVELOPMENT OF THE BURNHAM MODEL FOR PREDICTION OF H20 SOLUBILITY IN MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 123–30. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McMillan, Paul F. "Chapter 4. WATER SOLUBILITY AND SPECIATION MODELS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 131–56. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blank, Jennifer G., and Richard A. Brooker. "Chapter 5. EXPERIMENTAL STUDIES OF CARBON DIOXIDE IN SILICATE MELTS: SOLUBILITY, SPECIATION, AND STABLE CARBON ISOTOPE BEHAVIOR." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 157–86. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holloway, John R., and Jennifer G. Blank. "Chapter 6. APPLICATION OF EXPERIMENTAL RESULTS TO C-O-H SPECIES IN NATURAL MELTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 187–230. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carroll, Michael R., and James D. Webster. "Chapter 7. SOLUBILITIES OF SULFUR, NOBLE GASES, NITROGEN, CHLORINE, AND FLUORINE IN MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 231–80. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Volatile in magmas"

1

Loewen, Matt, Adam Kent, and Pavel Izbekov. "Tracking magmatic volatile and non-volatile trace elements with amphibole in arc magmas." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Economos, Rita C. "APATITE AS A RECORDER OF CRYPTIC VOLATILE PROCESSES IN MAGMAS." In 54th Annual GSA South-Central Section Meeting 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020sc-343727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gibson, Sally, James Crosby, Matthew Gleeson, and Charlotte Jackson. "The Role of Pyroxenites in the Volatile Budgets of Intraplate Magmas." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hernandez Nava, Andres, Benjamin A. Black, and Sally Gibson. "SOURCES OF EARLY DECCAN TRAPS MAGMAS AND IMPLICATIONS FOR VOLATILE EVOLUTION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiménez Mejías, María, Joan Andújar, Bruno Scaillet, and Ramón Casillas. "Volatile contents in alkaline magmas from Tenerife, Canary Islands: insights from melt inclusions." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moretti, Roberto, Charles Le Losq, and Daniel Neuville. "The Mutual Interactions of Redox Species in Magmas: The Role of Differentiation and Volatile Degassing." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brahm, Raimundo, Takeshi Kuritani, Naoya Sakamoto, Hisayoshi Yurimoto, Georg Florian Zellmer, Mitsushiro Nakagawa, and Eiichi Sato. "Slab Temperature Control on Volatile Budgets of Arc Magmas Tracked from Melt Inclusion Halogen Contents." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lente, Jenna L., and Emily R. Johnson. "VOLATILE CONTENTS AND PRE-ERUPTIVE CONDITIONS OF RHYOLITIC MAGMAS FROM THE ORGAN CALDERA, SOUTHERN NM." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lente, Jenna, and Emily Johnson. "Volatile Contents and Pre-Eruptive Conditions of Rhyolitic Magmas From the Organ Caldera, Southern NM." In 2016 New Mexico Geological Society Annual Spring Meeting. Socorro, NM: New Mexico Geological Society, 2016. http://dx.doi.org/10.56577/sm-2016.419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heinonen, Jussi, Ville Virtanen, Frank Spera, and Wendy Bohrson. "Crustal heating and assimilation by LIP magmas: volatile perspectives from experimental petrology and thermodynamic modeling." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5339.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Volatile in magmas"

1

Vogel, T. A. Variations in volatiles in magma bodies based on studies of melt inclusions. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/5127090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kunrat, Syegi. Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography