Academic literature on the topic 'Volatile in magmas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Volatile in magmas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Volatile in magmas"

1

Esposito, Rosario, Daniele Redi, Leonid V. Danyushevsky, et al. "Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts." European Journal of Mineralogy 35, no. 6 (2023): 921–48. http://dx.doi.org/10.5194/ejm-35-921-2023.

Full text
Abstract:
Abstract. Mount Somma–Vesuvius is a stratovolcano that represents a geological hazard to the population of the city of Naples and surrounding towns in southern Italy. Historically, volcanic eruptions at Mt. Somma–Vesuvius (SV) include high-magnitude Plinian eruptions, such as the infamous 79 CE eruption that occurred after 295 years of quiescence and killed thousands of people in Pompeii and surrounding towns and villages. The last eruption at SV was in 1944 and showed a Volcanic Explosivity Index (VEI) of 3 (0.01 km3 of volcanic material erupted). Following the 1944 eruption, SV has been dorm
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Zuxing, Landry Soh Tamehe, Haiyan Qi, Yuxiang Zhang, Zhigang Zeng, and Mingjiang Cai. "Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough." Journal of Marine Science and Engineering 11, no. 3 (2023): 583. http://dx.doi.org/10.3390/jmse11030583.

Full text
Abstract:
The Yonaguni Knoll IV is an active seafloor hydrothermal system associated with submarine silicic volcanism located in the “cross back-arc volcanic trail” (CBVT) in the southwestern Okinawa Trough. However, the behavior of volatiles during magmatic differentiation in the shallow silicic magma chamber is unclear. Here, the volatile contents of apatite inclusions trapped in different phenocrysts (orthopyroxene and amphibole) and microphenocrysts in the rhyolite from the Yonaguni Knoll IV hydrothermal field were analyzed by using electron microprobe analysis, which aims to track the behavior of v
APA, Harvard, Vancouver, ISO, and other styles
3

Degruyter, Wim, Andrea Parmigiani, Christian Huber, and Olivier Bachmann. "How do volatiles escape their shallow magmatic hearth?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (2019): 20180017. http://dx.doi.org/10.1098/rsta.2018.0017.

Full text
Abstract:
Only a small fraction (approx. 1–20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface. Here, we use multiscale physical modelling to identify and quantify the main mechanisms of gas escape from crystallizing magma bodies. We show that most of the outgassing occurs at intermediate to high crystal fraction, when the system has re
APA, Harvard, Vancouver, ISO, and other styles
4

Perinelli, Cristina, Silvio Mollo, Mario Gaeta, Serena De Cristofaro, Danilo Palladino, and Piergiorgio Scarlato. "Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano." Minerals 8, no. 11 (2018): 482. http://dx.doi.org/10.3390/min8110482.

Full text
Abstract:
Magma dynamics at Mt. Etna volcano are frequently recognized as the result of complex crystallization regimes that, at shallow crustal levels, unexpectedly change from H2O-undersaturated to H2O-saturated conditions, due to the impulsive and irregular arrival of volatile-rich magmas from mantle depths. On this basis, we have performed hydrous crystallization experiments for a quantitative understanding of the role of H2O in the differentiation of deep-seated trachybasaltic magmas at the key pressure of the Moho transition zone. For H2O = 2.1–3.2 wt %, the original trachybasaltic composition shi
APA, Harvard, Vancouver, ISO, and other styles
5

Rasmussen, Daniel J., Terry A. Plank, Diana C. Roman, and Mindy M. Zimmer. "Magmatic water content controls the pre-eruptive depth of arc magmas." Science 375, no. 6585 (2022): 1169–72. http://dx.doi.org/10.1126/science.abm5174.

Full text
Abstract:
Vanguard efforts in forecasting volcanic eruptions are turning to physics-based models, which require quantitative estimates of magma conditions during pre-eruptive storage. Below active arc volcanoes, observed magma storage depths vary widely (~0 to 20 kilometers) and are commonly assumed to represent levels of neutral buoyancy. Here we show that geophysically observed magma depths (6 ± 3 kilometers) are greater than depths of neutral buoyancy, ruling out this commonly assumed control. Observed depths are instead consistent with predicted depths of water degassing. Intrinsically wetter magmas
APA, Harvard, Vancouver, ISO, and other styles
6

Nizametdinov, I. R., D. V. Kuzmin, S. Z. Smirnov, A. V. Rybin, and I. Yu Kulakov. "Water in parental basaltic magmasof the Menshiy Brat volcano (Iturup Island, Kurile islands)." Доклады Академии наук 486, no. 1 (2019): 93–97. http://dx.doi.org/10.31857/s0869-5652486193-97.

Full text
Abstract:
The paper presents study of the liquidus assemblage of olivine and spinel in high-magnesian basalts (MgO up to 10 mas. %) of the Menshiy Brat volcano (Iturup Island). It was possible to reconstruct the water content and evolution of volatile components in the primary parental magmas that took part in the formation of the Medvezhya Caldera, Iturup Islands. It is shown that the initial water content in the primary melts could reach 5 mas. % with oxygen fugacity corresponding to oxygen buffer NNO + 0.4 log. units. The evolution of magmas involved continuous degassing while magma rises to the surf
APA, Harvard, Vancouver, ISO, and other styles
7

Russell, J. Kelly, R. Stephen J. Sparks, and Janine L. Kavanagh. "Kimberlite Volcanology: Transport, Ascent, and Eruption." Elements 15, no. 6 (2019): 405–10. http://dx.doi.org/10.2138/gselements.15.6.405.

Full text
Abstract:
Kimberlite rocks and deposits are the eruption products of volatile-rich, silica-poor ultrabasic magmas that originate as small-degree mantle melts at depths in excess of 200 km. Many kimberlites are emplaced as subsurface cylindrical-to-conical pipes and associated sills and dykes. Surficial volcanic deposits of kimberlite are rare. Although kimberlite magmas have distinctive chemical and physical properties, their eruption styles, intensities and durations are similar to conventional volcanoes. Rates of magma ascent and transport through the cratonic lithosphere are informed by mantle cargo
APA, Harvard, Vancouver, ISO, and other styles
8

Boudreau, Alan E. "The Stillwater Complex, Montana – Overview and the significance of volatiles." Mineralogical Magazine 80, no. 4 (2016): 585–637. http://dx.doi.org/10.1180/minmag.2016.080.063.

Full text
Abstract:
AbstractThe geology of the 2.7 Ga Stillwater Complex in South-Central Montana is reviewed with a focus on the role of volatiles in locally modifying both the crystallization sequence of the evolving parent magma and the initially precipitated solid assemblages to favour olivine ± chromite. A secondary origin for these two minerals is particularly probable for the olivine-bearing rocks of the Banded series and, at a minimum, also increasing their modal abundance in the Peridotite zone of the Ultramafic series. Direct evidence for volatiles includes the presence of high-temperature fluid inclusi
APA, Harvard, Vancouver, ISO, and other styles
9

Holloway, John R., and Sigurdur Jakobsson. "Volatile solubilities in magmas: Transport of volatiles from mantles to planet surfaces." Journal of Geophysical Research: Solid Earth 91, B4 (1986): 505–8. http://dx.doi.org/10.1029/jb091ib04p0d505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Macdonald, R., and B. Bagiński. "The central Kenya peralkaline province: a unique assemblage of magmatic systems." Mineralogical Magazine 73, no. 1 (2009): 1–16. http://dx.doi.org/10.1180/minmag.2009.073.1.1.

Full text
Abstract:
The review focuses on the evolution of five contiguous peralkaline salic complexes in the south-central Kenya Rift Valley, stressing new developments of general significance to peralkaline magmatism. The complexes have evolved dominantly by combinations of fractional crystallization and magma mixing; volatile-melt interactions, remobilization of plutonic rocks and crystal mushes, and carbonate-silicate liquid immiscibility have been additional petrogenetic processes. Geochemical and experimental studies have shown that pantelleritic magmas can be generated by fractional crystallization of trac
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Volatile in magmas"

1

Wayman, Matthew C. "The Transfer of Volatiles Within Interacting Magmas and its Effect on the Magma Mingling Process." Kent State University Honors College / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1312924338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Le, Gall Nolwenn. "Ascension et dégazage des magmas basaltiques : approche expérimentale." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2044/document.

Full text
Abstract:
Afin de parvenir à une meilleure compréhension de la dynamique d’ascension et d’éruption des magmas basaltiques, nous avons réalisé des expériences de décompression à haute pression (200–25 MPa) et haute température (1200°C) spécifiquement orientées pour documenter la nucléation des bulles de gaz ; ce processus, qui constitue la première étape du dégazage magmatique, conditionne l’évolution de la phase gazeuse (force motrice des éruptions explosives) dans le conduit volcanique. Quatre principaux ensembles d’expériences ont été menés afin de mieux comprendre le rôle des volatils majeurs (H2O, C
APA, Harvard, Vancouver, ISO, and other styles
3

Leroy, Clémence. "L'iode et le xénon dans les magmas : deux comportements différents." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066094/document.

Full text
Abstract:
La présence de magmas en profondeur permet de contraindre des processus géologiques passés et actuels. Ces magmas (i.e. liquides silicatés) participent aux cycles géochimiques des éléments volatils comme vecteur de matière.Nous étudions deux éléments volatils complémentaires : l'iode (I), un halogène, et le xénon (Xe), un gaz rare. Leur système radioactif éteint 129I/129Xe (T1/2 = 15.7Ma) est utilisé pour dater les processus hadéens et la formation de l'atmosphère, issu de l'évolution d'un océan magmatique. Or on connait peu le comportement de l'iode et du xénon dans les magmas en profondeur à
APA, Harvard, Vancouver, ISO, and other styles
4

Leroy, Clémence. "L'iode et le xénon dans les magmas : deux comportements différents." Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066094.pdf.

Full text
Abstract:
La présence de magmas en profondeur permet de contraindre des processus géologiques passés et actuels. Ces magmas (i.e. liquides silicatés) participent aux cycles géochimiques des éléments volatils comme vecteur de matière.Nous étudions deux éléments volatils complémentaires : l'iode (I), un halogène, et le xénon (Xe), un gaz rare. Leur système radioactif éteint 129I/129Xe (T1/2 = 15.7Ma) est utilisé pour dater les processus hadéens et la formation de l'atmosphère, issu de l'évolution d'un océan magmatique. Or on connait peu le comportement de l'iode et du xénon dans les magmas en profondeur à
APA, Harvard, Vancouver, ISO, and other styles
5

Johnson, Emily Renee. "Volatiles in basaltic magmas from central Mexico : from subduction to eruption /." Thesis, Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8331.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2008.<br>Typescript. Includes vita and abstract. Includes bibliographical references (leaves 153-167). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
6

Hunt, Emma J. "Magma chamber dynamics in the peralkaline magmas of the Kakortokite Series, South Greenland." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6900.

Full text
Abstract:
Understanding crystallisation in magma chambers is a key challenge for igneous petrology. It is particularly important to understand the origins of layering in peralkaline rocks, e.g. the kakortokite (nepheline syenite), Ilímaussaq Complex, S. Greenland, as these are commonly associated with high value multi-element economic deposits. The kakortokite is a spectacular example of macrorhythmic (>5 m) layering. Each unit consists of three layers comprising arfvedsonite-rich (sodic-amphibole) black kakortokite at the base, grading into eudialyte-rich (sodic-zirconosilicate) red kakortokite, then a
APA, Harvard, Vancouver, ISO, and other styles
7

ESPOSITO, ROSARIO. "Geochemical study of the Solchiaro (Procida Island, Campi Flegrei) eruptive products by microthermometry and microanalysis of fluid and melt inclusions." Doctoral thesis, Università degli Studi di Napoli Federico II, 2010. http://hdl.handle.net/10281/349383.

Full text
Abstract:
In this study is presented the work I have done during the 4 years of a PhD program that was part of the internationalization programme of the Italian research system approved by the Ministero della Ricerca e dell’Università (MIUR) between the Università degli Studi di Napoli “Federico II”, (Dipartimento di Scinze della Terra) and the Virginia Polytechnic Institute and State University (Department of Geosciences). 107 selected MI, 77 open glasses, 80 olivines and 7 bulk rocks (from 4 representative samples of Solchiaro eruption) were analyzed for major/trace element and volatiles. Mostly, oli
APA, Harvard, Vancouver, ISO, and other styles
8

ESPOSITO, ROSARIO. "Studies of volatile evolution in magmatic systems using melt inclusions." Doctoral thesis, Virginia Polytechnic Institute and State University, 2012. http://hdl.handle.net/10281/349369.

Full text
Abstract:
Understanding volatile evolution associated with active volcanic magmatic systems is of paramount importance because volatiles control and determine the magnitude of an eruption owing to the large change in molar volume that volatile species show depending on their physical state (volatiles dissolved in silicate melts vs. volatiles exsolved as vapor). For active volcanic systems studying the volatile evolution can help to assess the potential hazard associated to a certain locality. Also, volatile evolution in magmatic system controls the formation of certain ore deposits. Despite the importan
APA, Harvard, Vancouver, ISO, and other styles
9

Chamboredon, René. "Caractérisation et origine des magmas alcalins et des fluides sous le massif volcanique du Jbel Saghro, Anti Atlas, Maroc." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS070/document.

Full text
Abstract:
Les laves alcalines sous-saturées riches en éléments volatils sont les marqueurs du rôle important des fluides dans le manteau et des interactions fluide-roche et magma-roche, processus clés pour comprendre la dynamique du manteau convectif et les interactions asthénosphère-lithosphère en domaine intracontinental. L’objectif de cette thèse est d’apporter de nouvelles contraintes sur la genèse des magmas alcalins en caractérisant les conditions de cristallisation, la source et les processus de fusion partielle à l’origine des néphélinites à olivine, des néphélinites à pyroxène et des basanites
APA, Harvard, Vancouver, ISO, and other styles
10

Berg, Sylvia. "Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits: an Experimental Approach." Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160266.

Full text
Abstract:
Xenoliths preserve evidence of magma-crust interactions in magmatic reservoirs and conduits. They reveal processes of partial melting of country rock, and disintegration into magma. Widespread evidence for frothy xenoliths in volcanic deposits exists, and these evidently indicate processes of gas liberation, bubble nucleation and bubble growth. This report focuses on textural analysis of frothy sandstone xenoliths from Krakatau in Indonesia, Cerro Negro in Nicaragua, Cerro Quemado in El Salvador and from Gran Canaria, Canary Islands, and involves attempts to experimentally reproduce xenolith t
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Volatile in magmas"

1

Edmonds, M., Georg F. Zellmer, and S. M. Straub. The role of volatiles in the genesis, evolution and eruption of arc magmas. The Geological Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Carroll Michael, and Holloway John R, eds. Volatiles in magmas. Mineralogical Society of America, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lloyd, Alexander. Timescales of magma ascent during explosive eruptions: Insights from the re-equilibration of magmatic volatiles. [publisher not identified], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems" (1991 Kagoshima-shi, Japan, and Ebino-shi, Japan). Magmatic contributions to hydrothermal systems: Extended abstracts of the Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems", held at Kagoshima and Ebino, November, 1991 and The behavior of volatiles in magma : abstracts of the 4th Symposium on Deep-crustal Fluids "The behavior of Volatiles in Magma", held at Tsukuba, November, 1991. Geological Survey of Japan, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carroll, Michael R., and John R. Holloway, eds. Volatiles in Magmas. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holloway, John R., and Michael R. Carroll. Volatiles in Magmas. de Gruyter GmbH, Walter, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Volaties in Magmas (Reviews in Mineralogy,). Mineralogical Society of America, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Volatile in magmas"

1

Watson, E. Bruce. "Chapter 10. DIFFUSION IN VOLATILE-BEARING MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jambon, Albert. "Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Métrich, Nicole. "10. Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions." In Minerals, Inclusions And Volcanic Processes, edited by Keith D. Putirka and Frank J. Tepley III. De Gruyter, 2008. http://dx.doi.org/10.1515/9781501508486-011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Symonds, Robert B., William I. Rose, Gregg J. S. Bluth, and Terrrence M. Gerlach. "Chapter 1. VOLCANIC-GAS STUDIES: METHODS, RESULTS, AND APPLICATIONS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ihinger, Phillip D., Richard L. Hervig, and Paul F. McMillan. "Chapter 2. ANALYTICAL METHODS FOR VOLATILES IN GLASSES." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burnham, C. Wayne. "CHAPTER 3. DEVELOPMENT OF THE BURNHAM MODEL FOR PREDICTION OF H20 SOLUBILITY IN MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McMillan, Paul F. "Chapter 4. WATER SOLUBILITY AND SPECIATION MODELS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blank, Jennifer G., and Richard A. Brooker. "Chapter 5. EXPERIMENTAL STUDIES OF CARBON DIOXIDE IN SILICATE MELTS: SOLUBILITY, SPECIATION, AND STABLE CARBON ISOTOPE BEHAVIOR." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holloway, John R., and Jennifer G. Blank. "Chapter 6. APPLICATION OF EXPERIMENTAL RESULTS TO C-O-H SPECIES IN NATURAL MELTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carroll, Michael R., and James D. Webster. "Chapter 7. SOLUBILITIES OF SULFUR, NOBLE GASES, NITROGEN, CHLORINE, AND FLUORINE IN MAGMAS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Volatile in magmas"

1

Loewen, Matt, Adam Kent, and Pavel Izbekov. "Tracking magmatic volatile and non-volatile trace elements with amphibole in arc magmas." In Goldschmidt2022. European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Economos, Rita C. "APATITE AS A RECORDER OF CRYPTIC VOLATILE PROCESSES IN MAGMAS." In 54th Annual GSA South-Central Section Meeting 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020sc-343727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gibson, Sally, James Crosby, Matthew Gleeson, and Charlotte Jackson. "The Role of Pyroxenites in the Volatile Budgets of Intraplate Magmas." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hernandez Nava, Andres, Benjamin A. Black, and Sally Gibson. "SOURCES OF EARLY DECCAN TRAPS MAGMAS AND IMPLICATIONS FOR VOLATILE EVOLUTION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Chunfei, Stephen Foley, Yongsheng Liu, and Sebastian Tappe. "Calcium isotope constraints on the mantle sources of volatile-rich alkaline magmas." In Goldschmidt2023. European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.16245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiménez Mejías, María, Joan Andújar, Bruno Scaillet, and Ramón Casillas. "Volatile contents in alkaline magmas from Tenerife, Canary Islands: insights from melt inclusions." In Goldschmidt2022. European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moretti, Roberto, Charles Le Losq, and Daniel Neuville. "The Mutual Interactions of Redox Species in Magmas: The Role of Differentiation and Volatile Degassing." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brahm, Raimundo, Takeshi Kuritani, Naoya Sakamoto, et al. "Slab Temperature Control on Volatile Budgets of Arc Magmas Tracked from Melt Inclusion Halogen Contents." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lente, Jenna L., and Emily R. Johnson. "VOLATILE CONTENTS AND PRE-ERUPTIVE CONDITIONS OF RHYOLITIC MAGMAS FROM THE ORGAN CALDERA, SOUTHERN NM." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lente, Jenna, and Emily Johnson. "Volatile Contents and Pre-Eruptive Conditions of Rhyolitic Magmas From the Organ Caldera, Southern NM." In 2016 New Mexico Geological Society Annual Spring Meeting. New Mexico Geological Society, 2016. http://dx.doi.org/10.56577/sm-2016.419.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Volatile in magmas"

1

Vogel, T. A. Variations in volatiles in magma bodies based on studies of melt inclusions. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5127090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kunrat, Syegi. Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.5722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!