Journal articles on the topic 'Void nucleation and growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Void nucleation and growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lee, J. H., and Y. Zhang. "A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part I: Plastic Flow and Damage." Journal of Engineering Materials and Technology 116, no. 1 (January 1, 1994): 69–79. http://dx.doi.org/10.1115/1.2904257.
Full textChen, Bin, X. Peng, Xiang Guo Zeng, X. Wu, and S. Chen. "A Constitutive Model for Casting Magnesium Alloy Based on the Analysis of a Spherical Void Model." Materials Science Forum 546-549 (May 2007): 221–24. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.221.
Full textWilliams, Cyril Labode. "Void Mediated Failure at the Extremes: Spallation in Magnesium and Aluminum." Metals 12, no. 10 (October 5, 2022): 1667. http://dx.doi.org/10.3390/met12101667.
Full textChen, Jie, Darby J. Luscher, and Saryu J. Fensin. "The Modified Void Nucleation and Growth Model (MNAG) for Damage Evolution in BCC Ta." Applied Sciences 11, no. 8 (April 9, 2021): 3378. http://dx.doi.org/10.3390/app11083378.
Full textWciślik, Wiktor, and Sebastian Lipiec. "Voids Development in Metals: Numerical Modelling." Materials 16, no. 14 (July 14, 2023): 4998. http://dx.doi.org/10.3390/ma16144998.
Full textLim, L. G., and F. P. E. Dunne. "Modelling void nucleation and growth in axisymmetric extrusion." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 211, no. 4 (April 1, 1997): 285–97. http://dx.doi.org/10.1243/0954405971516266.
Full textWan, Ya-Ting, Jian-Li Shao, Guang-Ze Yu, Er-Fu Guo, Hua Shu, and Xiu-Guang Huang. "Evolution of Preset Void and Damage Characteristics in Aluminum during Shock Compression and Release." Nanomaterials 12, no. 11 (May 28, 2022): 1853. http://dx.doi.org/10.3390/nano12111853.
Full textMaire, Eric, Stanislas Grabon, Jérôme Adrien, Pablo Lorenzino, Yuki Asanuma, Osamu Takakuwa, and Hisao Matsunaga. "Role of Hydrogen-Charging on Nucleation and Growth of Ductile Damage in Austenitic Stainless Steels." Materials 12, no. 9 (May 1, 2019): 1426. http://dx.doi.org/10.3390/ma12091426.
Full textSteglich, Dirk, Husam Wafai, and Jacques Besson. "Anisotropic Plastic Deformation and Damage in Commercial Al 2198 T8 Sheet Metal." Key Engineering Materials 452-453 (November 2010): 97–100. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.97.
Full textBasaran, C., H. Ye, D. C. Hopkins, D. Frear, and J. K. Lin. "Failure Modes of Flip Chip Solder Joints Under High Electric Current Density." Journal of Electronic Packaging 127, no. 2 (September 15, 2004): 157–63. http://dx.doi.org/10.1115/1.1898338.
Full textYang, Xin, Han Zhao, Xuejun Gao, Zhenlin Chen, Xiangguo Zeng, and Fang Wang. "Molecular dynamics study on spallation fracture in single crystal and nanocrystalline tin." Journal of Applied Physics 132, no. 7 (August 21, 2022): 075903. http://dx.doi.org/10.1063/5.0099331.
Full textRao, U. S., and R. C. Chaturvedi. "Sheet Metal Forming Limits Under Complex Strain Paths Using Void Growth and Coalescence Model." Journal of Engineering Materials and Technology 108, no. 3 (July 1, 1986): 240–44. http://dx.doi.org/10.1115/1.3225875.
Full textGuo, Yi, Chaitanya Paramatmuni, and Egemen Avcu. "Void Nucleation and Growth from Heterophases and the Exploitation of New Toughening Mechanisms in Metals." Crystals 13, no. 6 (May 24, 2023): 860. http://dx.doi.org/10.3390/cryst13060860.
Full textWorswick, M. J., H. Nahme, and J. Fowler. "Spall through void nucleation, growth and coalescence." Le Journal de Physique IV 04, no. C8 (September 1994): C8–623—C8–628. http://dx.doi.org/10.1051/jp4:1994894.
Full textLeon, R., J. A. Colon, K. C. Evans, D. T. Vu, V. Blaschke, B. Bavarian, E. T. Ogawa, and P. S. Ho. "Void evolution and its dependence on segment length in Cu interconnects." Journal of Materials Research 19, no. 11 (November 1, 2004): 3135–38. http://dx.doi.org/10.1557/jmr.2004.0408.
Full textGuo, Xiang Hui, and Hai Yun Hu. "Non-Equilibrium Statistical Theory of Void Microstructure Evolution in Irradiated Metals." Applied Mechanics and Materials 364 (August 2013): 568–72. http://dx.doi.org/10.4028/www.scientific.net/amm.364.568.
Full textTekoğlu, C., J. W. Hutchinson, and T. Pardoen. "On localization and void coalescence as a precursor to ductile fracture." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2038 (March 28, 2015): 20140121. http://dx.doi.org/10.1098/rsta.2014.0121.
Full textLiu, W., H. Zhou, Z. Meng, J. Li, and S. Huang. "Less damage accumulation of aluminum alloy sheet during electromagnetic forming based on Gurson-Tvergaard-Needleman model." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (May 1, 2022): 012019. http://dx.doi.org/10.1088/1757-899x/1238/1/012019.
Full textTang, Yan, Chao Xie, Jianbin Chen, and Xiaofeng Wang. "Atomistic Insights into the Competition between Damage and Dynamic Recrystallization Stimulated by the Precipitate Mg17Al12 in Magnesium Alloys." Metals 12, no. 4 (April 7, 2022): 633. http://dx.doi.org/10.3390/met12040633.
Full textHuynh, Nam N., Cheng Lu, Guillaume Michal, and A. Kiet Tieu. "A Misorientation Dependent Criterion of Crack Opening in FCC Single Crystal." Materials Science Forum 773-774 (November 2013): 293–311. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.293.
Full textChandra, Abhijit, and Viggo Tvergaard. "Void Nucleation and Growth during Plane Strain Extrusion." International Journal of Damage Mechanics 2, no. 4 (October 1993): 330–48. http://dx.doi.org/10.1177/105678959300200402.
Full textSurh, Michael P., Jess B. Sturgeon, and Wilhelm G. Wolfer. "Void nucleation, growth, and coalescence in irradiated metals." Journal of Nuclear Materials 378, no. 1 (August 2008): 86–97. http://dx.doi.org/10.1016/j.jnucmat.2008.05.009.
Full textJeong, C. S., Bum Joon Kim, and Byeong Soo Lim. "Creep Characteristics and Micro-Defects of Main Steam Pipe Steel at High Temperature." Key Engineering Materials 326-328 (December 2006): 1129–32. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1129.
Full textGROH, SEBASTIEN, ESTEBAN B. MARIN, and M. F. HORSTEMEYER. "NANOSCALE VOID GROWTH IN MAGNESIUM: A MOLECULAR DYNAMICS STUDY." International Journal of Applied Mechanics 02, no. 01 (March 2010): 191–205. http://dx.doi.org/10.1142/s1758825110000421.
Full textRajput, Ashutosh, and Surajit Kumar Paul. "Effect of void in deformation and damage mechanism of single crystal copper: a molecular dynamics study." Modelling and Simulation in Materials Science and Engineering 29, no. 8 (November 9, 2021): 085013. http://dx.doi.org/10.1088/1361-651x/ac3051.
Full textSiroky, Georg, Elke Kraker, Dietmar Kieslinger, Ernst Kozeschnik, and Werner Ecker. "Micromechanics-based damage model for liquid-assisted healing." International Journal of Damage Mechanics 30, no. 1 (August 25, 2020): 123–44. http://dx.doi.org/10.1177/1056789520948561.
Full textZapara, Maksim, Nikolai Tutyshkin, and Wolfgang H. Müller. "Growth and Closure of Voids in Metals at Negative Stress Triaxialities." Key Engineering Materials 554-557 (June 2013): 1125–32. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1125.
Full textVu, Cong Hoa, Do Won Seo, and Jae Kyoo Lim. "Analysis of Spherical Void Growth and Coalescence in Metal Plastic Straining Process." Key Engineering Materials 297-300 (November 2005): 2837–42. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.2837.
Full textŠidjanin, L., and S. Miyasato. "Void nucleation and growth in dual phase steel wires." Materials Science and Technology 5, no. 12 (December 1989): 1200–1206. http://dx.doi.org/10.1179/mst.1989.5.12.1200.
Full textThomson, C. "Modeling void nucleation and growth within periodic clusters of particles." Journal of the Mechanics and Physics of Solids 47, no. 1 (December 4, 1998): 1–26. http://dx.doi.org/10.1016/s0022-5096(98)00088-x.
Full textFleck, N. A., J. W. Hutchinson, and V. Tvergaard. "Softening by void nucleation and growth in tension and shear." Journal of the Mechanics and Physics of Solids 37, no. 4 (January 1989): 515–40. http://dx.doi.org/10.1016/0022-5096(89)90027-6.
Full textZhang, Hao, Guoqiang Liu, Ning Guo, Xiangbin Meng, Yanbin Shi, Hangqi Su, Zhe Liu, and Bingtao Tang. "Damage Evolution of Hot Stamped Boron Steels Subjected to Various Stress States: Macro/Micro-Scale Experiments and Simulations." Materials 15, no. 5 (February 25, 2022): 1751. http://dx.doi.org/10.3390/ma15051751.
Full textHuang, Y., A. Chandra, and N. Y. Li. "Void-nucleation vs void-growth controlled plastic flow localization in materials with nonuniform particle distributions." International Journal of Solids and Structures 35, no. 19 (July 1998): 2475–86. http://dx.doi.org/10.1016/s0020-7683(97)00145-5.
Full textWciślik, Wiktor, and Sebastian Lipiec. "Void-Induced Ductile Fracture of Metals: Experimental Observations." Materials 15, no. 18 (September 18, 2022): 6473. http://dx.doi.org/10.3390/ma15186473.
Full textNoolu, Naren J., Nikhil M. Murdeshwar, Kevin J. Ely, John C. Lippold, and William A. Baeslack. "Degradation and failure mechanisms in thermally exposed Au–Al ball bonds." Journal of Materials Research 19, no. 5 (May 2004): 1374–86. http://dx.doi.org/10.1557/jmr.2004.0184.
Full textMeđo, Bojan, Marko Rakin, Nenad Gubeljak, and Aleksandar Sedmak. "Application of Complete Gurson Model for Prediction of Ductile Fracture in Welded Steel Joints." Key Engineering Materials 399 (October 2008): 13–20. http://dx.doi.org/10.4028/www.scientific.net/kem.399.13.
Full textMiloud, M. Hadj, A. Imad, N. Benseddiq, B. Bachir Bouiadjra, A. Bounif, and B. Serier. "A numerical analysis of relationship between ductility and nucleation and critical void volume fraction parameters of Gurson–Tvergaard–Needleman model." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 11 (February 15, 2013): 2634–46. http://dx.doi.org/10.1177/0954406213476232.
Full textShao, Jie, He Ping Guo, Zhi Qiang Li, and X. Q. Han. "Cavitation Behavior of Fine-Grained 1420 Al-Li Alloy during Superplastic Deformation." Materials Science Forum 551-552 (July 2007): 633–38. http://dx.doi.org/10.4028/www.scientific.net/msf.551-552.633.
Full textFukahori, Tomoaki, Shinichi Suzuki, Naoya Yamada, Masatoshi Aramaki, and Osamu Furukimi. "Effect of Microstructure on Formation of Ductile Fracture Surface in Steel Plate." Advanced Materials Research 409 (November 2011): 678–83. http://dx.doi.org/10.4028/www.scientific.net/amr.409.678.
Full textKim, Jong Bong, and Jeong Whan Yoon. "Analysis of the Necking Behaviors with the Crystal Plasticity Model Using 3-Dimensional Shaped Grains." Advanced Materials Research 684 (April 2013): 357–61. http://dx.doi.org/10.4028/www.scientific.net/amr.684.357.
Full textChen, Liang, Lihui Wu, Yu Liu, and Wei Chen. "In situ observation of void evolution in 1,3,5-triamino-2,4,6-trinitrobenzene under compression by synchrotron radiation X-ray nano-computed tomography." Journal of Synchrotron Radiation 27, no. 1 (January 1, 2020): 127–33. http://dx.doi.org/10.1107/s1600577519014309.
Full textGoodhew, P. J. "The nucleation of cavities at grain boundaries." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 288–91. http://dx.doi.org/10.1017/s0424820100126299.
Full textHuber, G., Y. Brechet, and T. Pardoen. "Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys." Acta Materialia 53, no. 9 (May 2005): 2739–49. http://dx.doi.org/10.1016/j.actamat.2005.02.037.
Full textSemenov, A. A., and C. H. Woo. "Interfacial energy in phase-field emulation of void nucleation and growth." Journal of Nuclear Materials 411, no. 1-3 (April 2011): 144–49. http://dx.doi.org/10.1016/j.jnucmat.2011.01.100.
Full textRokkam, Srujan, Anter El-Azab, Paul Millett, and Dieter Wolf. "Phase field modeling of void nucleation and growth in irradiated metals." Modelling and Simulation in Materials Science and Engineering 17, no. 6 (August 24, 2009): 064002. http://dx.doi.org/10.1088/0965-0393/17/6/064002.
Full textMargolin, BZ, GP Karzov, VA Shvetsova, and VI Kostylev. "MODELLING FOR TRANSCRYSTALLINE AND INTERCRYSTALLINE FRACTURE BY VOID NUCLEATION AND GROWTH." Fatigue & Fracture of Engineering Materials & Structures 21, no. 2 (February 1998): 123–37. http://dx.doi.org/10.1046/j.1460-2695.1998.00474.x.
Full textJiang, Zhaoxiu, Zheng Zhong, Puchu Xie, Yonggang Wang, and Hongliang He. "Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation." Journal of Applied Physics 131, no. 12 (March 28, 2022): 125104. http://dx.doi.org/10.1063/5.0082361.
Full textLiu, B. X., S. L. Lai, and J. G. Sun. "Effects of alloying and treatment on void swelling of 316 stainless steels." Journal of Materials Research 6, no. 8 (August 1991): 1650–54. http://dx.doi.org/10.1557/jmr.1991.1650.
Full textYu, Tao, Masataka Yatomi, and Hui Ji Shi. "Numerical Simulation of Void Growth Induced Creep Rupture in HAZ at Elevated Temperature." Advanced Materials Research 33-37 (March 2008): 441–48. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.441.
Full textSharma, Pradeep, and Abhijit Dasgupta. "Micro-Mechanics of Creep-Fatigue Damage in PB-SN Solder Due to Thermal Cycling—Part I: Formulation." Journal of Electronic Packaging 124, no. 3 (July 26, 2002): 292–97. http://dx.doi.org/10.1115/1.1493202.
Full text