Academic literature on the topic 'Vital signs monitoring using radar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vital signs monitoring using radar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vital signs monitoring using radar"
Kebe, Mamady, Rida Gadhafi, Baker Mohammad, Mihai Sanduleanu, Hani Saleh, and Mahmoud Al-Qutayri. "Human Vital Signs Detection Methods and Potential Using Radars: A Review." Sensors 20, no. 5 (March 6, 2020): 1454. http://dx.doi.org/10.3390/s20051454.
Full textZhang, Xinyue, Xiuzhu Yang, Yi Ding, Yili Wang, Jialin Zhou, and Lin Zhang. "Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars." Sensors 21, no. 16 (August 16, 2021): 5503. http://dx.doi.org/10.3390/s21165503.
Full textLi, Zhi, Tian Jin, Yongpeng Dai, and Yongkun Song. "Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar." Remote Sensing 13, no. 15 (July 23, 2021): 2905. http://dx.doi.org/10.3390/rs13152905.
Full textYoo, Young-Keun, and Hyun-Chool Shin. "Movement Compensated Driver’s Respiratory Rate Extraction." Applied Sciences 12, no. 5 (March 4, 2022): 2695. http://dx.doi.org/10.3390/app12052695.
Full textLazaro, Antonio, David Girbau, and Ramon Villarino. "ANALYSIS OF VITAL SIGNS MONITORING USING AN IR-UWB RADAR." Progress In Electromagnetics Research 100 (2010): 265–84. http://dx.doi.org/10.2528/pier09120302.
Full textTurppa, Emmi, Juha M. Kortelainen, Oleg Antropov, and Tero Kiuru. "Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios." Sensors 20, no. 22 (November 14, 2020): 6505. http://dx.doi.org/10.3390/s20226505.
Full textKhan, Faheem, Asim Ghaffar, Naeem Khan, and Sung Ho Cho. "An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver." Sensors 20, no. 9 (April 27, 2020): 2479. http://dx.doi.org/10.3390/s20092479.
Full textLim, Sungmook, Gwang Soo Jang, Wonyoung Song, Baek-hyun Kim, and Dong Hyun Kim. "Non-Contact VITAL Signs Monitoring of a Patient Lying on Surgical Bed Using Beamforming FMCW Radar." Sensors 22, no. 21 (October 25, 2022): 8167. http://dx.doi.org/10.3390/s22218167.
Full textKathuria, Nitin, and Boon-Chong Seet. "24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring." Sensors 21, no. 11 (May 27, 2021): 3737. http://dx.doi.org/10.3390/s21113737.
Full textSchellenberger, Sven, Kilin Shi, Fabian Michler, Fabian Lurz, Robert Weigel, and Alexander Koelpin. "Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients." Sensors 20, no. 20 (October 15, 2020): 5827. http://dx.doi.org/10.3390/s20205827.
Full textDissertations / Theses on the topic "Vital signs monitoring using radar"
Tariq, Abubakar. "Vital signs monitoring using Doppler radar and on-body antennas." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4332/.
Full textChandrasekaran, Vikram. "Measuring Vital Signs Using Smart Phones." Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc33139/.
Full textRazzaghi, Elyas, and Hoek Arno Van. "Micro-Shivering Detection : Detection of human micro-shivering using a 77 GHz radar." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39807.
Full text"Remote Sensing For Vital Signs Monitoring Using Advanced Radar Signal Processing Techniques." Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.51751.
Full textDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2018
Lopes, Alexandra Sofia Dias. "Bio-Radar Applications for Remote Vital Signs Monitoring." Master's thesis, 2020. http://hdl.handle.net/10362/118695.
Full textAtualmente, a maioria das técnicas usadas para a monitorização de sinais vitais em contexto médicos e/ou diário requer contacto direto com a pele, o que poderá tornar-se incómodo ou até mesmo inviável em certas situações. A tecnologia radar tem vindo a ser apontada como uma das mais promissoras ferramentas para medição de sinais vitais à distância e sem contacto. Todavia, são necessários mais estudos que permitam avaliar esta tecnologia quando aplicada a situações mais reais. Esta dissertação tem como objetivo o estudo da tecnologia radar aplicada no contexto de medição remota de sinais vitais, mais concretamente, na medição de atividade respiratória e cardíaca. Dois aparelhos radar, baseados em tecnologia banda ultra larga por rádio de impulso e em tecnologia de onda continua modulada por frequência, foram configurados e usados numa prova de conceito com 10 participantes. Cada sujeito foi monitorizado com cada um dos radar em duas situações distintas: respirando e em apneia voluntária. Algorit mos de processamento de sinal foram desenvolvidos para detetar e estimar parâmetros respiratórios e cardíacos, avaliados através de métodos qualitativos e quantitativos. Em relação à respiração, o menor erro obtido foi de 1,6% quando os sinais de radar respiratórios foram comparados diretamente com os sinais de referência, enquanto que, um erro médio absoluto mínimo de 0,3 RPM foi obtido para a estimação da frequência respiratória via radar. A expressão cardíaca nos sinais radar não se revelou tão evidente como a respiratória, no entanto, um erro médio absoluto mínimo de 1,8 BPM foi obtido para a estimação da frequência cardíaca após a aplicação de um novo algoritmo seletivo, desenvolvido para validar a confiança dos valores obtidos. Os resultados obtidos provaram o potencial do uso de radares na medição de atividade respiratória e cardíaca sem contacto, sendo esta tecnologia viável de ser implementada em situações onde não existe muito movimento. Não obstante, os algoritmos desenvolvidos devem ser aperfeiçoados no futuro de forma a obter sistemas mais robustos e precisos.
NGUYEN, THI PHUONG NHAN. "Vital Signs Estimation using Doppler Radar Techniques." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/h23krr.
Full text國立中正大學
電機工程研究所
106
Contactless detection of human body vital signs (respiration rate, heartbeat rate, and blood pressure) using a radar system has been a promising area for future research and clinical practice. In this paper, a continuous-wave 2.45 GHz Doppler radar is used for wirelessly measuring a) respiration rate and respiration inter-interval variation, b) heartbeat rate and heartbeat inter-interval variation, and c) the pulse wave transit time for blood pressure estimation. Both the autocorrelation and conventional Fast Fourier Transform (FFT) estimation algorithms are applied to the received radar signals for computing these vital signs in the time domain and frequency domain, respectively. The autocorrelation algorithm achieves the same accurate estimation of vital-sign inter-interval variation, compared with the MIT's segmentation method. The estimated pulse transit time, using traditional two-radars on heart and elbow simultaneously, indicates a relatively feasibility of blood pressure assessment based on 2.45 GHz radar. It is further shown in this thesis that our proposed single-radar on the elbow can detect the blood pressure assessment as accuracy as the two-radar technique.
Huang, Yu-Chi, and 黃昱齊. "Implementation of 2.4 GHz Digital Beamforming Doppler Radar for Monitoring Vital Signs." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/b9z4hp.
Full text國立中山大學
電機工程學系研究所
107
This thesis is devoted to human tracking and vital signs monitoring using a digital beamforming Doppler radar. Passive radar receives the external signal as the transmit signal. The radar of this work uses the continuous-wave signal from the signal generator to verify the experimental feasibility, and then adopts the Wi-Fi signal as the transmit signal to implement the passive radar architecture. The radar relies on baseband processing to detect the direction of the arrived signal. The subject locates at different positions, causing the reflected signal from the subject to reach each antenna with different phase differences. Using this phase difference, the direction of the subject can be estimated and his/her cardiopulmonary movement can be detected. After weighting the phase difference signals and then combining them, the radar can achieve human tracking and vital signs monitoring. However, the DC offset caused by the circuit and clutter often produces the error of direction. Therefore, this work uses two methods to remove the DC offset for reducing the error of direction. Finally, the experimental results are demonstrated and discussed to explore the limitations of this radar architecture and possible improvements for future applications.
Lee, Che-Hsi, and 李哲熙. "Development of vital signs monitoring system using wireless technologies." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/96763440181757290123.
Full text元智大學
機械工程學系
97
In this study, we use Bluetooth technology and 3.5G to develop a mobile vital signs monitoring system, in which user’s blood oxygen, pulse, blood pressure, ECG, and personal photo can be monitored in real-time. Nonin 4100 pulse oximeter, O-star 2.4G blood pressure device, and Alive ECG device are integrated into a notebook computer using Bluetooth interface. Vital signs are transmitted to specific monitoring site and U-care database through HTTP using 3.5G mobile network. ECG signals may be lost during transmission because of instability of 3.5G mobile network. We developed a decentralized transmission structure in which 30-second ECG signals are stored in files locally and then transmitted to the remote host by HTTP request. To evaluate this system, 7 elderly users tested the system in real application scenario. The results showed that the transmission of vital signs were stable. However, blood pressure measurement often failed because of various external factors.
Silva, Pedro Miguel Alves da. "Clinical deterioration detection for continuous vital signs monitoring using wearable sensors." Master's thesis, 2020. http://hdl.handle.net/10362/115385.
Full textWu, Yung-Cheng, and 吳勇成. "Vital Signs Monitoring of Patients in a Hemodialysis Center Using Wireless Sensor Networks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/97949339780983080964.
Full text國立臺灣大學
生物產業機電工程學研究所
97
Intradialytic hypotension (IDH) is a much common complication during a hemodialysis. The prevalence of IDH is about 10-50%. Elderly people, patients with diabetes, and cardiovascular dialysis patients have the highest rate of inci-dences. IDH may lead to nausea, vomiting, or anxiety. In some severe cases, there will be accident like shock and death. Moreover, patients’ physical monitoring is easily interrupted, and medical quality is often compromised, as nurses in a hemodialysis center joggle many tasks at the time. Therefore, the purpose of this paper is to integrate the technologies of wireless sensor networks (WSN) technologies, global systems for mobile communications (GSMs), and a MySQL database to construct an automatic monitoring system to collect physical data during hemodialysis. And an alert can be immediately sent to family members and nurses if IDH occurs. We then apply this wireless monitoring technology to the patients with IDH. This system is applied to an indoor space. The system framework includes two parts: the wireless networks and the controlling platform. During hemodialysis simulations, the average success ratio of physical data transmitting is 94.84%, the average reliability of systolic pressure is 1, of diastolic pressure is 0.89, and of pulse is 0.94, where the testing cases are collected from 6 persons, and the time interval is 2 hours. The loss ratio of physical data results from space constraints and data collision.
Book chapters on the topic "Vital signs monitoring using radar"
Rathna, G. N., and Deepchand Meshineni. "Vital Signs Monitoring Using FMCW Radar for Different Body Orientations in the Presence of Random Body Movement." In Proceedings of First International Conference on Computational Electronics for Wireless Communications, 501–9. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6246-1_42.
Full textWang, Chao, Lin Shen, Ningxin Yu, and Yangjie Cao. "Multi-targets Vital Signs Detection Using CW Radar." In Computer Science and Education, 205–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2443-1_17.
Full textKhorozovn, O. A., I. V. Krak, A. I. Kulias, V. S. Kasianiuk, W. Wójcik, and A. Tergeusizova. "Monitoring vital signs using fuzzy logic rules." In Information Technology in Medical Diagnostics II, 237–44. London, UK; Boca Raton: CRC Press/Balkema, [2019] | Selected and extended conference papers from Polish, Ukranian and Kazakh scientists.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429057618-28.
Full textHamidi, Shahrokh, Safieddin Safavi Naeini, and George Shaker. "An Overview of Vital Signs Monitoring Based on RADAR Technologies." In Sensing Technology, 113–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98886-9_9.
Full textFioranelli, Francesco, Ronny G. Guendel, Nicolas C. Kruse, and Alexander Yarovoy. "Radar Sensing in Healthcare: Challenges and Achievements in Human Activity Classification & Vital Signs Monitoring." In Bioinformatics and Biomedical Engineering, 492–504. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34960-7_35.
Full textWang, Wen, Yong Wang, Xiaobo Yang, Mu Zhou, and Liangbo Xie. "Vital Signs Detection Using a FMCW Radar Sensor Based on the Discrete Wavelet Transform." In Lecture Notes in Electrical Engineering, 1210–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_159.
Full textZhang, Meng, Zhibin Yu, Pang Rong, and Gao Yuan. "A Complete Ensemble Local Mean Decomposition and Its Application in Doppler Radar Vital Signs Monitoring System." In Lecture Notes in Electrical Engineering, 236–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9968-0_28.
Full textHoang Long, Nguyen Mai, Jong-Jin Kim, and Wan-Young Chung. "A Prototype Wristwatch Device for Monitoring Vital Signs Using Multi-wavelength Photoplethysmography Sensors." In Intelligent Human Computer Interaction, 312–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68452-5_32.
Full textPrakash, R., Siva V. Girish, and A. Balaji Ganesh. "Real-Time Remote Monitoring of Human Vital Signs Using Internet of Things (IoT) and GSM Connectivity." In Proceedings of the International Conference on Soft Computing Systems, 47–56. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2674-1_5.
Full textHassan, Maliha, Jannat Binta Alam, Arpa Datta, Anika Thasin Mim, and Md Naimul Islam. "Machine Learning Approach for Predicting COVID-19 Suspect Using Non-contact Vital Signs Monitoring System by RGB Camera." In Proceedings of Sixth International Congress on Information and Communication Technology, 465–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_43.
Full textConference papers on the topic "Vital signs monitoring using radar"
Tariq, A., and H. G. Shiraz. "Doppler radar vital signs monitoring using wavelet transform." In Propagation Conference (LAPC). IEEE, 2010. http://dx.doi.org/10.1109/lapc.2010.5666002.
Full textZhao, Yanhua, Vladica Sark, Milos Krstic, and Eckhard Grass. "Multi-Target Vital Signs Remote Monitoring Using mmWave FMCW Radar." In 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). IEEE, 2021. http://dx.doi.org/10.1109/mttw53539.2021.9607087.
Full textAhmad, Adeel, June Chul Roh, Dan Wang, and Aish Dubey. "Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor." In 2018 IEEE Radar Conference (RadarConf18). IEEE, 2018. http://dx.doi.org/10.1109/radar.2018.8378778.
Full textWisland, Dag T., Kristian Granhaug, Jan Roar Pleym, Nikolaj Andersen, Stig Stoa, and Hakon A. Hjortland. "Remote monitoring of vital signs using a CMOS UWB radar transceiver." In 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, 2016. http://dx.doi.org/10.1109/newcas.2016.7604841.
Full textSacco, G., E. Piuzzi, E. Pittella, and S. Pisa. "Vital Signs Monitoring for Different Chest Orientations Using an FMCW Radar." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2020. http://dx.doi.org/10.23919/ursigass49373.2020.9232333.
Full textZhu, N., B. Liu, R. Qi, Z. Chen, S. Xu, and G. Niu. "Vital signs monitoring using an IR-UWB radar based on edge computing." In IET International Radar Conference (IET IRC 2020). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.0806.
Full textNosrati, Mehrdad, Shahram Shahsavari, and Negar Tavassolian. "Multi-Target Vital-Signs Monitoring Using a Dual-Beam Hybrid Doppler Radar." In 2018 IEEE International Microwave Biomedical Conference (IMBioC). IEEE, 2018. http://dx.doi.org/10.1109/imbioc.2018.8428942.
Full textNärväinen, Johanna, Juha Kortelainen, Timo Urhemaa, Mikko Saajanlehto, Kari Bäckman, and Johan Plomp. "HealthGate: unobtrusive home monitoring of vital signs, weight and mobility of the elderly." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003472.
Full textIslam, Shekh M. M., Naoyuki Motoyama, Sergio Pacheco, and Victor M. Lubecke. "Non-Contact Vital Signs Monitoring for Multiple Subjects Using a Millimeter Wave FMCW Automotive Radar." In 2020 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2020. http://dx.doi.org/10.1109/ims30576.2020.9223838.
Full textZhang, Li, Chuanwei Ding, Xudong Zhou, Hong Hong, Changzhi Li, and Xiaohua Zhu. "Body movement cancellation using adaptive filtering technology for radar-based vital sign monitoring." In 2020 IEEE Radar Conference (RadarConf20). IEEE, 2020. http://dx.doi.org/10.1109/radarconf2043947.2020.9266671.
Full textReports on the topic "Vital signs monitoring using radar"
Bracewell, Jeff. Shoreline change at Padre Island National Seashore, Texas: 2017–2021 data summary. National Park Service, December 2021. http://dx.doi.org/10.36967/nrr-2289824.
Full textBaron, Lisa. Post-Dorian shoreline change at Cape Hatteras National Seashore: 2019 report. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2282127.
Full textBracewell, Jeff. Shoreline change at Gulf Islands National Seashore, Florida and Mississippi: 2018–2021 data summary. National Park Service, March 2022. http://dx.doi.org/10.36967/nrr-2293103.
Full textSchmidt, Elizabeth. Shoreline change at Fort Matanzas National Monument: 2020–2021 data summary. National Park Service, January 2022. http://dx.doi.org/10.36967/nrds-2290193.
Full textBracewell, Jeff. Shoreline change at Gulf Islands National Seashore, Florida and Mississippi: 2018–2022 data summary. National Park Service, January 2023. http://dx.doi.org/10.36967/2296901.
Full text