Academic literature on the topic 'Vital signs monitoring using radar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vital signs monitoring using radar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vital signs monitoring using radar"

1

Kebe, Mamady, Rida Gadhafi, Baker Mohammad, Mihai Sanduleanu, Hani Saleh, and Mahmoud Al-Qutayri. "Human Vital Signs Detection Methods and Potential Using Radars: A Review." Sensors 20, no. 5 (2020): 1454. http://dx.doi.org/10.3390/s20051454.

Full text
Abstract:
Continuous monitoring of vital signs, such as respiration and heartbeat, plays a crucial role in early detection and even prediction of conditions that may affect the wellbeing of the patient. Sensing vital signs can be categorized into: contact-based techniques and contactless based techniques. Conventional clinical methods of detecting these vital signs require the use of contact sensors, which may not be practical for long duration monitoring and less convenient for repeatable measurements. On the other hand, wireless vital signs detection using radars has the distinct advantage of not requ
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xinyue, Xiuzhu Yang, Yi Ding, Yili Wang, Jialin Zhou, and Lin Zhang. "Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars." Sensors 21, no. 16 (2021): 5503. http://dx.doi.org/10.3390/s21165503.

Full text
Abstract:
Vital signs monitoring in physical activity (PA) is of great significance in daily healthcare. Impulse Radio Ultra-WideBand (IR-UWB) radar provides a contactless vital signs detection approach with advantages in range resolution and penetration. Several researches have verified the feasibility of IR-UWB radar monitoring when the target keeps still. However, various body movements are induced by PA, which lead to severe signal distortion and interfere vital signs extraction. To address this challenge, a novel joint chest–abdomen cardiopulmonary signal estimation approach is proposed to detect b
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zhi, Tian Jin, Yongpeng Dai, and Yongkun Song. "Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar." Remote Sensing 13, no. 15 (2021): 2905. http://dx.doi.org/10.3390/rs13152905.

Full text
Abstract:
Radar-based non-contact vital signs monitoring has great value in through-wall detection applications. This paper presents the theoretical and experimental study of through-wall respiration and heartbeat pattern extraction from multiple subjects. To detect the vital signs of multiple subjects, we employ a low-frequency ultra-wideband (UWB) multiple-input multiple-output (MIMO) imaging radar and derive the relationship between radar images and vibrations caused by human cardiopulmonary movements. The derivation indicates that MIMO radar imaging with the stepped-frequency continuous-wave (SFCW)
APA, Harvard, Vancouver, ISO, and other styles
4

Yoo, Young-Keun, and Hyun-Chool Shin. "Movement Compensated Driver’s Respiratory Rate Extraction." Applied Sciences 12, no. 5 (2022): 2695. http://dx.doi.org/10.3390/app12052695.

Full text
Abstract:
In non-contact vital sign monitoring using radar, radar signal distorted by the surrounding unspecified factors is unsuitable for monitoring vital signs. In order to monitor vital signs accurately, it is essential to compensate for distortion of radar signals caused by surrounding environmental factors. In this paper, we propose a driver vital signal compensation method in driving situations, including the driver’s movements using a frequency-modulated continuous-wave (FMCW) radar. Driver’s movement is quantified from the radar signal and used to set a distortion signal compensation index to c
APA, Harvard, Vancouver, ISO, and other styles
5

Lazaro, Antonio, David Girbau, and Ramon Villarino. "ANALYSIS OF VITAL SIGNS MONITORING USING AN IR-UWB RADAR." Progress In Electromagnetics Research 100 (2010): 265–84. http://dx.doi.org/10.2528/pier09120302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turppa, Emmi, Juha M. Kortelainen, Oleg Antropov, and Tero Kiuru. "Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios." Sensors 20, no. 22 (2020): 6505. http://dx.doi.org/10.3390/s20226505.

Full text
Abstract:
Remote monitoring of vital signs for studying sleep is a user-friendly alternative to monitoring with sensors attached to the skin. For instance, remote monitoring can allow unconstrained movement during sleep, whereas detectors requiring a physical contact may detach and interrupt the measurement and affect sleep itself. This study evaluates the performance of a cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions during sleep. We evaluate the vital signs
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, Faheem, Asim Ghaffar, Naeem Khan, and Sung Ho Cho. "An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver." Sensors 20, no. 9 (2020): 2479. http://dx.doi.org/10.3390/s20092479.

Full text
Abstract:
Non-invasive remote health monitoring plays a vital role in epidemiological situations such as SARS outbreak (2003), MERS (2015) and the recently ongoing outbreak of COVID-19 because it is extremely risky to get close to the patient due to the spread of contagious infections. Non-invasive monitoring is also extremely necessary in situations where it is difficult to use complicated wired connections, such as ECG monitoring for infants, burn victims or during rescue missions when people are buried during building collapses/earthquakes. Due to the unique characteristics such as higher penetration
APA, Harvard, Vancouver, ISO, and other styles
8

Lim, Sungmook, Gwang Soo Jang, Wonyoung Song, Baek-hyun Kim, and Dong Hyun Kim. "Non-Contact VITAL Signs Monitoring of a Patient Lying on Surgical Bed Using Beamforming FMCW Radar." Sensors 22, no. 21 (2022): 8167. http://dx.doi.org/10.3390/s22218167.

Full text
Abstract:
Respiration and heartrates are important information for surgery. When the vital signs of the patient lying prone are monitored using radar installed on the back of the surgical bed, the surgeon’s movements reduce the accuracy of these monitored vital signs. This study proposes a method for enhancing the monitored vital sign accuracies of a patient lying on a surgical bed using a 60 GHz frequency modulated continuous wave (FMCW) radar system with beamforming. The vital sign accuracies were enhanced by applying a fast Fourier transform (FFT) for range and beamforming which suppress the noise ge
APA, Harvard, Vancouver, ISO, and other styles
9

Kathuria, Nitin, and Boon-Chong Seet. "24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring." Sensors 21, no. 11 (2021): 3737. http://dx.doi.org/10.3390/s21113737.

Full text
Abstract:
Noncontact monitoring of human vital signs has been an emerging research topic in recent years. A key approach to this monitoring is the use of the Doppler radar concept which enables real-time vital signs detection, resulting in a new class of radar system known as bio-radar. The antennas are a key component of any bio-radar module and their designs should meet the common requirements of bio-radar applications such as high radiation directivity and mechanical flexibility. This paper presents the design of a four-element antenna array on a flexible liquid crystal polymer (LCP) substrate of 100
APA, Harvard, Vancouver, ISO, and other styles
10

Schellenberger, Sven, Kilin Shi, Fabian Michler, Fabian Lurz, Robert Weigel, and Alexander Koelpin. "Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients." Sensors 20, no. 20 (2020): 5827. http://dx.doi.org/10.3390/s20205827.

Full text
Abstract:
In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient’s illness and allows early warning of emergencies. To enable such monitoring without restricting the patient’s freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!