Academic literature on the topic 'Visuo-motor tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Visuo-motor tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Visuo-motor tracking"
Eichert, V., R. Horn, and H. J. Möller. "VISUO-MANU-MOTOR TRACKING PERFORMANCE IN ALZHEIMERʼS DISEASE." Clinical Neuropharmacology 15 (1992): 466B. http://dx.doi.org/10.1097/00002826-199202001-00906.
Full textSakaguchi, Yutaka. "Intermittent motor control observed in visuo-manual tracking." Neuroscience Research 71 (September 2011): e249. http://dx.doi.org/10.1016/j.neures.2011.07.1085.
Full textMiall, R. C., D. J. Weir, and J. F. Stein. "Planning of movement parameters in a visuo-motor tracking task." Behavioural Brain Research 27, no. 1 (January 1988): 1–8. http://dx.doi.org/10.1016/0166-4328(88)90104-0.
Full textHufschmidt, Andreas, Günther Deuschl, and Carl Hermann Locking. "Motor Habits in Visuo-manual Tracking: Manifestation of an Unconscious Short-Term Motor Memory?" Behavioural Neurology 3, no. 4 (1990): 217–32. http://dx.doi.org/10.1155/1990/698081.
Full textRoerdink, Melvyn, Ellen D. Ophoff, C. (Lieke) E. Peper, and Peter J. Beek. "Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking." Experimental Brain Research 184, no. 2 (August 28, 2007): 143–56. http://dx.doi.org/10.1007/s00221-007-1085-y.
Full textRickards, C., and F. W. J. Cody. "Increased use of target cues during visuo-motor tracking in Parkinson's disease." European Journal of Neurology 3, no. 3 (May 1996): 212–20. http://dx.doi.org/10.1111/j.1468-1331.1996.tb00425.x.
Full textEichert, V. "Visuo-manu-motor tracking performance in healthy volunteers and postacute schizophrenic patients." Biological Psychiatry 42, no. 1 (July 1997): 178S. http://dx.doi.org/10.1016/s0006-3223(97)87639-1.
Full textde Rugy, Aymar, Olivier Oullier, and Jean-Jacques Temprado. "Stability of rhythmic visuo-motor tracking does not depend on relative velocity." Experimental Brain Research 184, no. 2 (November 1, 2007): 269–73. http://dx.doi.org/10.1007/s00221-007-1180-0.
Full textGuillaud, Etienne, Gabriel Gauthier, Jean-Louis Vercher, and Jean Blouin. "Fusion of Visuo-ocular and Vestibular Signals in Arm Motor Control." Journal of Neurophysiology 95, no. 2 (February 2006): 1134–46. http://dx.doi.org/10.1152/jn.00453.2005.
Full textSchwartz, Joshua D., and Stephen G. Lisberger. "Initial tracking conditions modulate the gain of visuo-motor transmission for smooth pursuit eye movements in monkeys." Visual Neuroscience 11, no. 3 (May 1994): 411–24. http://dx.doi.org/10.1017/s0952523800002352.
Full textDissertations / Theses on the topic "Visuo-motor tracking"
Vine, Samuel James. "Anxiety, attention and performance variability in visuo-motor skills." Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/118107.
Full textPappo, Harry A. "Simulation of the visuo-motor processes in the tracking and interception of a tennis ball in play." Thesis, Rhodes University, 1985. http://hdl.handle.net/10962/d1001431.
Full textBoylan, Simon. "Cognitive effort, efficient coding and non-invasive fMRI measurement of their relation in sensorimotor responses." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0463.
Full textCognitive effort is a ubiquitous subjective feeling of exertion that pushes people to avoid demanding tasks. From a biological and evolutionary point of view, mental effort is thought to be a mechanism intended to preserve cognitive resources. However, so far, no consensus on the nature of these resources has been established. Since the brain functions as an information-processing organ, efficient coding theory suggests that cognitive resources—whatever their nature—are optimized and should depend on information gain.This hypothesis assumes certain principles about neural coding and information processing. Firstly, we frame our work in the premise that the brain is a Bayesian information-processing machine, that updates internal models through inferences between inputs and previous beliefs. If stimuli are familiar and naturalistic, efficient neural coding can take place to optimize information coding and processing. If these conditions are met, then we can estimate the quantity of information computed by the brain as the relative entropy between prior and posterior beliefs, or information gain; moreover the quantity of energy needed to compute information being optimized, energy spent on a task should be proportional to this same quantity.Indirect measures of this relationship have been validated through pupillometry, as pupil size correlates with information rate during cognitive tasks. In this thesis, we designed experiments to further validate this information-theoretical framework, using complementary behavioral and neuroimaging measures.To assess this hypothesis, we conducted three key experiments : two joystick visuo-motor and oculomotor tracking tasks with pupillometry, and a response-to-stimulus (Hick-Hyman) task in fMRI.The first study investigates the relation between cognitive effort, pupil size and continuous visual-motor prediction under this information framework. By controlling information components of the target, such as predictability, lag, speed and acceleration, we can validate the information origin of cognitive effort (NASA-TLX) and its correlation with pupil size .The second experiment was developed to test the overnight memorization and implicitness of eye and hand continuous tracking. Using the same design as in the first experiment, we ran four experimental sessions, divided in joystick and eye tracking, on two consecutive days. We showed that participants implicitly learned to better predict repeating parts of the trajectory, which resulted in better performance and smaller pupil dilation.The last study was designed to investigate the relationship between information processing and energy dissipation in the brain by quantifying the cerebral metabolic rate of oxygen (CMRO2) during a response to stimulus task in fMRI (BOLD-ASL sequence). Hick-Hyman task maps a different number of stimuli to their response buttons, depending on the complexity (entropy) of the trial or block. As a linear relationship exists between the quantity of information processed (entropy) and the performance (response time) during the task, we hypothesized that there should be a similar relation between the quantity of information needed to accomplish a task and the energy allocated to do so. We addressed multiple technical issues related to CMRO2 computation in a cognitive task context. While we have improved and automatized the data analysis pipeline, we faced significant challenges that prevented us to reach a final conclusion on our initial hypothesis
Book chapters on the topic "Visuo-motor tracking"
Sanguineti Vittorio, Casadio Maura, Vergaro Elena, Squeri Valentina, Giannoni Psiche, and Morasso Pietro G. "Robot therapy for stroke survivors: proprioceptive training and regulation of assistance." In Studies in Health Technology and Informatics. IOS Press, 2009. https://doi.org/10.3233/978-1-60750-018-6-126.
Full textConference papers on the topic "Visuo-motor tracking"
Vodrahalli, Kailas, Maciej Filipkowski, Tiffany Chen, James Zou, and Yaping Joyce Liao. "Predicting Visuo-Motor Diseases From Eye Tracking Data." In Pacific Symposium on Biocomputing 2022. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811250477_0023.
Full textMasia, L., V. Squeri, M. Casadio, P. Morasso, V. Sanguineti, and G. Sandini. "Visuo-motor tracking with coordinated wrist movements under different combinations of visual and kinesthetic disturbances." In 2009 2nd Conference on Human System Interactions (HSI). IEEE, 2009. http://dx.doi.org/10.1109/hsi.2009.5091065.
Full text