Academic literature on the topic 'Visual tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Visual tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Visual tracking"
ZANG, Chuantao, Yoshihide ENDO, and Koichi HASHIMOTO. "2P1-D20 GPU accelerating visual tracking." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2010 (2010): _2P1—D20_1—_2P1—D20_4. http://dx.doi.org/10.1299/jsmermd.2010._2p1-d20_1.
Full textRoberts, J., and D. Charnley. "Parallel Visual Tracking." IFAC Proceedings Volumes 26, no. 1 (April 1993): 127–32. http://dx.doi.org/10.1016/s1474-6670(17)49287-1.
Full textYuan, Heng, Wen-Tao Jiang, Wan-Jun Liu, and Sheng-Chong Zhang. "Visual node prediction for visual tracking." Multimedia Systems 25, no. 3 (January 30, 2019): 263–72. http://dx.doi.org/10.1007/s00530-019-00603-1.
Full textLou, Jianguang, Tieniu Tan, and Weiming Hu. "Visual vehicle tracking algorithm." Electronics Letters 38, no. 18 (2002): 1024. http://dx.doi.org/10.1049/el:20020692.
Full textMing Yang, Ying Wu, and Gang Hua. "Context-Aware Visual Tracking." IEEE Transactions on Pattern Analysis and Machine Intelligence 31, no. 7 (July 2009): 1195–209. http://dx.doi.org/10.1109/tpami.2008.146.
Full textZhang, Lei, Yanjie Wang, Honghai Sun, Zhijun Yao, and Shuwen He. "Robust Visual Correlation Tracking." Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/238971.
Full textRoberts, J. M., and D. Charnley. "Parallel attentive visual tracking." Engineering Applications of Artificial Intelligence 7, no. 2 (April 1994): 205–15. http://dx.doi.org/10.1016/0952-1976(94)90024-8.
Full textWang, Hesheng, Yun-Hui Liu, and Weidong Chen. "Uncalibrated Visual Tracking Control Without Visual Velocity." IEEE Transactions on Control Systems Technology 18, no. 6 (November 2010): 1359–70. http://dx.doi.org/10.1109/tcst.2010.2041457.
Full textShi, Liangtao, Bineng Zhong, Qihua Liang, Ning Li, Shengping Zhang, and Xianxian Li. "Explicit Visual Prompts for Visual Object Tracking." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 5 (March 24, 2024): 4838–46. http://dx.doi.org/10.1609/aaai.v38i5.28286.
Full textZhang, Yue, Huibin Lu, and Xingwang Du. "ROAM-based visual tracking method." Journal of Physics: Conference Series 1732 (January 2021): 012064. http://dx.doi.org/10.1088/1742-6596/1732/1/012064.
Full textDissertations / Theses on the topic "Visual tracking"
Danelljan, Martin. "Visual Tracking." Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105659.
Full textWessler, Mike. "A modular visual tracking system." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11459.
Full textKlein, Georg. "Visual tracking for augmented reality." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614262.
Full textSalama, Gouda Ismail Mohamed. "Monocular and Binocular Visual Tracking." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/37179.
Full textPh. D.
Dehlin, Carl. "Visual Tracking Using Stereo Images." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153776.
Full textSalti, Samuele <1982>. "On-line adaptive visual tracking." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3735/1/samuele_salti_tesi.pdf.
Full textSalti, Samuele <1982>. "On-line adaptive visual tracking." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3735/.
Full textDelabarre, Bertrand. "Contributions to dense visual tracking and visual servoing using robust similarity criteria." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S124/document.
Full textIn this document, we address the visual tracking and visual servoing problems. They are crucial thematics in the domain of computer and robot vision. Most of these techniques use geometrical primitives extracted from the images in order to estimate a motion from an image sequences. But using geometrical features means having to extract and match them at each new image before performing the tracking or servoing process. In order to get rid of this algorithmic step, recent approaches have proposed to use directly the information provided by the whole image instead of extracting geometrical primitives. Most of these algorithms, referred to as direct techniques, are based on the luminance values of every pixel in the image. But this strategy limits their use, since the criteria is very sensitive to scene perturbations such as luminosity shifts or occlusions. To overcome this problem, we propose in this document to use robust similarity measures, the sum of conditional variance and the mutual information, in order to perform robust direct visual tracking and visual servoing processes. Several algorithms are then proposed that are based on these criteria in order to be robust to scene perturbations. These different methods are tested and analyzed in several setups where perturbations occur which allows to demonstrate their efficiency
Arslan, Ali Erkin. "Visual Tracking With Group Motion Approach." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1056100/index.pdf.
Full textZhu, Biwen. "Visual Tracking with Deep Learning : Automatic tracking of farm animals." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240086.
Full textAutomatisk spårning av övervakning i gårdens område kan bidra till att stödja jordbruket management. I detta projekt till ett automatiserat system för upptäckt upptäcka suggor från övervaknings filmer kommer att utformas med djupa lärande och datorseende metoder. Av hänsyn till Diskhantering och tid och hastighet Krav över nätverket för att uppnå realtidsscenarier i framtiden är spårning i komprimerade videoströmmar är avgörande. Det föreslagna systemet i detta projekt skulle använda en DCF (diskriminerande korrelationsfilter) som en klassificerare att upptäcka mål. Spårningen modell kommer att uppdateras genom att utbilda klassificeraren med online inlärningsmetoder. Compression teknik kodar videodata och minskar bithastigheter där videosignaler sänds kan hjälpa videoöverföring anpassar bättre i begränsad nätverk. det kan dock reducera bildkvaliteten på videoklipp och leder exakt hastighet av vårt spårningssystem för att minska. Därför undersöker vi utvärderingen av prestanda av befintlig visuella spårningsalgoritmer på videosekvenser Det ultimata målet med videokomprimering är att bidra till att bygga ett spårningssystem med samma prestanda men kräver färre nätverksresurser. Den föreslagna spårning algoritm spår framgångsrikt varje sugga i konsekutiva ramar i de flesta fall prestanda vår tracker var jämföras med två state-of-art spårning algoritmer:. Siamese Fully-Convolutional (FC) och Efficient Convolution Operators (ECO) utvärdering av prestanda Resultatet visar vår föreslagna tracker blir liknande prestanda med Siamese FC och ECO. I jämförelse med den ursprungliga spårningen uppnådde den föreslagna spårningen liknande spårningseffektivitet, samtidigt som det krävde mycket mindre lagring och alstra en lägre bitrate när videon komprimerades med lämpliga parametrar. Systemet är mycket långsammare än det behövs för spårning i realtid på grund av hög beräkningskomplexitet; därför behövs mer optimala metoder för att uppdatera spårningsmodellen för att uppnå realtidsspårning.
Books on the topic "Visual tracking"
Lu, Huchuan, and Dong Wang. Online Visual Tracking. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0469-9.
Full textPanin, Giorgio. Model-Based Visual Tracking. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470943922.
Full textMacCormick, John. Stochastic Algorithms for Visual Tracking. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0679-1.
Full textPanin, Giorgio. Model-based visual tracking: The OpenTL framework. Hoboken, N.J: Wiley, 2011.
Find full textXing, Weiwei, Weibin Liu, Jun Wang, Shunli Zhang, Lihui Wang, Yuxiang Yang, and Bowen Song. Visual Object Tracking from Correlation Filter to Deep Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6242-3.
Full textCampbell, Philip E. Visual analysis of a radio frequency tracking system for virtual environments. Monterey, Calif: Naval Postgraduate School, 1999.
Find full textEye tracking methodology: Theory and practice. 2nd ed. London: Springer, 2007.
Find full textEssig, Kai. Vision-based image retrieval (VBIR): A new eye-tracking based approach to efficient and intuitive image retrieval. Saarbrücken: VDM Verlag Dr. Müller, 2008.
Find full textLee, Vincent C. E. Eye mouse system: Mouse control technique for detecting and tracking of eyes in visual images. Manchester: UMIST, 1997.
Find full textGamito, Pedro Santos Pinto, and Pedro Joel Rosa. I see me, you see me: Inferring cognitive and emotional processes from gazing behaviour. Newcastle Upon Tyne: Cambridge Scholars Publishing, 2014.
Find full textBook chapters on the topic "Visual tracking"
Clark, Uraina. "Visual Tracking." In Encyclopedia of Clinical Neuropsychology, 2645–47. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_1415.
Full textClark, Uraina. "Visual Tracking." In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_1415-2.
Full textClark, Uraina S. "Visual Tracking." In Encyclopedia of Clinical Neuropsychology, 3642–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_1415.
Full textMarchand, Eric. "Visual Tracking." In Encyclopedia of Robotics, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_102-1.
Full textDuchowski, Andrew T. "Visual Attention." In Eye Tracking Methodology, 3–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57883-5_1.
Full textDuchowski, Andrew T. "Visual Psychophysics." In Eye Tracking Methodology, 29–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57883-5_3.
Full textLu, Huchuan, and Dong Wang. "Correlation Tracking." In Online Visual Tracking, 87–100. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0469-9_6.
Full textLu, Huchuan, and Dong Wang. "Tracking by Segmentation." In Online Visual Tracking, 61–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0469-9_5.
Full textLu, Huchuan, and Dong Wang. "Introduction to Visual Tracking." In Online Visual Tracking, 1–10. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0469-9_1.
Full textLu, Huchuan, and Dong Wang. "Visual Tracking Based on Sparse Representation." In Online Visual Tracking, 11–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0469-9_2.
Full textConference papers on the topic "Visual tracking"
Roberts, J., and D. Charnley. "Attentive Visual Tracking." In British Machine Vision Conference 1993. British Machine Vision Association, 1993. http://dx.doi.org/10.5244/c.7.46.
Full textWavering, Albert J., and Ronald Lumia. "Predictive visual tracking." In Optical Tools for Manufacturing and Advanced Automation, edited by David P. Casasent. SPIE, 1993. http://dx.doi.org/10.1117/12.150188.
Full textWang, Shu, Huchuan Lu, and Guang Yang. "Complementary Visual Tracking." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6116555.
Full textKwon, Junseok, and Kyoung Mu Lee. "Visual tracking decomposition." In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010. http://dx.doi.org/10.1109/cvpr.2010.5539821.
Full text"Advanced Visual Tracking." In Third IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 2004. http://dx.doi.org/10.1109/ismar.2004.10.
Full textWei, Xing, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yihong Gong. "Autoregressive Visual Tracking." In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.00935.
Full textSarma, Prathusha K., and Tarunraj Singh. "A mixture distribution for visual foraging." In ETRA '14: Eye Tracking Research and Applications. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2578153.2578210.
Full textDu, Ruofei, Eric Lee, and Amitabh Varshney. "Tracking-Tolerant Visual Cryptography." In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019. http://dx.doi.org/10.1109/vr.2019.8797924.
Full textMa, Y., S. Worrall, and A. M. Kondoz. "Depth assisted visual tracking." In 2009 10th Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). IEEE, 2009. http://dx.doi.org/10.1109/wiamis.2009.5031456.
Full textPapanikolopoulos, N., P. K. Khosla, and T. Kanade. "Adaptive Robotic Visual Tracking." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791520.
Full textReports on the topic "Visual tracking"
Basu, Saikat, Malcolm Stagg, Robert DiBiano, Manohar Karki, Supratik Mukhopadhyay, and Jerry Weltman. An Agile Framework for Real-Time Visual Tracking in Videos. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada581034.
Full textTannenbaum, Allen R. Distributed Systems for Problems in Robust Control and Visual Tracking. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada387787.
Full textBennur, Shubhapriya. Consumers Visual Search Behavior on the Websites: An Eye Tracking Approach. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1467.
Full textTannenbaum, Allen R. Geometric PDE's and Invariants for Problems in Visual Control Tracking and Optimization. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada428955.
Full textChen, J., W. E. Dixon, D. M. Dawson, and V. K. Chitrakaran. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada465705.
Full textDutra, Lauren M., James Nonnemaker, Nathaniel Taylor, Ashley Feld, Brian Bradfield, John Holloway, Edward (Chip) Hill, and Annice Kim. Visual Attention to Tobacco-Related Stimuli in a 3D Virtual Store. RTI Press, May 2020. http://dx.doi.org/10.3768/rtipress.2020.rr.0036.2005.
Full textD'Amico, Angela, Christopher Kyburg, and Rowena Carlson. Software Tools for Visual and Acoustic Real-Time Tracking of Marine Mammals: Whale Identification and Logging Display (WILD). Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada533470.
Full textNelson, W. T., Robert S. Bolia, Chris A. Russell, Rebecca M. Morley, and Merry M. Roe. Head-Slaved Tracking in a See-Through HMD: The Effects of a Secondary Visual Monitoring Task on Performance and Workload. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada430665.
Full textKlobucar, Blaz. Urban Tree Detection in Historical Aerial Imagery of Sweden : a test in automated detection with open source Deep Learning models. Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, 2024. http://dx.doi.org/10.54612/a.7kn4q7vikr.
Full textBurks, Thomas F., Victor Alchanatis, and Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, October 2009. http://dx.doi.org/10.32747/2009.7591739.bard.
Full text