Academic literature on the topic 'Visual attention in time'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Visual attention in time.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Visual attention in time"

1

Zhou, Yan-Bang, Qiang Li, and Hong-Zhi Liu. "Visual attention and time preference reversals." Judgment and Decision Making 16, no. 4 (July 2021): 1010–38. http://dx.doi.org/10.1017/s1930297500008068.

Full text
Abstract:
AbstractTime preference reversal refers to systematic inconsistencies between preferences and bids for intertemporal options. From the two eye-tracking studies (N1 = 60, N2 = 110), we examined the underlying mechanisms of time preference reversal. We replicated the reversal effect in which individuals facing a pair of intertemporal options choose the smaller-sooner option but assign a higher value to the larger-later one. Results revealed that the mean fixation duration and the proportion of gaze time on the outcome attribute varied across the choice and bid tasks. In addition, time preference reversals correlated with individual differences in maximizing tendencies. Findings support the contingent weighting hypothesis and strategy compatibility hypothesis and allow for improved theoretical understanding of the potential mechanisms and processes involved in time preference reversals.
APA, Harvard, Vancouver, ISO, and other styles
2

Busse, L. "The Time Course of Shifting Visual Attention." Journal of Neuroscience 26, no. 15 (April 12, 2006): 3885–86. http://dx.doi.org/10.1523/jneurosci.0459-06.2006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Egeth, Howard E., and Steven Yantis. "VISUAL ATTENTION: Control, Representation, and Time Course." Annual Review of Psychology 48, no. 1 (February 1997): 269–97. http://dx.doi.org/10.1146/annurev.psych.48.1.269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ruhnau, E., and V. Haase. "Space-time structure of selective visual attention." International Journal of Psychophysiology 14, no. 2 (February 1993): 146. http://dx.doi.org/10.1016/0167-8760(93)90239-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ward, Robert, John Duncan, and Kimron Shapiro. "The Slow Time-Course of Visual Attention." Cognitive Psychology 30, no. 1 (February 1996): 79–109. http://dx.doi.org/10.1006/cogp.1996.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chun, Marvin M. "Visual working memory as visual attention sustained internally over time." Neuropsychologia 49, no. 6 (May 2011): 1407–9. http://dx.doi.org/10.1016/j.neuropsychologia.2011.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Srivastava, Priyanka, and Narayanan Srinivasan. "Time course of visual attention with emotional faces." Attention, Perception, & Psychophysics 72, no. 2 (February 2010): 369–77. http://dx.doi.org/10.3758/app.72.2.369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chastain, Garvin. "Time-course of location changes of visual attention." Bulletin of the Psychonomic Society 29, no. 5 (May 1991): 425–28. http://dx.doi.org/10.3758/bf03333960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Couffe, C., R. Mizzi, and G. A. Michael. "Salience-based progression of visual attention: Time course." Psychologie Française 61, no. 3 (September 2016): 163–75. http://dx.doi.org/10.1016/j.psfr.2015.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Drisdelle, Brandi L., Greg L. West, and Pierre Jolicoeur. "The deployment of visual spatial attention during visual search predicts response time." NeuroReport 27, no. 16 (November 2016): 1237–42. http://dx.doi.org/10.1097/wnr.0000000000000684.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Visual attention in time"

1

Jefferies, Lisa N. "Tracking attention in space and time : the dynamics of human visual attention." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/11564.

Full text
Abstract:
Attention is essential to everyday life: without some selective function to guide and limit the processing of incoming information, our visual system would be overwhelmed. A description of the spatiotemporal dynamics of attention is critical to our understanding of this basic human cognitive function and is the primary goal of this dissertation. In particular, the research reported here is aimed at examining two aspects of the spatiotemporal dynamics of attention: a) the rate at which the focus of attention is shrunk and expanded along with the factors that influence this rate, and b) the factors governing whether attention is deployed as either a unitary or a divided focus. The present research examines the spatiotemporal dynamics of focal attention by monitoring the pattern of accuracy that occurs when participants attempt to identify two targets embedded in simultaneously presented streams of items. By asking participants to monitor these streams simultaneously, with the spatial and temporal positions of the two targets in the streams being varied incrementally, it is possible to index the extent of focal attention in both space and time. Chapter 2 develops this behavioural procedure and assesses the rate at which the focus of attention is contracted. A qualitative model is put forward and tested. Chapter 3 examines factors that modulate the temporal course of attentional narrowing in young adults who presumably can exercise efficient control of attentional processes. In contrast, Chapter 4 examines the effect of reduced attentional control by examining the same process in older adults. The second goal of this thesis was to examine whether focal attention is deployed as a unitary or a divided focus. These two perspectives are generally viewed as mutually exclusive. The alternative hypothesis pursued in Chapter 5 is that focal attention can be deployed as either a single, unitary focus or divided into multiple foci, depending on the observers mental set and on the task demands. The final chapter then combines and compares the findings across all experiments and evaluates how they fit in with current theories of visual attention.
APA, Harvard, Vancouver, ISO, and other styles
2

Sutton, Jennifer E. "Attention to time, space, and visual pattern by the pigeon." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/MQ30771.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Braithwaite, Jason John. "Visual search in space and time : where attention and inattention collide?" Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Azevêdo, Adriana Medeiros Sales de. "Mapeamento espacial da atenção visual mobilizada pela via visual ventral." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/42/42137/tde-25032010-145400/.

Full text
Abstract:
O processamento visual se dá por duas vias, Dorsal (localização/movimento) mobilizada por TRS (tempo de reação simples), e Ventral (forma/cor) mobilizada por TER (tempo de reação escolha). Apresentamos uma nova abordagem para se investigar a distribuição dos recursos atencionais. Os métodos psicofísicos vigentes amostram repetidas vezes poucos pontos. Optou-se por amostrar muitos pontos na tela do computador poucas vezes, obtendo-se amostragem de uma grande área. Obteve-se um mapa de detalhamento da distribuição atencional. Experimentos de atenção voluntária: I. Tarefa de TRS, mobilizando a via Dorsal. Na situação de atenção difusa. II. TRE, mobilizando a via Ventral. Os estímulos possíveis diferiam na cor e foram respondidos ao se pressionar um botão, atenção difusa. III. TRE, focando-se a atenção em duas molduras, caracterizando atenção dividida. Os resultados demonstraram um favorecimento do hemicampo inferior para a TRS e um favorecimento do hemicampo superior para TER. Apareceram dois focos na atenção dividida fortalecendo a hipótese da divisão atencional.
Visual processing has two pathways: Dorsal (localization/movement) mobilized for Simple Reaction Time tasks (SRT); Ventral (shape/color) mobilized for Choice Reaction Time tasks (CRT). We presented an approach to investigate visual attentional resources. Usual psychophysical methods sample many times few points. We opted to sample many points few times aiming to enlarge the sampled visual field. It was obtained major details of the attentional distribution. Voluntary attention task: I. SRT, for Dorsal pathway. Stimuli were different in color answered triggering a button, in a diffusion attention paradigm. II. CRT, for Ventral pathway. Stimuli were two different color answered by triggering a button for each color in a diffuse paradigm. III. CRT, experimental subject instructed to focus attention in two frames for a splitted attention paradigm. Results showed anisotropy in the diffuse attention distribution, favouring the lower hemifield for SRT and superior hemifield for CRT. The splitted attention paradigm evidenced the presence of two attentional focuses.
APA, Harvard, Vancouver, ISO, and other styles
5

Soares, Sandra C. "Fear commands attention snakes as the archetypal fear stimulus? /." Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-824-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Contenças, Thaís Santos. "É possível uma divisão da atenção visual automática no espaço?" Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/42/42137/tde-01072009-123939/.

Full text
Abstract:
Existe controvérsia na literatura sobre a possibilidade de divisão espacial da atenção visual. Alguns autores encontraram evidências de que a atenção visual voluntária se divide no espaço. No entanto, a possibilidade de divisão da atenção automática ainda não foi adequadamente investigada. O objetivo deste trabalho foi investigar a possibilidade de uma divisão da atenção visual automática no espaço. Em um primeiro e segundo experimentos testamos a possibilidade da atenção automática se dividir em um mesmo hemicampo (esquerdo ou direito). Em um terceiro e quarto experimentos investigamos a possibilidade de divisão da atenção automática entre os hemicampos visuais (esquerdo e direito). Em conjunto, os resultados deste trabalho sugerem que a atenção automática pode se dividir entre os hemicampos visuais esquerdo e direito, mas em cada um destes hemicampos forma um foco único longo e estreito.
Several studies demonstrated that voluntary visual attention can be divided. The possibility that this also occurs for automatic visual attention was investigated here. In the first and second experiments of this study the possibility of attention division in the same hemifield was examined. In the third and fouth experiments the possibility of attention division between hemifields was examined. The results suggest that automatic visual attention can not divide in the same hemifield but may divide between hemifields.
APA, Harvard, Vancouver, ISO, and other styles
7

Correani, Alessia. "Normal and abnormal attentional dwell time : constrains of temporal coding in visual attention in neurological patients and normal individuals." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1781/.

Full text
Abstract:
This thesis is concerned with the analysis of constrains of temporal coding in visual selective attention. It is well known that despite the great amount of visual information present in the environment the human visual system is only capable to attend and select some of it. How the brain is able to selectively prioritize relevant information and de-prioritize the irrelevant information in order to guide us through space, has been extensively investigated (Treisman and Gelade, 1980; Posner, 1980). Less is known about how this occurs over time. In the present thesis I investigate the role of temporal limitation of selective attention in brain damaged patients and in normal participants by using a simplified version (attentional dwell time paradigm, Duncan et al., 1994), of the Attentional Blink (AB) paradigm which involves the identification of two or more visual targets when stimuli are presented rapidly in temporal succession always at one location (Broadbent and Broadbent, 1987; Raymond, Shapiro and Arnell, 1992). Within this paradigm I have manipulated different factors which may influence this limitation such as: temporal binding, perceptual similarity among stimuli, task switching, integration of audio-visual information and working memory. In addition, by examining the AB in different brain lesioned groups, this thesis attempts to throws light on the neural mechanisms underlying temporal coding and selection. Evidence was provided of the influence of all these mechanisms in coding, selecting and consolidating visual information over time which suggest a multi components nature of temporal selection as well as possible involvements of a temporo-parietal network (Corbetta and Shulman, 2002) which governs their integration.
APA, Harvard, Vancouver, ISO, and other styles
8

Montassier, Ana Beatriz Sacomano. "Atenção visual em crianças e adolescentes com distúrbio de aprendizagem." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/25/25143/tde-04122013-091051/.

Full text
Abstract:
A atenção encontra-se incluída no grupo de funções psíquicas, agrupadas sob o nome de funções cognitivas que subsidiam o processo de aprendizagem escolar. Em relação à atenção visual, a literatura vem apontando a existência de diferenças no tempo de reação a estímulos visuais entre escolares com e sem distúrbios de aprendizagem (DA). Neste sentido, o objetivo deste estudo foi caracterizar a função atencional visual em escolares com DA. Participaram deste estudo 50 escolares, sendo 25 com o diagnóstico de distúrbio de aprendizagem, formando o grupo de estudo (GE), e 25 crianças sem queixas escolares, formando o grupo controle (GC), com faixa etária entre oito e 14 anos de idade. Os instrumentos utilizados foram o Teste de Atenção Visual (TAVIS4), um teste computadorizado composto por três tarefas para avaliar a capacidade atentiva de sustentar, selecionar e mudar o foco de atenção para estímulos visuais e da impulsividade motora, e a Escala de Conners na forma abreviada para professores, apropriado para discriminar crianças com problemas de comportamento e com sintomas de TDAH. Os resultados evidenciaram que o tempo de reação médio (TRM) do GC foi significativamente menor que o do GE na tarefa de atenção sustentada. O GE também apresentou diferença estatística significativa na atenção alternada, com menor número de acertos (NA), maior número de erros por omissão (EO) e maior número de erros por ação (EA). Na Escala de Conners a pontuação do GE foi maior do que do GC. Houve correlação entre os testes nas tarefas de atenção alternada e nas tarefas de atenção sustentada para o número de acertos (NA), erros por omissão (EO) e erros por ação (EA). Podemos inferir que as crianças com DA apresentam déficit dos processos atencionais, embora não possam ser caracterizadas com o TDAH. No subgrupo dos adolescentes houve diferença significativa na atenção seletiva para o número de erros por omissão (EO), no TRM da atenção sustentada e na atenção alternada para número de erros por omissão (EO) e erros por ação (EA). Houve correlação entre os testes, neste subgrupo do GE e GC na atenção seletiva para o número de acertos (NA), erros por omissão (EO) e erros por ação (EA). Portanto, os maiores índices apontados na escala (déficit atencional) estão associados aos piores resultados dos participantes nas tarefas de atenção alternada e sustentada. Pode-se observar que quanto maior a idade dos participantes, melhor é a capacidade de atenção seletiva, sustentada e alternada. Desta maneira, o TMR mais baixo do subgrupo dos adolescentes em comparação com o grupo geral pode evidenciar a melhora da atenção com o desenvolvimento. Porém, os adolescentes do GE apresentaram melhor desempenho do que as crianças, ou seja, algumas alterações notadamente persistem quando comparadas ao GC sugerindo uma disfunção dos mecanismos neuropsicológicos subjacentes ao processamento da atenção visual nos adolescentes com DA.
Attention is included in the group of psychic functions, grouped under the name of cognitive functions, and that support the learning process in school. Regarding the visual attention, literature has pointed to the existence of differences in reaction time to visual stimuli between students with and without learning disabilities (LD). In this sense, the purpose of this study was to characterize the visual attentional function in children with LD. A total of 50 students, including 25 with learning disorders without signs of Attention Deficit Disorder and Hyperactivity Disorder (ADHD), forming the study group (SG), and 25 children without impairments, forming the control group (CG) , aged between eight and 14 years old. The instruments used were the Test of Visual Attention (TAVIS4), computerized test consists of three tasks to assess the ability to sustain attentional, select and change the focus of attention to visual stimuli and motor impulsivity, and the Scale of the Conners abbreviated form for teachers, appropriate to discriminate children with behavior problems and ADHD signs. The results showed that the hit reaction time (HRT) of the CG was significantly less than the SG in the sustained attention task. SG also showed statistically significant differences in the alternating attention, with less number of right answers (RA), higher number of omission errors (OE) and higher number of commissions errors (CE). Scale of the Conners scores of GE was higher than the GC. There was a correlation between tests in alternating attention tasks and sustained attention tasks to the number of right answers (RA), omission errors (OE) and commission errors (CE). We may deduce that children with LD have deficits of attentional processes, although they cannot be characterized with ADHD. In the subgroup of adolescents was significant difference in selective attention to the number of omission errors (OE), the HRT of sustained attention and alternating attention to the number of omission errors (OE) and commission errors (CE). There was a correlation between tests, this subgroup of SG and CG in selective attention to the number of right answers (RA), omission errors (EO) and commissions errors (CE). So, the highest rates indicated on the scale (attentional deficits) are associated with worse outcomes of participants in the tasks of sustained and alternating attention. It can be observed that the higher the age of the participants, the better the ability of selective attention, sustained attention and alternating attention. That way, the HMT less subgroup of adolescents compared with the overall group may show an improvement in attention to development. However, adolescents SG improved their attentional capacity, but some changes persist especially when compared to CG suggesting a dysfunction of neuropsychological mechanisms underlying the processing of visual attention in adolescents with LD.
APA, Harvard, Vancouver, ISO, and other styles
9

Righi, Luana Lira. "Características do efeito da atenção intermodal automática." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/42/42137/tde-17042013-105052/.

Full text
Abstract:
O presente trabalho analisou algumas das possíveis características do efeito da atenção intermodal entre elas: relação sinal/ruído e assincronia entre início dos estímulos (AIE) em relação ao tipo de tarefa realizada. Os Experimentos 1 e 2 mostraram que os efeitos da atenção intermodal se manifestam na presença de ruído visual externo, e que não se manifestam na ausência de ruído em uma AIE de 133 ms. No entanto, o Experimento 3 mostrou que quando a AIE é maior que a utilizada nos experimentos anteriores, o efeito intermodal se manifesta no comportamento na ausência de ruído visual externo. Finalmente, o Experimento 4 mostrou que em uma AIE curta (133 ms), e em uma tarefa de localização, o efeito intermodal se manifesta. Os resultados sugerem que o efeito atencional intermodal se manifesta na presença e na ausência de ruído visual e que o mecanismo de discriminação da frequência do alvo demora mais tempo para se completar do que o mecanismo de localização do alvo.
The current work examined the possible contribution of signal to noise ratio, the asynchrony between the onsets of the cue and the target (SOA) and the kind of task performed by the observer to the manifestation of crossmodal attentional effects. The Experiments 1 and 2 showed that crossmodal attentional effect appears when there is visual noise, but it does not appear when there is no visual noise at 133 ms SOA. The Experiment 3 showed that when the SOA is longer than 133 ms, the crossmodal attentional effect appears when there is no visual noise. The Experiment 4 showed that in a localization task, the crossmodal attentional effect appears even in a short SOA (133 ms). Taken together, the results indicate that crossmodal attentional effects appear when there is visual noise and when there is no visual noise. However, in the later condition and when the target has to be identified, the crossmodal attentional effect takes longer to appear.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Hui. "Experiments on the dynamics of attention: Perception of visual rhythm and the time course of inhibition of return in the visual field." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-172019.

Full text
Abstract:
How attention is controlled is one of the challenging topics in cognitive neuroscience and psychology. For spatially represented targets in the visual field it has been shown that some features of visual stimuli like different colors instantaneously ‘pop-out’, while others require a serial search which is conceived of as an effortful task. It is an open question whether dynamic feature of a stimulus are processed instantaneously without high attentional demand or serially with high demand. This question was studied in experiments on rhythm perception with periodically moving stimuli, and a visual search paradigm was employed. The search display consisted of vertically moving dots with regular rhythms; one dot however moved with a different period, and this dot with a longer or shorter period had to be detected as fast as possible. To make the period of the movement a critical target, amplitudes and phases of the distractors were randomized. It was observed that the perception of a visual rhythm defined only by the period does not lead to a pop-out effect. Apparently, the conjunction of period, equal phase and equal amplitude of movements are necessary for an effortless processing of visual rhythms. Interestingly, a faster rhythm compared to the distractors was detected with shorter reaction times. In additional experiments, it was for instance shown that auditory information supports the extraction of rhythmic visual targets indicating an intermodal mechanism. In another experimental set-up it was tested whether the attentional machinery is controlled by a common temporal mechanism. Experiments on ‘inhibition of return’ (IOR) have indicated that attentional control in the peri-foveal region of the visual field underlies a different neuronal mechanism compared to the periphery of the visual field. This eccentricity effect of IOR raises the question, whether attentional control for the visual periphery is characterized by a longer time constant as the peripheral inhibitory control is much stronger. Experimental evidence indicates, however, that the two attentional systems share the same time window of approximately three seconds. These observations support the notion of a functional subdivision of the visual field which is overcome, however, by a common temporal control mechanism.
Wie Aufmerksamkeit kontrolliert wird, ist eine der besonderen Herausforderungen in den kognitiven Neurowissenschaften und der Psychologie. Für räumlich repräsentierte Reize konnte gezeigt werden, dass bestimmte Aspekte visueller Reize wie verschiedene Farben sofort hervorstechen („pop-out“), während für andere Reize serielle Such-Strategien notwendig sind, die also mentalen Aufwand erfordern. Es ist eine offene Frage, ob dynamische Merkmale von Reizen ohne besonderen Aufwand verarbeitet werden, oder ob serielle Prozesse erforderlich sind, um sie zu erkennen. Diese Frage wurde in Experimenten über Rhythmus-Wahrnehmung mit periodisch sich bewegenden Reizen untersucht, und ein visuelles Such-Paradigma wurde angewandt. Es wurden auf einem Display vertikal sich bewegende Punkte gezeigt, wobei einer der Punkte sich mit einer anderen Periode, schneller oder langsamer, bewegte, und diese Punkte mussten so schnell wie möglich erkannt werden. Um nur die Periode als kritische Variable zu untersuchen, wurde die Phase und die Amplitude der anderen Reizpunkte randomisiert. Es wurde festgestellt, dass die unterschiedliche Periode allein nicht zu einem „pop-out“-Effekt führt. Damit ein abweichender, sich bewegender dynamischer Reiz erkannt wird, müssen offenbar Periode, Phase und Amplitude übereinstimmen. Reize mit einer kürzeren Periode als die Hintergrundreize wurden deutlich schneller erkannt. In weiteren Experimenten konnte beispielsweise gezeigt werden, dass akustische Information die Extraktion rhythmisch sich bewegender visueller Reize deutlich verbessert, was auf intermodale Effekte hinweist. In einer weiteren Studie wurde untersucht, ob die neuronale Aufmerksamkeits-Maschinerie gemeinsamen zeitlichen Prinzipien gehorcht. Versuche zum Phänomen des „Inhibition of Return“ (IOR, Hemmung der Aufmerksamkeits-Wiederkehr) haben ergeben, dass die Mechanismen der Aufmerksamkeits-Steuerung im perifovealen Bereich anderen Gesetzen gehorchen als in der Peripherie des Gesichtsfeldes. Dieser „Ekzentrizitäts-Effekt“ wirft die Frage auf, ob die zeitlichen Prozesse der Aufmerksamkeits-Kontrolle in der Peripherie durch längere Zeitkonstanten gekennzeichnet sind, da die inhibitorische Kontrolle dort ausgeprägter ist. Es zeigt sich allerdings, dass die beiden Aufmerksamkeits-Systeme das gleiche Zeitfenster von etwa drei Sekunden nutzen. Diese Beobachtungen stützen das Konzept der funktionellen Inhomogenität des Gesichtsfeldes, die aber durch einen gemeinsamen zeitlichen Mechanismus in eine kognitive Einheit gebracht wird.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Visual attention in time"

1

Sinclair, Joshua James. The effects of target type and expectancy on attention, as a function of time and accuracy for a visual search task. Sudbury, Ont: Laurentian University, Department of Psychology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1956-, Wright Richard D., ed. Visual attention. New York: Oxford University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cantoni, Virginio, Maria Marinaro, and Alfredo Petrosino, eds. Visual Attention Mechanisms. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0111-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Liming, and Weisi Lin. Selective Visual Attention. Singapore: John Wiley & Sons (Asia) Pte Ltd, 2013. http://dx.doi.org/10.1002/9780470828144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

V, Cantoni, Marinaro M, and Petrosino Alfredo, eds. Visual attention mechanisms. New York: Kluwer Academic/Plenum Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Giovanni, Berlucchi, and Rizzolatti G, eds. Selective visual attention. Oxford: Pergamon, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cantoni, V. Visual Attention Mechanisms. Boston, MA: Springer US, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Zangemeister W., Stiehl H. S, and Freksa C, eds. Visual attention and cognition. Amsterdam: Elsevier, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jochen, Braun, Koch Christof, and Davis Joel L. 1942-, eds. Visual attention and cortical circuits. Cambridge, Mass: MIT Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Attention and time. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Visual attention in time"

1

Burch, Michael. "Time-Preserving Visual Attention Maps." In Intelligent Decision Technologies 2016, 273–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39627-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonnet, Claude. "Time Factors in the Processing of Visual Movement Information." In Attention and Performance VII, 25–41. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003310228-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Batista, Jorge P. "A Real-Time Driver Visual Attention Monitoring System." In Pattern Recognition and Image Analysis, 200–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11492429_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bernardino, Alexandre, and José Santos-Victor. "A Real-Time Gabor Primal Sketch for Visual Attention." In Pattern Recognition and Image Analysis, 335–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11492429_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stasse, Olivier, Yasuo Kuniyoshi, and Gordon Cheng. "Development of a Biologically Inspired Real-Time Visual Attention System." In Biologically Motivated Computer Vision, 150–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45482-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hou, Xiaodi, and Liqing Zhang. "A Time-Dependent Model of Information Capacity of Visual Attention." In Neural Information Processing, 127–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893028_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Choi, Byung Geun, and Kyung Joo Cheoi. "Development of a Biologically Inspired Real-Time Spatiotemporal Visual Attention System." In Intelligent Information and Database Systems, 416–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20039-7_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pu, Lei, Xinxi Feng, Zhiqiang Hou, Wangsheng Yu, Yufei Zha, and Zhiqiang Jiao. "MHASiam: Mixed High-Order Attention Siamese Network for Real-Time Visual Tracking." In Pattern Recognition and Computer Vision, 445–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60639-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palenichka, Roman M., and Peter Zinterhof. "Time-Effective Detection of Objects of Interest in Images by Means of A Visual Attention Mechanism." In Human and Machine Perception 3, 113–22. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1361-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bee, Nikolaus, Helmut Prendinger, Arturo Nakasone, Elisabeth André, and Mitsuru Ishizuka. "AutoSelect: What You Want Is What You Get: Real-Time Processing of Visual Attention and Affect." In Perception and Interactive Technologies, 40–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11768029_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Visual attention in time"

1

Li, Zhichao, Yi Yang, Xiao Liu, Feng Zhou, Shilei Wen, and Wei Xu. "Dynamic Computational Time for Visual Attention." In 2017 IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2017. http://dx.doi.org/10.1109/iccvw.2017.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, Yingsen, Xiaoqiang Guo, Haiying Wang, Mingjin Geng, and Ting Lu. "Efficient Dual Attention Module for Real-Time Visual Tracking." In 2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019. http://dx.doi.org/10.1109/vcip47243.2019.8965683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qieshi, Dian Lin, Ziliang Ren, Yuhang Kang, Fuxiang Wu, and Jun Cheng. "Attention Mechanism-based Monocular Depth Estimation and Visual Odometry." In 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2021. http://dx.doi.org/10.1109/rcar52367.2021.9517422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Huiwen, Jinling Chen, Hong Xue, Yaping Huang, and Tiesong Zhao. "Time-Variant Visual Attention in 360-Degree Video Playback." In 2018 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE). IEEE, 2018. http://dx.doi.org/10.1109/have.2018.8547419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geng, Mingjin, Haiying Wang, and Yingsen Zeng. "Enhanced Semantic Features via Attention for Real-Time Visual Tracking." In 2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019. http://dx.doi.org/10.1109/vcip47243.2019.8965870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mackeben, Manfred. "The Topography of Visual Focal Attention." In Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/vsia.1996.fa.4.

Full text
Abstract:
Visual attention can be seen as a computational resource that aids perception in any part of the visual field to which it is applied. This resource is limited, however, as it cannot be applied everywhere at the same time, but constitutes an attentional "focus". It has been known since the groundbreaking work of Helmholtz (1896) that attention has mobility and can be willfully deployed in the periphery of the visual field. In the absence of such "effort of will" it tends to return to the region in or near the center of the visual field.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Shengzhong, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, and Tarek Abdelzaher. "Self-Cueing Real-Time Attention Scheduling in Criticality-Aware Visual Machine Perception." In 2022 IEEE 28th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2022. http://dx.doi.org/10.1109/rtas54340.2022.00022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Yaoru, Xingui Hu, Jinhua Zeng, and Zuo Zhang. "Tracking Humans in Real-Time by Opponent-Motion and Visual Attention." In 2010 WASE International Conference on Information Engineering (ICIE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icie.2010.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jinhua Zeng and Yaoru Sun. "Real-time pedestrian tracking by visual attention and human knowledge learning." In 2010 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2010. http://dx.doi.org/10.1109/pic.2010.5687433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duan, Qiyu, Hua Zhang, Jing Zhang, HuiLong Zhu, Fengtian Tian, and Jian Zhou. "Global Attention Visual-Tactile Fusion Algorithm Based on Time Series Modeling." In 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). IEEE, 2022. http://dx.doi.org/10.1109/cei57409.2022.9950127.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Visual attention in time"

1

Dutra, Lauren M., James Nonnemaker, Nathaniel Taylor, Ashley Feld, Brian Bradfield, John Holloway, Edward (Chip) Hill, and Annice Kim. Visual Attention to Tobacco-Related Stimuli in a 3D Virtual Store. RTI Press, May 2020. http://dx.doi.org/10.3768/rtipress.2020.rr.0036.2005.

Full text
Abstract:
We used eye tracking to measure visual attention to tobacco products and pro- and anti-tobacco advertisements (pro-ads and anti-ads) during a shopping task in a three-dimensional virtual convenience store. We used eye-tracking hardware to track the percentage of fixations (number of times the eye was essentially stationary; F) and dwell time (time spent looking at an object; DT) for several categories of objects and ads for 30 adult current cigarette smokers. We used Wald F-tests to compare fixations and dwell time across categories, adjusting comparisons of ads by the number of each type of ad. Overall, unadjusted for the number of each object, participants focused significantly greater attention on snacks and drinks and tobacco products than ads (all P<0.005). Adjusting for the number of each type of ad viewed, participants devoted significantly greater visual attention to pro-ads than anti-ads or ads unrelated to tobacco (P<0.001). Visual attention for anti-ads was significantly greater when the ads were placed on the store’s external walls or hung from the ceiling than when placed on the gas pump or floor (P<0.005). In a cluttered convenience store environment, anti-ads at the point of sale have to compete with many other stimuli. Restrictions on tobacco product displays and advertisements at the point of sale could reduce the stimuli that attract smokers’ attention away from anti-ads.
APA, Harvard, Vancouver, ISO, and other styles
2

Hoffman, James E. Visual Selective Attention. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada219204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Full text
Abstract:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
APA, Harvard, Vancouver, ISO, and other styles
4

Shulman, Gordon L. Relating Attention to Visual Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada206452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reeves, Adam. A Model for Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada179589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reeves, Adam. A Model for Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada193061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wolfe, Jeremy M. The Deployment of Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada416391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wolfe, Jeremy M. The Deployment of Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada510413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koch, Christoff. Toward a Neurobiological Theory of Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada299945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koch, Christof. Toward a Neurobiological Theory of Visual Attention. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada270724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography