Academic literature on the topic 'Visual attention, artificial intelligence, machine learning, computer vision'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Visual attention, artificial intelligence, machine learning, computer vision.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Visual attention, artificial intelligence, machine learning, computer vision"
Wan, Yijie, and Mengqi Ren. "New Visual Expression of Anime Film Based on Artificial Intelligence and Machine Learning Technology." Journal of Sensors 2021 (June 26, 2021): 1–10. http://dx.doi.org/10.1155/2021/9945187.
Full textAnh, Dao Nam. "Interestingness Improvement of Face Images by Learning Visual Saliency." Journal of Advanced Computational Intelligence and Intelligent Informatics 24, no. 5 (September 20, 2020): 630–37. http://dx.doi.org/10.20965/jaciii.2020.p0630.
Full textV., Dr Suma. "COMPUTER VISION FOR HUMAN-MACHINE INTERACTION-REVIEW." Journal of Trends in Computer Science and Smart Technology 2019, no. 02 (December 29, 2019): 131–39. http://dx.doi.org/10.36548/jtcsst.2019.2.006.
Full textPrijs, Jasper, Zhibin Liao, Soheil Ashkani-Esfahani, Jakub Olczak, Max Gordon, Prakash Jayakumar, Paul C. Jutte, Ruurd L. Jaarsma, Frank F. A. IJpma, and Job N. Doornberg. "Artificial intelligence and computer vision in orthopaedic trauma." Bone & Joint Journal 104-B, no. 8 (August 1, 2022): 911–14. http://dx.doi.org/10.1302/0301-620x.104b8.bjj-2022-0119.r1.
Full textLiu, Yang, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and Qiang Yang. "Federated Learning-Powered Visual Object Detection for Safety Monitoring." AI Magazine 42, no. 2 (October 20, 2021): 19–27. http://dx.doi.org/10.1609/aimag.v42i2.15095.
Full textL, Anusha, and Nagaraja G. S. "Outlier Detection in High Dimensional Data." International Journal of Engineering and Advanced Technology 10, no. 5 (June 30, 2021): 128–30. http://dx.doi.org/10.35940/ijeat.e2675.0610521.
Full textLi, Jing, and Guangren Zhou. "Visual Information Features and Machine Learning for Wushu Arts Tracking." Journal of Healthcare Engineering 2021 (August 4, 2021): 1–6. http://dx.doi.org/10.1155/2021/6713062.
Full textMogadala, Aditya, Marimuthu Kalimuthu, and Dietrich Klakow. "Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods." Journal of Artificial Intelligence Research 71 (August 30, 2021): 1183–317. http://dx.doi.org/10.1613/jair.1.11688.
Full textZhou, Zhiyu, Jiangfei Ji, Yaming Wang, Zefei Zhu, and Ji Chen. "Hybrid regression model via multivariate adaptive regression spline and online sequential extreme learning machine and its application in vision servo system." International Journal of Advanced Robotic Systems 19, no. 3 (May 1, 2022): 172988062211086. http://dx.doi.org/10.1177/17298806221108603.
Full textLiu, Yang, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and Qiang Yang. "FedVision: An Online Visual Object Detection Platform Powered by Federated Learning." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 08 (April 3, 2020): 13172–79. http://dx.doi.org/10.1609/aaai.v34i08.7021.
Full textDissertations / Theses on the topic "Visual attention, artificial intelligence, machine learning, computer vision"
Mahendru, Aroma. "Role of Premises in Visual Question Answering." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78030.
Full textMaster of Science
Bui, Anh Duc. "Visual Scene Understanding through Scene Graph Generation and Joint Learning." Thesis, University of Sydney, 2023. https://hdl.handle.net/2123/29954.
Full textRochford, Matthew. "Visual Speech Recognition Using a 3D Convolutional Neural Network." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2109.
Full textSalem, Tawfiq. "Learning to Map the Visual and Auditory World." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/86.
Full textAzizpour, Hossein. "Visual Representations and Models: From Latent SVM to Deep Learning." Doctoral thesis, KTH, Datorseende och robotik, CVAP, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192289.
Full textQC 20160908
Warnakulasuriya, Tharindu R. "Context modelling for single and multi agent trajectory prediction." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/128480/1/Tharindu_Warnakulasuriya_Thesis.pdf.
Full textHernández-Vela, Antonio. "From pixels to gestures: learning visual representations for human analysis in color and depth data sequences." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/292488.
Full textL’anàlisi visual de persones a partir d'imatges és un tema de recerca molt important, atesa la rellevància que té a una gran quantitat d'aplicacions dins la visió per computador, com per exemple: detecció de vianants, monitorització i vigilància,interacció persona-màquina, “e-salut” o sistemes de recuperació d’matges a partir de contingut, entre d'altres. En aquesta tesi volem aprendre diferents representacions visuals del cos humà, que siguin útils per a la anàlisi visual de persones en imatges i vídeos. Per a tal efecte, analitzem diferents modalitats d'imatge com són les imatges de color RGB i les imatges de profunditat, i adrecem el problema a diferents nivells d'abstracció, des dels píxels fins als gestos: segmentació de persones, estimació de la pose humana i reconeixement de gestos. Primer, mostrem com la segmentació binària (objecte vs. fons) del cos humà en seqüències d'imatges ajuda a eliminar soroll pertanyent al fons de l'escena en qüestió. El mètode presentat, basat en optimització “Graph cuts”, imposa consistència espai-temporal a Ies màscares de segmentació obtingudes en “frames” consecutius. En segon lloc, presentem un marc metodològic per a la segmentació multi-classe, amb la qual podem obtenir una descripció més detallada del cos humà, en comptes d'obtenir una simple representació binària separant el cos humà del fons, podem obtenir màscares de segmentació més detallades, separant i categoritzant les diferents parts del cos. A un nivell d'abstraccíó més alt, tenim com a objectiu obtenir representacions del cos humà més simples, tot i ésser suficientment descriptives. Els mètodes d'estimació de la pose humana sovint es basen en models esqueletals del cos humà, formats per segments (o rectangles) que representen les extremitats del cos, connectades unes amb altres seguint les restriccions cinemàtiques del cos humà. A la pràctica, aquests models esqueletals han de complir certes restriccions per tal de poder aplicar mètodes d'inferència que permeten trobar la solució òptima de forma eficient, però a la vegada aquestes restriccions suposen una gran limitació en l'expressivitat que aques.ts models son capaços de capturar. Per tal de fer front a aquest problema, proposem un enfoc “top-down” per a predir la posició de les parts del cos del model esqueletal, introduïnt una representació de parts de mig nivell basada en “Poselets”. Finalment. proposem un marc metodològic per al reconeixement de gestos, basat en els “bag of visual words”. Aprofitem els avantatges de les imatges RGB i les imatges; de profunditat combinant vocabularis visuals específiques per a cada modalitat, emprant late fusion. Proposem un nou descriptor per a imatges de profunditat invariant a rotació, que millora l'estat de l'art, i fem servir piràmides espai-temporals per capturar certa estructura espaial i temporal dels gestos. Addicionalment, presentem una reformulació probabilística del mètode “Dynamic Time Warping” per al reconeixement de gestos en seqüències d'imatges. Més específicament, modelem els gestos amb un model probabilistic gaussià que implícitament codifica possibles deformacions tant en el domini espaial com en el temporal.
Novotný, Václav. "Rozpoznání displeje embedded zařízení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-376924.
Full textALTIERI, ALEX. "Yacht experience, ricerca e sviluppo di soluzioni basate su intelligenza artificiale per il comfort e la sicurezza in alto mare." Doctoral thesis, Università Politecnica delle Marche, 2021. http://hdl.handle.net/11566/287605.
Full textThe thesis describes the results of the research and development of new technologies based on artificial intelligence techniques, able to achieve an empathic interaction and an emotional connection between man and "the machines" in order to improve comfort and safety on board of yachts. This interaction is achieved through the recognition of emotions and behaviors and the following activation of all those multimedia devices available in the environment on board, which are adapted to the mood of the subject inside the room. The prototype system developed during the three years of PhD is now able to manage multimedia content (e.g. music tracks, videos played on LED screens) and light scenarios, based on the user's emotion, recognized by facial expressions taken from any camera installed inside the space. In order to make the interaction adaptive, the developed system implements Deep Learning algorithms to recognize the identity of the users on board (Facial Recognition), the degree of attention of the commander (Gaze Detection and Drowsiness) and the objects with which he interacts (phone, earphones, etc.). This information is processed within the system to identify any situations of risk to the safety of people on board and to monitor the entire environment. The application of these technologies, in this domain that is always open to the introduction of the latest innovations on board, opens up several research challenges.
Zanca, Dario. "Towards laws of visual attention." Doctoral thesis, 2019. http://hdl.handle.net/2158/1159344.
Full textBooks on the topic "Visual attention, artificial intelligence, machine learning, computer vision"
Yong, Rui, and Huang Thomas S. 1936-, eds. Exploration of visual data. Boston: Kluwer Academic Publishers, 2003.
Find full textVisual Saliency Computation: A Machine Learning Perspective. Springer, 2014.
Find full textGao, Wen, and Jia Li. Visual Saliency Computation: A Machine Learning Perspective. Springer London, Limited, 2014.
Find full textHuang, Thomas S. Exploration of Visual Data. Springer My Copy UK, 2003.
Find full textHuang, Thomas S., Yong Rui, and Sean Xiang Zhou. Exploration of Visual Data (The International Series in Video Computing). Springer, 2003.
Find full textBook chapters on the topic "Visual attention, artificial intelligence, machine learning, computer vision"
Madani, Kurosh. "Robots’ Vision Humanization Through Machine-Learning Based Artificial Visual Attention." In Communications in Computer and Information Science, 8–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-35430-5_2.
Full textWhitworth, Brian, and Hokyoung Ryu. "A Comparison of Human and Computer Information Processing." In Machine Learning, 1–12. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch101.
Full textKhare, Neelu, Brijendra Singh, and Munis Ahmed Rizvi. "Deep Learning Methods for Modelling Emotional Intelligence." In Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence, 234–54. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5673-6.ch015.
Full textCao, Yushi, Yon Shin Teo, Yan Zheng, Yuxuan Toh, and Shang-Wei Lin. "A Holistic Automated Software Structure Exploration Framework for Testing." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220259.
Full textWhittlestone, Jess. "AI and Decision-Making." In Future Morality, 102–10. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198862086.003.0010.
Full textConference papers on the topic "Visual attention, artificial intelligence, machine learning, computer vision"
Jiao, Zhicheng, Haoxuan You, Fan Yang, Xin Li, Han Zhang, and Dinggang Shen. "Decoding EEG by Visual-guided Deep Neural Networks." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/192.
Full textZhang, Licheng, Xianzhi Wang, Lina Yao, Lin Wu, and Feng Zheng. "Zero-Shot Object Detection via Learning an Embedding from Semantic Space to Visual Space." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/126.
Full textWang, Yaxiong, Hao Yang, Xueming Qian, Lin Ma, Jing Lu, Biao Li, and Xin Fan. "Position Focused Attention Network for Image-Text Matching." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/526.
Full textVenkata Sai Saran Naraharisetti, Sree Veera, Benjamin Greenfield, Benjamin Placzek, Steven Atilho, Mohamad Nassar, and Mehdi Mekni. "A Novel Intelligent Image-Processing Parking Systems." In 3rd International Conference on Artificial Intelligence and Machine Learning (CAIML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121212.
Full textDiao, Xiaolei. "Building a Visual Semantics Aware Object Hierarchy." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/826.
Full textLin, Jianxin, Yingce Xia, Yijun Wang, Tao Qin, and Zhibo Chen. "Image-to-Image Translation with Multi-Path Consistency Regularization." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/413.
Full text