Academic literature on the topic 'Virtual reality visualization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual reality visualization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virtual reality visualization"

1

Hirose, Michitaka. "Virtual Reality and Visualization." Journal of the Visualization Society of Japan 24, Supplement1 (2004): 9–12. http://dx.doi.org/10.3154/jvs.24.supplement1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

El Beheiry, Mohamed, Sébastien Doutreligne, Clément Caporal, Cécilia Ostertag, Maxime Dahan, and Jean-Baptiste Masson. "Virtual Reality: Beyond Visualization." Journal of Molecular Biology 431, no. 7 (March 2019): 1315–21. http://dx.doi.org/10.1016/j.jmb.2019.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bryson, Steve. "Virtual reality in scientific visualization." Communications of the ACM 39, no. 5 (May 1996): 62–71. http://dx.doi.org/10.1145/229459.229467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bryson, Steve. "Virtual reality in scientific visualization." Computers & Graphics 17, no. 6 (November 1993): 679–85. http://dx.doi.org/10.1016/0097-8493(93)90117-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dauitbayeva, A. O., A. A. Myrzamuratova, and A. B. Bexeitova. "INTERACTIVE VISUALIZATION TECHNOLOGY IN AUGMENTED REALITY." Bulletin of the Korkyt Ata Kyzylorda University 58, no. 3 (2021): 137–42. http://dx.doi.org/10.52081/bkaku.2021.v58.i3.080.

Full text
Abstract:
This article is devoted to the issues of visualization and information processing, in particular, improving the visualization of three-dimensional objects using augmented reality and virtual reality technologies. The globalization of virtual reality has led to the introduction of a new term "augmented reality"into scientific circulation. If the current technologies of user interfaces are focused mainly on the interaction of a person and a computer, then augmented reality with the help of computer technologies offers improving the interface of a person and the real world around them. Computer graphics are perceived by the system in the synthesized image in connection with the reproduction of monocular observation conditions, increasing the image volume, spatial arrangement of objects in a linear perspective, obstructing one object to another, changing the nature of shadows and tones in the image field. The experience of observation is of great importance for the perception of volume and space, so that the user "completes" the volume structure of the observed representation. Thus, the visualization offered by augmented reality in a real environment familiar to the user contributes to a better perception of three-dimensional object.
APA, Harvard, Vancouver, ISO, and other styles
6

OGI, Tetsuro. "Virtual Reality Technology for Data Visualization." Journal of the Visualization Society of Japan 27, no. 106 (2007): 162–67. http://dx.doi.org/10.3154/jvs.27.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Franklin, J., and Andrew Ryder. "Electromagnetic field visualization in virtual reality." American Journal of Physics 87, no. 2 (February 2019): 153–57. http://dx.doi.org/10.1119/1.5080224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Black, William R. "Virtual reality and three-dimensional visualization." Journal of Transport Geography 5, no. 1 (March 1997): 47. http://dx.doi.org/10.1016/s0966-6923(96)00062-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ribarsky, W., J. Bolter, A. Op den Bosch, and R. van Teylingen. "Visualization and analysis using virtual reality." IEEE Computer Graphics and Applications 14, no. 1 (January 1994): 10–12. http://dx.doi.org/10.1109/38.250911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Griffon, Sébastien, Amélie Nespoulous, Jean-Paul Cheylan, Pascal Marty, and Daniel Auclair. "Virtual reality for cultural landscape visualization." Virtual Reality 15, no. 4 (May 8, 2010): 279–94. http://dx.doi.org/10.1007/s10055-010-0160-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Virtual reality visualization"

1

Modjeska, David K. "Hierarchical data visualization in desktop virtual reality." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0014/NQ53695.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gustafsson, Mattias, and Oliver Odd. "Virtual Reality Data Visualization : Concepts, technologies and more." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37222.

Full text
Abstract:
Data Visualization (DV) can be seen as an important tool for communication and data analysis. Especially when huge amounts of data are involved, visual representation of data can facilitate observation of trends and patterns as well as understanding. Currently, two dimensional displays are mainly used for Data Visualization, both in two and three dimensions (2D and 3D). However, two dimensional displays are limited in terms of 3D visualization because they do not allow for true sense of depth and do not cover the observer’s full Field Of View (FOV). An alternative approach is to use Virtual Reality (VR), which provides an immersive and interactive 3D environment. VR has been mainly used for gaming and simulated training. However, other areas are now emerging because VR technologies became relatively affordable. For example, one possibility is to explore VR for DV and this was the main goal of this project. To accomplish that, a literature study was performed to identify terminologies and definitions, hardware and software technologies, techniques and examples in the fields of DV and VR. In addition, in order to exemplify DV through VR, a prototype system was implemented using Unity 3D, a leading engine for VR. To visualize the developed VR environment, a HTC Vive Head Mounted Display (HMD) was used. The developed prototype system can display data from a local dataset in a scatter plot with three axis in VR. In the virtual environment created by the system, the user can select the attributes in the dataset to be displayed by the 3D scatter plot. Once the data is plotted, the user can use the handheld joystick to move, rotate, tilt and scale the scatter plot. Achieved results indicate immersion and interaction as the main perceived benefits of DV using VR.
Datavisualisering (DV) kan ses som ett viktigt verktyg för kommunikation och dataanalys, speciellt när stora mängder data behandlas. Visuell representation kan främja observationen av trender och mönster samt förståelsen av datan. För närvarande används tvådimensionella displayer huvudsakligen för datavisualisering, både i två och tre dimensioner (2D och 3D). Emellertid är tvådimensionella displayer begränsade i 3D-visualisering eftersom de inte möjliggör äkta djupseende, och täcker inte observatörens fulla synfält (Field Of View (FOV)). Ett alternativ tillvägagångssätt är att använda Virtual Reality (VR), vilket tillhandahåller en omslutande och interaktiv 3D-miljö. VR har huvudsakligen används för spel och simulerad träning. Däremot börjar nya användningsområden uppstå då VR teknologin har blivit mer prisvärd. Ett användningsområde är VR för DV, vilket var det huvudsakliga syftet för det här arbetet. För att uppnå syftet utfördes en litteraturstudie för att identifiera teknologier och definitioner, hårdvaru- och mjukvaruteknologier, tekniker och exempel inom området av DV och VR. Dessutom, för att exemplifiera DV genom VR, utvecklades ett prototypsystem. Vilket implementerades genom  Unity 3D, en av de ledande spelmotorerna. För att visualisera den utvecklade VR-miljön användes ett HTC Vive Head Mounted Display (HMD). Den utvecklade prototypen kan visualisera data från ett lokalt dataset genom ett spridningsdiagram med 3 axlar, i VR. I den virtuella miljön som skapas av systemet tillåts användaren att välja attribut från datasetet för att sedan visualisera dessa genom det tredimensionella spridningsdiagrammet. När datan väl är visualiserad, kan användaren använda de handhållna kontrollerna för att flytta, rotera, luta och skala grafen. Uppnådda resultat indikerar på omslutning och interaktion som de huvudsakliga fördelarna av DV genom VR.
APA, Harvard, Vancouver, ISO, and other styles
3

Bidoshi, Kosta. "Virtual Reality Visualization for Maps of the Future." The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1046459366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seibold, Andreas, Ralph Stelzer, and Bernhard Saske. "Virtual Reality bei Kärcher." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-228177.

Full text
Abstract:
Die Firma Kärcher wurde 1935 von Alfred Kärcher in Stuttgart-Bad Cannstatt zur Entwicklung und Herstellung industrieller Produkte auf dem Gebiet der Heiztechnik gegründet. Der erste Heißwasser-Hochdruckreiniger Europas entstand 1950 am neuen Stammsitz in Winnenden und bedeutete für Kärcher den Durchbruch in der Reinigungstechnik. Ein weiterer Meilenstein in der Firmengeschichte war die Einführung des ersten tragbaren Hochdruckreinigers und die damit verbundene Erschließung des Consumer-Marktes 1984.
APA, Harvard, Vancouver, ISO, and other styles
5

Dye, Michael P. "Vesuvius interactive atmospheric visualization in a virtual environment /." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Mei-mei Amy, and 陳美美. "An integrated system for virtual simulation and visualization of rapidprototyping." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B30502135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sätterkvist, Arvid. "Visualizing conversational data in virtual reality." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209590.

Full text
Abstract:
Since the first implementation of a simple chatbot was made in1964, countless research and development have been made to makethe fascinating idea of talking to a computer a reality. But not untilrecently, have chatbots started to make an appearance in everydaylives amongst a broader audience. As the popularity of chatbotsincreases, the demands and functionality of the chatbots rises whichconsequently expands the size and complexity of the chatbot. Theconversational data from a chatbot can become very complex andhard to understand. Therefore, to ensure the continuousadvancement of features in chatbots, the developer needs tools andinstruments to compete in the growing market. Through a prototype based design process, a problem amongstdevelopers to visualize and understand the conversational data froma chatbot is first identified and addressed. A Conversational DataVisualization (CDV) prototype in virtual reality is then developedwith the intention to help developers understand and explore theconversational data from the chatbot they are working on. Thedesign of the CDV is based on theories about key features ofvisualizations in 3D and related work that study visualizations withsimilar data structures as the conversational data from chatbots.Furthermore, the features of the CDV is based on the identifiedproblem of visualizing conversational data amongst developers.Due to the importance of participatory design in a design process,an exploratory usability test of the CDV prototype was conductedto further explore the design choices regarding the identifiedproblem. The conversational data is visualized with tree structures in acircular formation to allow for visualization of links betweendifferent conversations. Results from the explorative usability testindicates that the visualization gave the users of the CDV anunderstandable overview of the conversational data. However,finding specific stories and nodes in the conversational data wasidentified as a problem due to inadequate information in theoverview of the visualization.
Sedan den första implementationen av en chatbot år 1964, har en stor mängd forskning och utveckling skett för att göra den fascinerandeidén att prata med en dator verklighet. Det är inte förens på senare tid som chatbot har spridit sig till det vardagliga livet hos den stora massan.Samtidigt som utspridningen av chatbotar ökar så höjs kraven på funktionalitet vilket i sin tur utökar storleken och komplexiteten hoschatboten. Konversionsdata hos en chatbot kan bli väldigt komplex och svår att förstå. För att säkerställa den fortsatta utvecklingen avchatbotar behövs därför verktyg och instrument utvecklas för att hjälpa utvecklare av chatbotar. Genom en prototypbaserad designprocess identifieras ett problem hos utvecklare att visualisera och förstå konversationsdata från en chatbot.En prototyp av en konversationdata-visualisering (KDV) är sedan utvecklad med syftet att hjälpa utvecklare förstå och utforskakonversationsdata från chatbotar de jobbar på. Designen på KDV är baserad på teorier angående nyckelområden inom 3D-visualisering ochrelaterade forskningsarbeten som studerar visualiseringar med data liknande konversationsdata från chatbotar. Designen av KDV är ocksåbaserad på problem som identifieras hos utvecklare av chatbotar. På grund av hur viktigt det är att inkludera användaren i designprocesser såutförs en utforskande användbarhetsstudie på KDV för att utforska implementeringarna av dem identifierade designbesluten angående detidentifierade problemen hos utvecklare. Konversationsdata är visualiserad med trädstrukturer i en cirkulär formation för att tillåta visualisering av länkar mellan olika konversationer.Resultat från den utforskande användarbarhetsstudien indikerar att KDV är en visualisering som förstås av användarna. Dock så identifieradesett problem med att hitta specifika noder i konversationsdata eftersom översikten av visualisering inte innehöll tillräckligt med information.
APA, Harvard, Vancouver, ISO, and other styles
8

Chan, Mei-mei Amy. "An integrated system for virtual simulation and visualization of rapid prototyping /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23829655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Changming. "Volume Visualization in Projection-Based Virtual Environments: Interaction and Exploration Tools Design and Evaluation." Thesis, Griffith University, 2011. http://hdl.handle.net/10072/367768.

Full text
Abstract:
Examples of volume data include medical scanned data such as CT and MRI data, seismic survey data, and computational fluid dynamic (CFD) data, etc. To better understand volumetric datasets, people use computer hardware and software to manipulate the data and generate 2D projections for viewing; this process is called volume visualization. Much research on volume visualization has been focused on volume rendering (how to render larger sets of data faster with a higher level of realism) or transfer function generation (how to highlight the regions of interest). To help improve the efficiency and efficacy of volume visualization, this research proposed using two different approaches. The first approach is to integrate virtual reality environments (VEs) and human computer interaction (HCI) technologies in volume visualization applications. The second approach is to use various virtual tools that allow users to directly explore and manipulate the volume data in 3D space. A volume visualization system named VRVolVis (Virtual Reality Volumes Visualization System) has been designed and developed to implement these approaches. Many innovations have been integrated into this system, including a fast volume rendering engine, an intuitive HCI paradigm tailored for volume visualization in VEs, and 8 innovative geometric tools that can assist users to fully reveal the internal structure of volumetric datasets. The tools are the clipping plane widget, the data slab widget, the volume probing tool, the volume clipping tool, the regional enhancement tool, the virtual light, the volume eraser and restorer, and the shooting star tool. Two sets of experiments involving 33 participants were conducted, and the experimental results supported the assertion that volume visualization tasks would be performed significant better in VR viewing conditions than Stereo and Conventional conditions, and that using these geometric tools can significantly improve the efficiency and efficacy of the volume visualization process.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
10

Hetsel, Gene A. (Gene Arthur). "Virtual Reality for Scientific Visualization: an Exploratory Analysis of Presentation Methods." Thesis, University of North Texas, 1997. https://digital.library.unt.edu/ark:/67531/metadc500890/.

Full text
Abstract:
Humans are very effective at evaluating information visually. Scientific visualization is concerned with the process of presenting complex data in visual form to exploit this capability. A large array of tools is currently available for visual presentation. This research attempts to evaluate the effectiveness of three different presentation models that could be used for scientific visualization. The presentation models studied were, two-dimensional perspective rendering, field sequential stereoscopic three dimensional rendering and immersive virtual reality rendering. A large section of a three dimensional sub surface seismic survey was modeled as four-dimensional data by including a value for seismic reflectivity at each point in the survey. An artificial structure was randomly inserted into this data model and subjects were asked to locate and identify the structures. A group of seventeen volunteers from the University of Houston student body served as subjects for the study. Detection time, discrimination time and discrimination accuracy were recorded. The results showed large inter subject variation in presentation model preference. In addition the data suggest a possible gender effect. Female subjects had better overall performance on the task as well as better task acquisition.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Virtual reality visualization"

1

Chen, Chaomei. Information visualization: Beyond the horizon. 2nd ed. London: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1960-, Chen Chaomei, ed. Information visualization: Beyond the horizon. 2nd ed. London: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, Jonathan. Multi-resolution modeling for interactive visualization. Orlando, FL: Institute for Simulation and Training, University of Central Florida, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, Lee. Windows visualization programming with C/C++: 3D visualization, simulation, and virtual reality. Blue Ridge Summit, PA: Windcrest/McGraw-Hill, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Germany) Workshop on Guiding Users through Interactive Experiences: Usability Centred Design and Evaluation of Virtual 3D Environments (2000 Paderborn. Proceedings User Guidance in Virtual Environments: Workshop on Guiding Users through Interactive Experiences : Usability Centred Design and Evaluation of Virtual 3D Environments. Edited by Paelke Volker and Volbracht Sabine. Aachen: Shaker Verlag, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Visualization and virtual reality: 3D programming with Visual Basic for Windows. New York: Windcrest/McGraw-Hill, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Jessie Y. C., and Gino Fragomeni, eds. Virtual, Augmented and Mixed Reality: Interaction, Navigation, Visualization, Embodiment, and Simulation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91581-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reinhold, Behringer, Mizell David W, and Klinker Gudrun J, eds. Augmented reality: Placing artificial objects in real scenes : proceedings of IWAR '98. Natick, Mass: A K Peters, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

N, Spencer Stephen, Association for Computing Machinery, and SIGGRAPH, eds. Proceedings: AFRIGRAPH 2001, 1st International Conference on Computer Graphics, Virtual Reality and Visualisation, Camps Bay, Cape Town, South Africa, November 05-07 November 2001. New York: ACM, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lynette, Van Zijl, Marais Patrick, Bouatouch K. 1950-, Marsden Gary, Spencer Stephen N, SIGGRAPH, European Association for Computer Graphics., African Graphics Association, and ACM Digital Library, eds. Proceedings AFRIGRAPH 2004: 3rd International Conference on Virtual Reality, Computer Graphics, Visualisation, and Interaction in Africa, Stellenbosch, South Africa, November 03-05, 2004. New York: ACM Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Virtual reality visualization"

1

Parke, Frederic I. "Lower Cost Modular Spatially Immersive Visualization." In Virtual Reality, 142–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferre, Manuel, Salvador Cobos, Rafael Aracil, and Miguel A. Sánchez Urán. "3D-Image Visualization and Its Performance in Teleoperation." In Virtual Reality, 22–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rau, René T., Daniel Weiskopf, and Hanns Ruder. "Special Relativity in Virtual Reality." In Mathematical Visualization, 269–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03567-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kume, Naoto, Kazuya Okamoto, Takashi Tsukasa, and Hiroyuki Yoshihara. "VR-Based Self Brain Surgery Game System by Deformable Volumetric Image Visualization." In Virtual Reality, 670–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zell, Andreas, and Ralf Hübner. "Low Cost-3D Visualization of Neural Networks." In Virtual Reality ’94, 161–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-10795-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Meng-Lin, and Voicu Popescu. "Anchored Multiperspective Visualization for Efficient VR Navigation." In Virtual Reality and Augmented Reality, 240–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01790-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fischer, Roland, Kai-Ching Chang, René Weller, and Gabriel Zachmann. "Volumetric Medical Data Visualization for Collaborative VR Environments." In Virtual Reality and Augmented Reality, 178–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62655-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Wen. "How Much Information Do You Remember? -The Effects of Short-Term Memory on Scientific Visualization Tasks." In Virtual Reality, 338–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Waldow, Kristoffer, Arnulph Fuhrmann, and Stefan M. Grünvogel. "Investigating the Effect of Embodied Visualization in Remote Collaborative Augmented Reality." In Virtual Reality and Augmented Reality, 246–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31908-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ssin, Seungyoub, Hochul Cho, and Woontack Woo. "A-UDT: Augmented Urban Digital Twin for Visualization of Virtual and Real IoT Data." In Augmented Reality and Virtual Reality, 221–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68086-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virtual reality visualization"

1

"Visualization and graphics technical committee." In 2014 IEEE Virtual Reality (VR). IEEE, 2014. http://dx.doi.org/10.1109/vr.2014.6802035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petkov, Kaloian, Charilaos Papadopoulos, Min Zhang, Arie E. Kaufman, and Xianfeng Gu. "Conformal visualization for partially-immersive platforms." In 2011 IEEE Virtual Reality (VR). IEEE, 2011. http://dx.doi.org/10.1109/vr.2011.5759453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Xiang, Mingbao Zhang, Yifan Zhao, Jialing Xu, Chunxue Li, and Jianing He. "Virtual Reality Shooting Range." In 2018 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2018. http://dx.doi.org/10.1109/icvrv.2018.00055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"IEEE Visualization and Graphics Technical Committee (VGTC)." In 2007 IEEE Virtual Reality Conference. IEEE, 2007. http://dx.doi.org/10.1109/vr.2007.352444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"IEEE Visualization and Graphics Technical Committee (VGTC)." In 2011 IEEE Virtual Reality (VR). IEEE, 2011. http://dx.doi.org/10.1109/vr.2011.5759423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"IEEE Visualization and Graphics Technical Committee (VGTC)." In 2012 IEEE Virtual Reality (VR). IEEE, 2012. http://dx.doi.org/10.1109/vr.2012.6180859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tredinnick, Ross, James Vanderheiden, Clayton Suplinski, and James Madsen. "CAVE visualization of the IceCube neutrino detector." In 2014 IEEE Virtual Reality (VR). IEEE, 2014. http://dx.doi.org/10.1109/vr.2014.6802079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"IEEE visualization and graphics technical committee (VGTC)." In 2015 IEEE Virtual Reality (VR). IEEE, 2015. http://dx.doi.org/10.1109/vr.2015.7223311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"IEEE visualization and graphics technical committee (VGTC)." In 2016 IEEE Virtual Reality (VR). IEEE, 2016. http://dx.doi.org/10.1109/vr.2016.7504675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"IEEE Visualization and Graphics Technical Committee (VGTC)." In 2013 IEEE Virtual Reality (VR). IEEE, 2013. http://dx.doi.org/10.1109/vr.2013.6549335.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virtual reality visualization"

1

Maletic, Jonathan I. Inactive Display Models for Information Visualization in Virtual Reality. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada409076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bernard, James E., and Carolina Cruz-Neira. A Virtual Reality Applications Facility for Visualization of Joint Battlespace. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada408821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barkatov, Igor V., Volodymyr S. Farafonov, Valeriy O. Tiurin, Serhiy S. Honcharuk, Vitaliy I. Barkatov, and Hennadiy M. Kravtsov. New effective aid for teaching technology subjects: 3D spherical panoramas joined with virtual reality. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4407.

Full text
Abstract:
Rapid development of modern technology and its increasing complexity make high demands to the quality of training of its users. Among others, an important class is vehicles, both civil and military. In the teaching of associated subjects, the accepted hierarchy of teaching aids includes common visual aids (posters, videos, scale models etc.) on the first stage, followed by simulators ranging in complexity, and finished at real vehicles. It allows achieving some balance between cost and efficiency by partial replacement of more expensive and elaborated aids with the less expensive ones. However, the analysis of teaching experience in the Military Institute of Armored Forces of National Technical University “Kharkiv Polytechnic Institute” (Institute) reveals that the balance is still suboptimal, and the present teaching aids are still not enough to allow efficient teaching. This fact raises the problem of extending the range of available teaching aids for vehicle-related subjects, which is the aim of the work. Benefiting from the modern information and visualization technologies, we present a new teaching aid that constitutes a spherical (360° or 3D) photographic panorama and a Virtual Reality (VR) device. The nature of the aid, its potential applications, limitations and benefits in comparison to the common aids are discussed. The proposed aid is shown to be cost-effective and is proved to increase efficiency of training, according to the results of a teaching experiment that was carried out in the Institute. For the implementation, a tight collaboration between the Institute and an IT company “Innovative Distance Learning Systems Limited” was established. A series of panoramas, which are already available, and its planned expansions are presented. The authors conclude that the proposed aid may significantly improve the cost-efficiency balance of teaching a range of technology subjects.
APA, Harvard, Vancouver, ISO, and other styles
4

Nechypurenko, Pavlo P., Viktoriia G. Stoliarenko, Tetiana V. Starova, Tetiana V. Selivanova, Oksana M. Markova, Yevhenii O. Modlo, and Ekaterina O. Shmeltser. Development and implementation of educational resources in chemistry with elements of augmented reality. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3751.

Full text
Abstract:
The purpose of this article is an analysis of opportunities and description of the experience of developing and implementing augmented reality technologies to support the teaching of chemistry in higher education institutions of Ukraine. The article is aimed at solving problems: generalization and analysis of the results of scientific research concerning the advantages of using the augmented reality in the teaching of chemistry, the characteristics of modern means of creating objects of augmented reality; discussion of practical achievements in the development and implementation of teaching materials on chemistry using the technologies of the augmented reality in the educational process. The object of research is augmented reality, and the subject - the use of augmented reality in the teaching of chemistry. As a result of the study, it was found that technologies of augmented reality have enormous potential for increasing the efficiency of independent work of students in the study of chemistry, providing distance and continuous education. Often, the technologies of the augmented reality in chemistry teaching are used for 3D visualization of the structure of atoms, molecules, crystalline lattices, etc., but this range can be expanded considerably when creating its own educational products with the use of AR-technologies. The study provides an opportunity to draw conclusions about the presence of technologies in the added reality of a significant number of benefits, in particular, accessibility through mobile devices; availability of free, accessible and easy-to-use software for creating augmented-reality objects and high efficiency in using them as a means of visibility. The development and implementation of teaching materials with the use of AR-technologies in chemistry teaching at the Kryvyi Rih State Pedagogical University has been started in the following areas: creation of a database of chemical dishes, creation of a virtual chemical laboratory for qualitative chemical analysis, creation of a set of methodical materials for the course “Physical and colloidal chemistry”.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography