Academic literature on the topic 'Virtual patient simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual patient simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Virtual patient simulation"
Nystrom, Daniel T., Douglas E. Paull, Ashley N. D. Meyer, and Hardeep Singh. "Virtual Patient Simulation." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no. 1 (September 2016): 533–37. http://dx.doi.org/10.1177/1541931213601123.
Full textBond, William F., Teresa J. Lynch, Matthew J. Mischler, Jessica L. Fish, Jeremy S. McGarvey, Jason T. Taylor, Dipen M. Kumar, et al. "Virtual Standardized Patient Simulation." Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare 14, no. 4 (August 2019): 241–50. http://dx.doi.org/10.1097/sih.0000000000000373.
Full textWaghale, Vedantika, Ujwalla Gawande, Gaurav Mahajan, and Shriram Kane. "Virtual Patient Simulation- an Effective Key Tool for Medical Students Enhancing Diagnostic Skills." ECS Transactions 107, no. 1 (April 24, 2022): 16191–97. http://dx.doi.org/10.1149/10701.16191ecst.
Full textWillaert, Willem I. M., Rajesh Aggarwal, Isabelle Van Herzeele, Nicholas J. Cheshire, and Frank E. Vermassen. "Recent Advancements in Medical Simulation: Patient-Specific Virtual Reality Simulation." World Journal of Surgery 36, no. 7 (April 25, 2012): 1703–12. http://dx.doi.org/10.1007/s00268-012-1489-0.
Full textBotezatu, Mihaela, Håkan Hult, Mesfin Kassaye Tessma, and Uno Fors. "Virtual patient simulation: Knowledge gain or knowledge loss?" Medical Teacher 32, no. 7 (July 2010): 562–68. http://dx.doi.org/10.3109/01421590903514630.
Full textLarkin, Amy, Stacey Hughes, Martin Warters, and Gwen Littman. "VASODILATORY SHOCK: CAN VIRTUAL PATIENT SIMULATION IMPROVE MANAGEMENT?" Chest 156, no. 4 (October 2019): A1006. http://dx.doi.org/10.1016/j.chest.2019.08.931.
Full textParikh, Dhwani, and Marisa Kollmeier. "Guidelines and workflow for virtual simulation." Journal of Clinical Oncology 40, no. 28_suppl (October 1, 2022): 49. http://dx.doi.org/10.1200/jco.2022.40.28_suppl.049.
Full textKim, Byeol, Warren Schwartz, Danny Catacora, and Monifa Vaughn-Cooke. "Virtual Reality Behavioral Therapy." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no. 1 (September 2016): 356–60. http://dx.doi.org/10.1177/1541931213601081.
Full textMudunkotuwe, J., V. Mannali, J. Henry, J. Clift, and P. Strickland. "Digitised remote delivery of simulation in psychiatry during the pandemic and for the future." European Psychiatry 65, S1 (June 2022): S199. http://dx.doi.org/10.1192/j.eurpsy.2022.523.
Full textNiederer, S. A., Y. Aboelkassem, C. D. Cantwell, C. Corrado, S. Coveney, E. M. Cherry, T. Delhaas, et al. "Creation and application of virtual patient cohorts of heart models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2173 (May 25, 2020): 20190558. http://dx.doi.org/10.1098/rsta.2019.0558.
Full textDissertations / Theses on the topic "Virtual patient simulation"
Dower, L., M. Overbey, J. Russell, and Deborah Ricker. "Following a Patient from Virtual Simulation to Simulation Lab and Into the Classroom." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/8540.
Full textSanderson, Elizabeth Anne. "Evaluating the Use Of A Virtual Reality Patient Simulator an An Educational Tool In An Audiological Setting." Thesis, University of Canterbury. Communication Disorders, 2013. http://hdl.handle.net/10092/10368.
Full textBarbosa, Ana Paula de Oliveira. "Simulação de práticas clínicas em farmácia : desenvolvimento de estrutura e simulador de processo de cuidado à saúde." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/149499.
Full textObjectives: The aim was to describe the entire implantation process of the simulation practice laboratories and to develop and evaluate a virtual simulator for pharmacotherapeutic follow-up by adapting IASCC software. Methods: In order to set up the laboratories, the planning of the physical area was carried out to include the flow of activities and the materials and the equipment needed were identified. Also, the procedures that would be done were validated through development and evaluation of achievement and then correction was proposed. In relation to simulator, the methodological development study was conducted in four phases: Planning phase: the adaptation of SIACC for pharmaceutical practice teaching; A second phase using the simulator; and a third consisting of grading the performance of users; and finally, the evaluation of software using two instruments: ISO 9126 and the Ten Golden Rules. The assessment was qualitative and quantitative. In qualitative evaluation, was used the Nominal Group Technique. Results: Regarding the implantation of the simulation practice laboratories, the study described all steps needed to set up laboratories for the training of pharmacists. The evaluation based on the ISO 9126 showed that there was no statistical difference (p < 0.05) between the factors evaluated by two different groups: students and experts in this field. Also, there was no statistical difference (p < 0.05) among the factors evaluated by three groups: those who do not use information technology in education, those who use it only to make presentations and those who use more than one IT resource in education. In the evaluation based on the Ten Golden Rules, only two of the ten items evaluated had an average < 4.0 (maximum average: 5.0). The results of the qualitative evaluation corroborate the quantitative assessment. Conclusions: These are the results of the authors’ research aimed to develop models for the application of active learning methods using new technology to be initially implemented at UFRGS School of Pharmacy.
Chesher, Douglas. "Exploring the use of a web-based virtual patient to support learning through reflection." University of Sydney. Pathology, 2004. http://hdl.handle.net/2123/645.
Full textRoomkham, Sirinthip. "Design a simulated multimedia enriched immersive learning environment (SMILE) for nursing care of dementia patient." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/94175/1/Sirinthip_Roomkham_Thesis.pdf.
Full textZary, Nabil. "Virtual patients for education, assessment and research : a web-based approach /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-272-9/.
Full textNehring, Wendy M., and Felissa R. Lashley. "Nursing Simulation: A Review of the Past 40 Years." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etsu-works/6706.
Full textBoudissa, Mehdi. "Réduction virtuelle des fractures complexes du bassin à l'aide du premier simulateur biomécanique patient-spécifique Computer-assisted surgery in acetabular fractures: Virtual reduction of acetabular fracture using the first patient-specific biomechanical model simulator Computer Assisted Surgery in Preoperative Planning of Acetabular Fracture Surgery: State of the Art." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAS038.
Full textL’objectif de cette thèse est de développer et valider une nouvelle méthode de planification pré-opératoire en chirurgie traumatique de l’acetabulum reposant sur un modèle biomécanique patient-spécifique. La première partie de ce travail a consisté en l’élaboration et l’amélioration progressive de ce nouvel outil de planification. La première étape était de générer des modèles tri-dimensionnels de plusieurs fractures acétabulaires à l’aide d’une méthode de segmentation semi-automatique. Dans le même temps, nous avons démontré que les fragments osseux segmentés pouvaient être utile pour classer correctement les fractures acétabulaires par des internes non expérimentés. La seconde étape était de générer un modèle biomécanique patient-spécifique, le plus simplement possible pour pouvoir être compatible avec une pratique clinique régulière. Une revue de la littérature à propos des différentes méthodes de planifications péri-opératoire en traumatologie de l’acetabulum a été réalisée afin d’identifier qu’un nouveau paradigme était nécessaire du fait des limites des méthodes existantes. Une fois les objectifs d’une modélisation biomécanique patient-spécifique définis, une revue de la littérature des différents modèles biomécanique de la hanche a été réalisée pour définir les propriétés biomécaniques des différents éléments à modéliser. Un compromis entre simplicité et comportement réaliste du modèle a été trouvé pour générer un modèle biomécanique patient-spécifique, dans un temps limité, compatible avec une utilisation courante en pratique clinique. Des études cliniques portant sur 14 cas de fractures acétabulaires opérées, puis 29 et finalement 39 cas ont été réalisées pour valider rétrospectivement les simulations biomécaniques. Les résultats montraient une parfaite adéquation avec la réalité. Seuls des logiciels en libre accès, avec leurs faiblesses, étaient utilisés car la fiabilité et la validité de la simulation étaient nécessaires avant d’envisager plus d’investissements. La preuve de concept était donnée. Enfin, une étude clinique prospective a démontré l’efficacité de la simulation biomécanique patient-spécifique et sa faisabilité en pratique clinique quotidienne. Ce travail ouvre la porte à de nouvelles approches en matière de planification chirurgicale et de modélisation patient-spécifique
Giovannelli, Luca. "Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113644.
Full textEs creu que la medicina in silico suposarà un dels canvis més disruptius en el futur pròxim. Al llarg de l'última dècada, s'ha invertit un gran esforç en el desenvolupament de models computacionals predictius per millorar el poder de diagnòstic dels metges i l'efectivitat de les teràpies. Un punt clau d'aquesta revolució, serà la personalització, que comporta en la majoria dels casos la creació de models computacionals específics de pacient. Aquesta pràctica està actualment estesa en la investigació i hi ha al mercat diversos software que permeten obtenir models a partir d'imatges. Tot i això, per a poder-se utilitzar en la pràctica clínica aquests métodes es necessita reduir dràsticament el temps i el treball humà necessaris per a la seva creació. Aquesta tesi es centra en la proposta d'una versió basada en imatges del Cartesian grid Finite Element Method (cgFEM), una técnica per obtenir de forma automàticament models a partir d'imatges i dur a terme anàlisis estructurals lineals d'ossos, implants o materials heterogenis. Després de relacionar l'escala del imatge a propietats macàniques corresponents, s'usa tota la informació continguda en els píxels per a integrar les matrius de rigidesa dels elements que homogeneïtzen el comportament elàstic dels grups de píxels continguts en cada element. Es emphh-adapta una malla inicialment uniforme a les característiques de la imatge usant un procediment eficient que té en compte les propietats elàstiques locals associades als valors dels píxels. Amb això, s'evita un suavitzat excessiu de les propietats elàstiques a causa de la integració dels elements en àrees altament heterogénies, però, tot i això, s'obtenen models finals amb un nombre raonable de graus de llibertat. El resultat d'aquest procés és una malla no conforme en la qual s'imposa la continuïtat C0 de la solució mitjançant restriccions multi-punt en els hanging nodes. Contràriament als procediments estàndard per a la creació de models d'Elements finits a partir d'imatges, que normalment requereixen la definició completa i watertight de la geometria i tracten el resultat com un CAD estàndard, amb cgFEM no cal definir cap entitat geométrica. No obstant això, és immediat incloure-les en el model en el cas que sigui necessari, com ara superfícies suaus per imposar condicions de contorn de forma més precisa o volums CAD de dispositius per a la simulació d'implants. Com a conseqüéncia d'això, la quantitat de treball humà per a la creació de models es redueix dràsticament. En aquesta tesi, s'analitza en detalls el comportament del nou métode en problemes 2D i 3D a partir de CT-scan i radiografies sintétiques i reals, centrant-se en tres classes de problemes. Aquestes inclouen la simulació d'ossos, la caracterització de materials a partir de TACs, per a la qual s'ha desenvolupat la cgFEM virtual characterisation technique, i l'anàlisi estructural de futurs implants, aprofitant la capacitat del cgFEM de combinar fàcilment imatges i models de CAD.
In silico medicine is believed to be one of the most disruptive changes in the near future. A great effort has been carried out during the last decade to develop predicting computational models to increase the diagnostic capabilities of medical doctors and the effectiveness of therapies. One of the key points of this revolution, will be personalisation, which means in most of the cases creating patient specific computational models, also called digital twins. This practice is currently wide-spread in research and there are quite a few software products in the market to obtain models from images. Nevertheless, in order to be usable in the clinical practice, these methods have to drastically reduce the time and human intervention required for the creation of the numerical models. This thesis focuses on the proposal of image-based Cartesian grid Finite Element Method (cgFEM), a technique to automatically obtain numerical models from images and carry out linear structural analyses of bone, implants or heterogeneous materials. In the method proposed in this thesis, after relating the image scale to corresponding elastic properties, all the pixel information will be used for the integration of the element stiffness matrices, which homogenise the elastic behaviour of the groups of pixels contained in each element. An initial uniform Cartesian mesh is h-adapted to the image characteristics by using an efficient refinement procedure which takes into account the local elastic properties associated to the pixel values. Doing so we avoid an excessive elastic property smoothing due to element integration in highly heterogeneous areas, but, nonetheless obtain final models with a reasonable number of degrees of freedom. The result of the process is non-conforming mesh in which C0 continuity is enforced via multipoint constraints at the hanging nodes. In contrast to the standard procedures for the creation of Finite Element models from images, which usually require a complete and watertight definition of the geometry and treat the result as a standard CAD, with cgFEM it is not necessary to define any geometrical entity, as the procedure proposed leads to an implicit definition of the boundaries. Nonetheless, they are straightforward to include in the model if necessary, such as smooth surfaces to impose the boundary conditions more precisely or CAD device volumes for the simulation of implants. As a consequence, the amount of human work required for the creation of the numerical models is drastically reduced. In this thesis, we analyse in detail the new method behaviour in 2D and 3D problems from CT-scans and X-ray images and synthetic images, focusing on three classes of problems. These include the simulation of bones, the material characterisation of solid foams from CT scans, for which we developed the cgFEM virtual characterisation technique, and the structural analysis of future implants, taking advantage of the capability of cgFEM to easily mix images and CAD models.
Giovannelli, L. (2018). Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113644
TESIS
Brossier, David. "Élaboration et validation d'une base de données haute résolution destinée à la calibration d'un patient virtuel utilisable pour l'enseignement et la prise en charge personnalisée des patients en réanimation pédiatrique Perpetual and Virtual Patients for Cardiorespiratory Physiological Studies Creating a High-Frequency Electronic Database in the PICU: The Perpetual Patient Qualitative subjective assessment of a high-resolution database in a paediatric intensive care unit-Elaborating the perpetual patient's ID card Validation Process of a High-Resolution Database in a Pediatric Intensive Care Unit – Describing the Perpetual Patient’s Validation Evaluation of SIMULRESP©: a simulation software of child and teenager cardiorespiratory physiology." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC428.
Full textThe complexity of the patients in the intensive care unit requires the use of clinical decision support systems. These systems bring together automated management protocols that enable adherence to guidelines and virtual physiological or patient simulators that can be used to safely customize management. These devices operating from algorithms and mathematical equations can only be developed from a large number of patients’ data. The main objective of the work was the elaboration of a high resolution database automatically collected from critically ill children. This database will be used to develop and validate a physiological simulator called SimulResp© . This manuscript presents the whole process of setting up the database from concept to use
Books on the topic "Virtual patient simulation"
Virtual Patient Encounters for Mosby's EMT-Intermediate Textbook for the 1999 National Standard Curriculum. 3rd ed. Mosby/JEMS, 2007.
Find full textTyerman, Jane, Sheryl Brahman, Amy Nakajima, Bill Kapralos, and Anthony L. Brooks. Recent Advances in Technologies for Inclusive Well-Being: Virtual Patients, Gamification and Simulation. Springer International Publishing AG, 2021.
Find full textTyerman, Jane, Sheryl Brahman, Amy Nakajima, Bill Kapralos, and Anthony Lewis Brooks. Recent Advances in Technologies for Inclusive Well-Being: Virtual Patients, Gamification and Simulation. Springer International Publishing AG, 2022.
Find full textBook chapters on the topic "Virtual patient simulation"
Kockro, Ralf A., and Luis Serra. "Patient-Specific Virtual Reality Simulation for Minimally Invasive Neurosurgery." In Comprehensive Healthcare Simulation: Neurosurgery, 159–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75583-0_13.
Full textSimo, Altion, and Marc Cavazza. "Qualitative Simulation of Shock States in a Virtual Patient." In Artificial Intelligence in Medicine, 101–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39907-0_15.
Full textZhang, Jinglu, Jian Chang, Xiaosong Yang, and Jian J. Zhang. "Virtual Reality Surgery Simulation: A Survey on Patient Specific Solution." In Next Generation Computer Animation Techniques, 220–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69487-0_16.
Full textMelka, Bartłomiej, Wojciech Adamczyk, Marek Rojczyk, Andrzej J. Nowak, Adam Golda, and Ziemowit Ostrowski. "Virtual Therapy Simulation for Patient with Coarctation of Aorta Using CFD Blood Flow Modelling." In Innovations in Biomedical Engineering, 153–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47154-9_18.
Full textHirumi, Atsusi, Benjamin Chak Lum Lok, Teresa R. Johnson, Kyle Johnsen, Diego de Jesus Rivera-Gutierrez, Ramsamooj Javier Reyes, Tom Atkinson, Christopher Stapleton, and Juan C. Cendán. "NERVE, InterPLAY, and Design-Based Research: Advancing Experiential Learning and the Design of Virtual Patient Simulation." In Learning, Design, and Technology, 1–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17727-4_76-1.
Full textHirumi, Atsusi, Benjamin Chak Lum Lok, Teresa R. Johnson, Kyle Johnsen, Diego de Jesus Rivera-Gutierrez, Ramsamooj Javier Reyes, Tom Atkinson, Christopher Stapleton, and Juan C. Cendán. "NERVE, InterPLAY, and Design-Based Research: Advancing Experiential Learning and the Design of Virtual Patient Simulation." In Learning, Design, and Technology, 1–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-17727-4_76-2.
Full textHauze, Sean W., Helina H. Hoyt, James P. Frazee, Philip A. Greiner, and James M. Marshall. "Enhancing Nursing Education Through Affordable and Realistic Holographic Mixed Reality: The Virtual Standardized Patient for Clinical Simulation." In Advances in Experimental Medicine and Biology, 1–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06070-1_1.
Full textHeinrichs, LeRoy, Parvati Dev, and Dick Davies. "Virtual environments and virtual patients in healthcare." In Healthcare Simulation Education, 69–79. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119061656.ch10.
Full textHara, Takayuki, and Masanori Yoshino. "Surgical Simulation with Three-Dimensional Fusion Images in Patients with Arteriovenous Malformation." In Acta Neurochirurgica Supplement, 83–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63453-7_12.
Full textHeras, Unai, Xabier Amezua, Rubén I. García, Lander Barrenetxea, Eneko Solaberrieta, Javier Pilar, and Harkaitz Eguiraun. "Construction of a “Virtual Patient Simulation” Environment for Design and Testing of Customized Adapters of Medical Use Respiratory Masks." In Lecture Notes in Mechanical Engineering, 493–505. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20325-1_39.
Full textConference papers on the topic "Virtual patient simulation"
Cavazza, Marc, and Altion Simo. "A virtual patient based on qualitative simulation." In the 8th international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/604045.604053.
Full textLee, Po-Chih, Arthur G. Erdman, Charles Ledonio, and David Polly. "A Framework of Simulating Virtual Spine Patients to Assess Thoracic Volume Variations due to Wedging Deformities." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6853.
Full textOnbasıog˘lu, Esin, Bas¸ar Atalay, Dionysis Goularas, Ahu H. Soydan, Koray K. S¸afak, and Fethi Okyar. "Visualisation of Burring Operation in Virtual Surgery Simulation." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25233.
Full textSargeson, Tracey. "PG87 Deteriorating patient simulation and human factors." In Abstracts of the ASPiH 2020 Virtual Conference, 10–11 November 2020. The Association for Simulated Practice in Healthcare, 2020. http://dx.doi.org/10.1136/bmjstel-2020-aspihconf.135.
Full textSegura-Azuara, NA, and M. Lopez. "REDESIGNING MEDICAL STUDENTS' TRAINING THROUGH VIRTUAL CLINICAL SIMULATION." In The 7th International Conference on Education 2021. The International Institute of Knowledge Management, 2021. http://dx.doi.org/10.17501/24246700.2021.7128.
Full textPeres, Nick. "0012 Patientvr – a virtual reality experience from the patient perspective." In Conference Proceedings of the Association for Simulation Practice in Healthcare (ASPiH) Annual Conference. 3rd to 5th November 2015, Brighton, UK. The Association for Simulated Practice in Healthcare, 2015. http://dx.doi.org/10.1136/bmjstel-2015-000075.1.
Full textSait, Saif, Peter Springbett, Stephanie Hicks, and Gnananandan Janakan. "PG67 Acute surgical emergency patient (ASEP) simulation course." In Abstracts of the ASPiH 2020 Virtual Conference, 10–11 November 2020. The Association for Simulated Practice in Healthcare, 2020. http://dx.doi.org/10.1136/bmjstel-2020-aspihconf.115.
Full textLuo, Jianfeng, Afaque Rafique Memon, and Xiaojun Chen. "Haptic Based Simulation for Patient-Specific Zygomatic Implant Placement Surgery." In 2022 8th International Conference on Virtual Reality (ICVR). IEEE, 2022. http://dx.doi.org/10.1109/icvr55215.2022.9848347.
Full textXie, Zhijun, Shuai Li, Qing Xia, and Aimin Hao. "Kinetic Simulation of Cardiac Motion with Patient-Specific Coronary Artery Vessels Attached for PCI Simulator." In 2017 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2017. http://dx.doi.org/10.1109/icvrv.2017.00081.
Full textMorotti, Roberto, Caterina Rizzi, Daniele Regazzoni, and Giorgio Colombo. "Digital Human Modelling to Analyse Virtual Amputee’s Interaction With the Prosthesis." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34381.
Full textReports on the topic "Virtual patient simulation"
Picho, Katherine, Timothy J. Cleary, Jr Artino, Dong Anthony R., and Ting. Developing and Testing a Self-Regulated Learning Assessment Methodology Combined with Virtual-Patient Simulation in Medical Education. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada623009.
Full text