Academic literature on the topic 'Viral proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Viral proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Viral proteins"
Flint, Jane, and Thomas Shenk. "VIRAL TRANSACTIVATING PROTEINS." Annual Review of Genetics 31, no. 1 (December 1997): 177–212. http://dx.doi.org/10.1146/annurev.genet.31.1.177.
Full textFischer, Wolfgang B., Gerhard Thiel, and Rainer H. A. Fink. "Viral membrane proteins." European Biophysics Journal 39, no. 7 (August 12, 2009): 1041–42. http://dx.doi.org/10.1007/s00249-009-0525-y.
Full textSeet, Bruce T., and Grant McFadden. "Viral chemokine‐binding proteins." Journal of Leukocyte Biology 72, no. 1 (July 2002): 24–34. http://dx.doi.org/10.1189/jlb.72.1.24.
Full textVerdaguer, Nuria, Diego Ferrero, and Mathur R. N. Murthy. "Viruses and viral proteins." IUCrJ 1, no. 6 (October 14, 2014): 492–504. http://dx.doi.org/10.1107/s205225251402003x.
Full textRosengard, Ariella M., and Joseph M. Ahearn. "Viral complement regulatory proteins." Immunopharmacology 42, no. 1-3 (May 1999): 99–106. http://dx.doi.org/10.1016/s0162-3109(99)00012-0.
Full textLee, Hyun-Cheol, Kiramage Chathuranga, and Jong-Soo Lee. "Intracellular sensing of viral genomes and viral evasion." Experimental & Molecular Medicine 51, no. 12 (December 2019): 1–13. http://dx.doi.org/10.1038/s12276-019-0299-y.
Full textWatson, Alastair, Maximillian J. S. Phipps, Howard W. Clark, Chris-Kriton Skylaris, and Jens Madsen. "Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins." Journal of Innate Immunity 11, no. 1 (October 5, 2018): 13–28. http://dx.doi.org/10.1159/000492974.
Full textShalitin, Dror, and Shmuel Wolf. "Interaction between phloem proteins and viral movement proteins." Functional Plant Biology 27, no. 9 (2000): 801. http://dx.doi.org/10.1071/pp99153.
Full textZhilinskaya, I. N. "Mimicry between respiratory virus proteins and some human immune proteins." Russian Journal of Infection and Immunity 10, no. 2 (May 22, 2020): 305–14. http://dx.doi.org/10.15789/2220-7619-mbr-1179.
Full textChen, Jidang, and Hinh Ly. "Immunosuppression by viral N proteins." Oncotarget 8, no. 31 (June 22, 2017): 50331–32. http://dx.doi.org/10.18632/oncotarget.18597.
Full textDissertations / Theses on the topic "Viral proteins"
Oliveira, Vivian Leite. "Impact of viral mmunomodulatory proteins." Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2013. http://hdl.handle.net/10362/11946.
Full textCerca de 50% do genoma dos vírus de DNA evoluiu direcionado para a manipulação de importantes funções celulares do hospedeiro. Estas estratégias são muito diversas e conferem ao vírus vantagens importantes sobre o sistema imunitário do hospedeiro. Esses genes são, por isso, potenciais fontes de informação para a geração de novos fármacos dirigidos à manipulação da resposta imunológica na saúde e na doença. Esta tese centra-se na análise da função de dois genes virais distintos, ambos com funções imunomoduladoras. O gene do Vírus da Peste Suína Africana codificado pela “open reading frame” I329L (ORF I329L), e o gene do vírus herpes-gama-68 de murino codificado pela “open reading frame” M2 (ORF M2). Ambos os vírus são conhecidos por codificar várias proteínas capazes de manipular componentes vitais da resposta antiviral. Neste trabalho nós demonstramos que tanto a ORF I329L quanto ORF M2 são capazes de manipular a imunidade inata ou adquirida.(...)
Horridge, Jackie J. "RNA-protein interactions of the adenovirus proteins E1B 55K and E4 Orf6." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322435.
Full textLindström, Hannah Kim. "Molecular studies of the hepatitis C virus : the role of IRES activity for therapy response, and the impact of the non-structural protein NS4B on the viral proliferation /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-875-4/.
Full textWeinmaster, Geraldine Ann. "Structural and functional characterization of the Fujinami sarcoma virus transforming protein." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25991.
Full textScience, Faculty of
Microbiology and Immunology, Department of
Graduate
Helt, Anna-Marija. "Multiple biological activities of the human papillomavirus type 16 E7 oncoprotein contribute to the abrogation of human epithelial cell cycle control /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11514.
Full textKim, Irene. "Mechanisms of Membrane Disruption by Viral Entry Proteins." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10192.
Full textBiggs, Thelma Elizabeth. "The effects of viral proteins on macrophage function." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285659.
Full textCasey, John P. Jr. "Capsid catalysis : de novo enzymes on viral proteins." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99052.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 107-119).
Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, M13 bacteriophage libraries are engineered as a biochemical platform for de novo semisynthetic enzymes, functionally modular and widely stable. Carbonic anhydrase-inspired hydrolytic activity via Zn²+ coördination is first demonstrated. The phage clone identified hydrolyzes a range of carboxylic esters, is active from 25°C to 80°C, and displays greater catalytic efficacy in DMSO than in water. Reduction-oxidation activity is subsequently developed via heme and copper cofactors. Heme-phage complexes oxidize multiple peroxidase substrates in a pH-dependent manner. The same phage clone also binds copper(II) and oxidizes a catechol derivative, di-tert-butylcatechol, using atmospheric oxygen as a terminal oxidant. This clone could be purified from control phage via Cu-NTA columns, enabling future library selections for phage that coördinate Cu²+ ions. The M13 semisynthetic enzyme platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work could tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.
by John P. Casey, Jr.
Ph. D.
Eid, Fatma Elzahraa Sobhy. "Predicting the Interactions of Viral and Human Proteins." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77581.
Full textPh. D.
Hahn, Young Shin Lim Strauss James H. Strauss James H. "Functional analysis of viral nonstructural and structural proteins /." Diss., Pasadena, Calif. : California Institute of Technology, 1989. http://resolver.caltech.edu/CaltechETD:etd-06072007-075259.
Full textBooks on the topic "Viral proteins"
Koszinowski, Ulrich H., and Hartmut Hengel, eds. Viral Proteins Counteracting Host Defenses. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59421-2.
Full textH, Koszinowski U., and Hengel H, eds. Viral proteins counteracting host defenses. Berlin: Springer, 2002.
Find full textW, Hicks Barry, ed. Viral applications of green fluorescent protein: Methods and protocols. Totowa, N.J: Humana, 2009.
Find full textDobert, Raymond. Viral resistance in plants, viral coat proteins: January 1991 - July 1996. Beltsville, Md: USDA, ARS, National Agricultural Library, 1996.
Find full textUversky, Vladimir N. Flexible viruses: Structural disorder in viral proteins. Hoboken: Wiley, 2012.
Find full textFischer, Wolfgang B., ed. Viral Membrane Proteins: Structure, Function, and Drug Design. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-28146-0.
Full textBridgen, Anne. Reverse genetics of RNA viruses: Applications and perspectives. Chichester, West Sussex: John Wiley & Sons, 2012.
Find full textJoe, Bentz, ed. Viral fusion mechanisms. Boca Raton, Fla: CRC Press, 1993.
Find full textInternational Symposium on the Immunobiology of Proteins and Peptides (3rd 1984 Tahoe City, Calif.). Immunobiology of proteins and peptides III: Viral and bacterial antigens. New York: Plenum Press, 1985.
Find full textSherwood, Casjens, ed. Virus structure and assembly. Boston: Jones and Bartlett, 1985.
Find full textBook chapters on the topic "Viral proteins"
Karyampudi, Lavakumar, and Keith L. Knutson. "Viral-Like Proteins." In Cancer Therapeutic Targets, 545–59. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4419-0717-2_147.
Full textKaryampudi, Lavakumar, and Keith L. Knutson. "Viral-Like Proteins." In Cancer Therapeutic Targets, 1–15. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6613-0_147-1.
Full textShaw, A. L., R. Rothnagel, C. Q. Y. Zeng, J. A. Lawton, R. F. Ramig, M. K. Estes, and B. V. Venkataram Prasad. "Rotavirus structure: interactions between the structural proteins." In Viral Gastroenteritis, 21–27. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-6553-9_3.
Full textHildenbrand, Zacariah L., and Ricardo A. Bernal. "Chaperonin-Mediated Folding of Viral Proteins." In Viral Molecular Machines, 307–24. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0980-9_13.
Full textModis, Yorgo. "Class II Fusion Proteins." In Viral Entry into Host Cells, 150–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7651-1_8.
Full textSinkovics, Joseph G. "Viral and Cellular Proteins Interact." In RNA/DNA and Cancer, 247–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22279-0_16.
Full textDimmock, Nigel J. "Viral Carbohydrates, Proteins and Neutralization." In Current Topics in Microbiology and Immunology, 39–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77849-0_12.
Full textGerlich, W. H., K. H. Heermann, and Lu Xuanyong. "Functions of hepatitis B surface proteins." In Chronically Evolving Viral Hepatitis, 129–32. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-5633-9_28.
Full textOglesbee, Michael, Mi Young Kim, Yaoling Shu, and Sonia Longhi. "Extracellular HSP70, Neuroinflammation and Protection Against Viral Virulence." In Heat Shock Proteins, 23–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02254-9_2.
Full textSoleimanjahi, Hoorieh, and Asghar Abdoli. "Role of Chaperone Mediated Autophagy in Viral Infections." In Heat Shock Proteins, 147–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02254-9_7.
Full textConference papers on the topic "Viral proteins"
Schelbert, S., V. Dries, U. Drebber, M. Schindeldecker, A. Weinmann, R. Bartenschlager, P. Schirmacher, W. Roth, and BK Straub. "Lipid droplets and associated proteins in viral hepatitis." In 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677286.
Full textSmirnova, N., S. M. Yeligar, M. Ahmed, X. Fan, D. M. Guidot, and B. S. Staitieh. "HIV-Related Viral Proteins Impair Mitochondrial Function in Rat Alveolar Macrophages." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5189.
Full textGraham, Daniel, and Yunjoo Bae. "Ternary Phase Diagrams of Viral Proteins: The Example of H1N1 Influenza." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05900.
Full textTu, T., B. Zehnder, M. Levy, G. Micali, L. Tran, O. Dabere, N. Main, N. Shackel, and S. Urban. "Hepatitis B virus (HBV) DNA integration is not driven by viral proteins." In 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677293.
Full textGillock, Eric, Scott Rottinghaus, Avelina Paulsen, Scott Smiley, Deching Chang, Richard Consigli, and Deching Chang. "The effect of microgravity on the stability and assembly of viral proteins." In AIP Conference Proceedings Volume 387. ASCE, 1997. http://dx.doi.org/10.1063/1.52099.
Full textSharma, G., M. Badescu, A. Dubey, C. Mavroidis, T. Sessa, S. M. Tomassone, and M. L. Yarmush. "Kinematics and Workspace Analysis of Protein Based Nano-Motors." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57569.
Full textGraham, Daniel, Samuel Barlow, Diego Cuculon, and Jordan Hauck. "Information Signatures of Viral Proteins: A Study of Influenza A Hemagglutinin and Neuraminidase." In MOL2NET, International Conference on Multidisciplinary Sciences. Basel, Switzerland: MDPI, 2015. http://dx.doi.org/10.3390/mol2net-1-b009.
Full textNazarenko, E. A., and E. S. Starodubova. "CELL-SYNTHESIZED NON-STRUCTURAL PROTEIN 1 OF TICK-BORNE ENCEPHALITIS VIRUS IS ASSOCIATED WITH EXOSOMES AND INCREASE THEIR SECRETION." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-257.
Full textJessup, J. Milburn, Abid R. Mattoo, and Nikolay Korokhov. "Abstract 4216: Targeting NANOG: genes, proteins and response to viral RNAi in preclinical models." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4216.
Full text"Expression of sheep pox viral A27L and L1R proteins in prokaryotic and eukaryotic systems." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-023.
Full textReports on the topic "Viral proteins"
Gafni, Yedidya, and Vitaly Citovsky. Molecular interactions of TYLCV capsid protein during assembly of viral particles. United States Department of Agriculture, April 2007. http://dx.doi.org/10.32747/2007.7587233.bard.
Full textLapidot, Moshe, and Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604274.bard.
Full textGrubman, Marvin J., Yehuda Stram, Peter W. Mason, and Hagai Yadin. Development of an Empty Viral Capsid Vaccine against Foot and Mouth Disease. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570568.bard.
Full textEpel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.
Full textCitovsky, Vitaly, and Yedidya Gafni. Suppression of RNA Silencing by TYLCV During Viral Infection. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7592126.bard.
Full textWang, X. F., and M. Schuldiner. Systems biology approaches to dissect virus-host interactions to develop crops with broad-spectrum virus resistance. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134163.bard.
Full textMawassi, Munir, and Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, June 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Full textWolf, Shmuel, and William J. Lucas. Involvement of the TMV-MP in the Control of Carbon Metabolism and Partitioning in Transgenic Plants. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7570560.bard.
Full textCitovsky, Vitaly, and Yedidya Gafni. Viral and Host Cell Determinants of Nuclear Import and Export of the Tomato Yellow Leaf Curl Virus in Tomato Plants. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7585200.bard.
Full textEhrlich, Marcelo, John S. Parker, and Terence S. Dermody. Development of a Plasmid-Based Reverse Genetics System for the Bluetongue and Epizootic Hemorrhagic Disease Viruses to Allow a Comparative Characterization of the Function of the NS3 Viroporin in Viral Egress. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699840.bard.
Full text