Journal articles on the topic 'Vinylidenes'

To see the other types of publications on this topic, follow the link: Vinylidenes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vinylidenes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Saá, Carlos, Jesús A. Varela, and Andrea Álvarez-Pérez. "Oxidation of Alkynes via Catalytic Metal-Vinylidenes." Synthesis 52, no. 18 (June 15, 2020): 2639–49. http://dx.doi.org/10.1055/s-0040-1707860.

Full text
Abstract:
Metal-vinylidenes, generated by treatment of terminal alkynes with transition metals, are very useful intermediates in modern synthetic chemistry as shown by the high number of transformations in which they are involved. When a metal-vinylidene is generated in the presence of an oxidant, its immediate oxidation to a ketene occurs. In this short review, recent synthetic applications of the oxidation of alkynes via ketene intermediates from initially formed metal-vinylidenes­ are highlighted.1 Introduction2 Oxidation of Metal-Vinylidenes with Internal Oxidants3 Oxidation of Metal-Vinylidenes with External Oxidants4 Conclusions
APA, Harvard, Vancouver, ISO, and other styles
2

Kooij, Bastiaan, Zhaowen Dong, Paul Varava, Farzaneh Fadaei-Tirani, Rosario Scopelliti, Laura Piveteau, and Kay Severin. "Vanadium complexes with N-heterocyclic vinylidene ligands." Chemical Communications 58, no. 26 (2022): 4204–7. http://dx.doi.org/10.1039/d2cc00768a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Varela, Jesús A., Carlos González-Rodríguez, Silvia G. Rubín, Luis Castedo, and Carlos Saá. "New cyclizations via catalytic ruthenium vinylidenes." Pure and Applied Chemistry 80, no. 5 (January 1, 2008): 1167–77. http://dx.doi.org/10.1351/pac200880051167.

Full text
Abstract:
New carbocyclizations that proceed via catalytic metal-vinylidenes are presented. Metal-vinylidene catalytic species, which are easily accessible from terminal alkynes and catalytic amounts of transition-metal complexes, can be involved either in pericyclic reactions or in tandem processes triggered by nucleophilic attack at the electrophilic position of the vinylidene. In both cases, a wide variety of valuable cyclic compounds are easily accessible. Some recent carbocyclizations will be described.
APA, Harvard, Vancouver, ISO, and other styles
4

Werner, Helmut, Francisco Javier Garcia Alonso, Heiko Otto, and Justin Wolf. "Synthese der ersten quadratisch-planaren Vinyliden-Komplexe des Vaska-Typs. Kristall- und Molekülstruktur von trans-[RhCl(=C=CHMe)(PPri3)2] / Synthesis of the First Square-planar Vinylidene Complexes of the Vaska Type. Crystal and Molecular Structure of trans-[RhCl(=C=CHMe)(PPri3)2]." Zeitschrift für Naturforschung B 43, no. 6 (June 1, 1988): 722–26. http://dx.doi.org/10.1515/znb-1988-0614.

Full text
Abstract:
Square-planar vinylidene rhodium complexes trans-[RhCl( = C=CHR)(PPri3)2] (X-XII) are prepared either by isomerization of trans-[RhCl(RC≡CH)(PPri3)2] in hexane at 50 °C or by elimination of pyridine from RhHCl(C≡CR)(py)(PPri3)2 in benzene at room temperature. The Xray structural analysis of XI (R = CH3) reveals that the CI-Rh=C=C fragment is almost linear, and that the planes formed by these atoms and C3 (carbon atom of the CH3 substituent) and by these atoms and P1 , P2 are perpendicular to each other. The Rh = C bond length is surprisingly short (177.5(6) pm) and supports the assumption that vinylidenes like CO are strong π-acceptor ligands.
APA, Harvard, Vancouver, ISO, and other styles
5

Bruneau, Christian, and Pierre H. Dixneuf. "Metal Vinylidenes in Catalysis." Accounts of Chemical Research 32, no. 4 (April 1999): 311–23. http://dx.doi.org/10.1021/ar980016i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gagosz, Fabien. "Gold Vinylidenes as Useful Intermediates in Synthetic Organic Chemistry." Synthesis 51, no. 05 (January 10, 2019): 1087–99. http://dx.doi.org/10.1055/s-0037-1611647.

Full text
Abstract:
Gold vinylidenes have recently emerged as useful intermediates in synthetic organic chemistry. These species, which can principally be accessed by a 1,2-migration process from a gold-activated alkyne or by dual gold catalysis on a diyne substrate, can react with nucleophilic partners or by C–H insertion to produce a variety of functionalized (poly)cyclic compounds. This short review covers the synthetic approaches developed so far to access gold vinylidenes and the different reactivities these species can exhibit.1 Introduction2 1,2-Migration Processes3 Dual Gold Catalysis4 Other Processes5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
7

Majhi, Paresh Kumar, Michael Zimmer, Bernd Morgenstern, Volker Huch, and David Scheschkewitz. "Transition Metal Complexes of Heavier Vinylidenes: Allylic Coordination vs Vinylidene–Alkyne Rearrangement at Nickel." Journal of the American Chemical Society 143, no. 33 (August 12, 2021): 13350–57. http://dx.doi.org/10.1021/jacs.1c06453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bruneau, Christian, and Pierre H. Dixneuf. "ChemInform Abstract: Metal Vinylidenes in Catalysis." ChemInform 30, no. 25 (June 15, 2010): no. http://dx.doi.org/10.1002/chin.199925303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Selegue, John P. "Metallacumulenes: from vinylidenes to metal polycarbides." Coordination Chemistry Reviews 248, no. 15-16 (August 2004): 1543–63. http://dx.doi.org/10.1016/j.ccr.2004.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oliván, Montserrat, Odile Eisenstein, and Kenneth G. Caulton. "New Access to Vinylidenes from Ruthenium Polyhydrides." Organometallics 16, no. 11 (May 1997): 2227–29. http://dx.doi.org/10.1021/om970095m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Farley, Conner M., Kohei Sasakura, You-Yun Zhou, Vibha V. Kanale, and Christopher Uyeda. "Catalytic [5 + 1]-Cycloadditions of Vinylcyclopropanes and Vinylidenes." Journal of the American Chemical Society 142, no. 10 (February 21, 2020): 4598–603. http://dx.doi.org/10.1021/jacs.0c00356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Trost, Barry M, and Andrew McClory. "Metal Vinylidenes as Catalytic Species in Organic Reactions." Chemistry - An Asian Journal 3, no. 2 (February 1, 2008): 164–94. http://dx.doi.org/10.1002/asia.200700247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhou, You-Yun, and Christopher Uyeda. "Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes." Science 363, no. 6429 (February 21, 2019): 857–62. http://dx.doi.org/10.1126/science.aau0364.

Full text
Abstract:
Cycloaddition reactions provide direct and convergent routes to cycloalkanes, making them valuable targets for the development of synthetic methods. Whereas six-membered rings are readily accessible from Diels-Alder reactions, cycloadditions that generate five-membered rings are comparatively limited in scope. Here, we report that dinickel complexes catalyze [4 + 1]-cycloaddition reactions of 1,3-dienes. The C1partner is a vinylidene equivalent generated from the reductive activation of a 1,1-dichloroalkene in the presence of stoichiometric zinc. Intermolecular and intramolecular variants of the reaction are described, and high levels of asymmetric induction are achieved in the intramolecular cycloadditions using aC2-symmetric chiral ligand that stabilizes a metal-metal bond.
APA, Harvard, Vancouver, ISO, and other styles
14

Biswas, Sourish, Sudipta Pal, and Christopher Uyeda. "Nickel-catalyzed insertions of vinylidenes into Si–H bonds." Chemical Communications 56, no. 91 (2020): 14175–78. http://dx.doi.org/10.1039/d0cc05970f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Likhotvorik, Igor R., Duncan W. Brown, and Maitland Jones. "Vinylidenes As Intermediates in Thermal Cyclopropene-to-Acetylene Rearrangements." Journal of the American Chemical Society 116, no. 14 (July 1994): 6175–78. http://dx.doi.org/10.1021/ja00093a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hashmi, A. Stephen K., Marcel Wieteck, Ingo Braun, Pascal Nösel, Linda Jongbloed, Matthias Rudolph, and Frank Rominger. "Gold-Catalyzed Synthesis of Dibenzopentalenes - Evidence for Gold Vinylidenes." Advanced Synthesis & Catalysis 354, no. 4 (February 23, 2012): 555–62. http://dx.doi.org/10.1002/adsc.201200086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kakkar, Rita, Mallika Pathak, and Preeti Chadha. "Theoretical study of unimolecular rearrangements of vinylidenes to acetylenes." International Journal of Quantum Chemistry 102, no. 2 (2005): 189–99. http://dx.doi.org/10.1002/qua.20382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Frogley, Benjamin J., and Anthony F. Hill. "Synthesis of pyridyl carbyne complexes and their conversion to N-heterocyclic vinylidenes." Chemical Communications 55, no. 100 (2019): 15077–80. http://dx.doi.org/10.1039/c9cc07760j.

Full text
Abstract:
A new synthetic approach to hetero-aryl substituted carbyne complexes has allowed the synthesis of pyridyl functionalised carbynes and bis(carbynes), alkylation of which affords the first N-heterocyclic vinylidene complexes.
APA, Harvard, Vancouver, ISO, and other styles
19

Barrett, Anthony G. M., Jacques Mortier, Michal Sabat, and Michael A. Sturgess. "Iron(II) vinylidenes and chromium carbene complexes in .beta.-lactam synthesis." Organometallics 7, no. 12 (December 1988): 2553–61. http://dx.doi.org/10.1021/om00102a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ikeda, Yousuke, Takafumi Yamaguchi, Keiichiro Kanao, Kazuhiro Kimura, Sou Kamimura, Yuichiro Mutoh, Yoshiaki Tanabe, and Youichi Ishii. "Formation of Vinylidenes from Internal Alkynes at a Cyclotriphosphato Ruthenium Complex." Journal of the American Chemical Society 130, no. 50 (December 17, 2008): 16856–57. http://dx.doi.org/10.1021/ja8080567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

LIKHOTVORIK, I. R., D. W. BROWN, and M. JUN JONES. "ChemInform Abstract: Vinylidenes as Intermediates in Thermal Cyclopropene-to-Acetylene Rearrangements." ChemInform 25, no. 51 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199451077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hashmi, A. Stephen K., Marcel Wieteck, Ingo Braun, Pascal Noesel, Linda Jongbloed, Matthias Rudolph, and Frank Rominger. "ChemInform Abstract: Gold-Catalyzed Synthesis of Dibenzopentalenes - Evidence for Gold Vinylidenes." ChemInform 43, no. 28 (June 14, 2012): no. http://dx.doi.org/10.1002/chin.201228103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lavallo, V., G. D. Frey, S. Kousar, B. Donnadieu, and G. Bertrand. "Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes." Proceedings of the National Academy of Sciences 104, no. 34 (August 13, 2007): 13569–73. http://dx.doi.org/10.1073/pnas.0705809104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wakatsuki, Yasuo. "Mechanistic aspects regarding the formation of metal vinylidenes from alkynes and related reactions." Journal of Organometallic Chemistry 689, no. 24 (November 2004): 4092–109. http://dx.doi.org/10.1016/j.jorganchem.2004.05.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Goldberg, Norman, and Wilhelm Graf von der Schulenburg. "Are vinylidenes possible intermediates in thermal rearrangements of substituted cyclopropenes? A theoretical study†." Chemical Communications, no. 24 (1998): 2761–62. http://dx.doi.org/10.1039/a807120i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wieteck, Marcel, Yusuke Tokimizu, Matthias Rudolph, Frank Rominger, Hiroaki Ohno, Nobutaka Fujii, and A. Stephen K. Hashmi. "Dual Gold Catalysis: Synthesis of Polycyclic Compounds via CH Insertion of Gold Vinylidenes." Chemistry - A European Journal 20, no. 49 (October 8, 2014): 16331–36. http://dx.doi.org/10.1002/chem.201404987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bianchini, Claudio, Lionel Glendenning, Maurizio Peruzzini, Antonio Romerosa, and Fabrizio Zanobini. "A novel reaction of coordinated vinylidenes: coupling with hydrogen sulfide to give a η1-thioaldehyde." J. Chem. Soc., Chem. Commun., no. 19 (1994): 2219–20. http://dx.doi.org/10.1039/c39940002219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xia, Yuanzhi, Alexander S. Dudnik, Yahong Li, and Vladimir Gevorgyan. "On the Validity of Au-vinylidenes in the Gold-Catalyzed 1,2-Migratory Cycloisomerization of Skipped Propargylpyridines." Organic Letters 12, no. 23 (December 3, 2010): 5538–41. http://dx.doi.org/10.1021/ol1024794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Worthington, Sharon E., and Chistopher J. Cramer. "Density functional calculations of the influence of substitution on singlet–triplet gaps in carbenes and vinylidenes." Journal of Physical Organic Chemistry 10, no. 10 (October 1997): 755–67. http://dx.doi.org/10.1002/(sici)1099-1395(199710)10:10<755::aid-poc935>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wieteck, Marcel, Yusuke Tokimizu, Matthias Rudolph, Frank Rominger, Hiroaki Ohno, Nobutaka Fujii, and A. Stephen K. Hashmi. "ChemInform Abstract: Dual Gold Catalysis: Synthesis of Polycyclic Compounds via C-H Insertion of Gold Vinylidenes." ChemInform 46, no. 13 (March 2015): no. http://dx.doi.org/10.1002/chin.201513143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

de los Ríos, Isaac, Emilio Bustelo, M. Carmen Puerta, and Pedro Valerga. "Isomerization of Internal Alkynones to Vinylidenes in Tris(pyrazolyl)borate Ruthenium Complexes. Solution and Solid-State Kinetics." Organometallics 29, no. 7 (April 12, 2010): 1740–49. http://dx.doi.org/10.1021/om100084x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Varela-Fernández, Alejandro, Carlos González-Rodríguez, Jesús A. Varela, Luis Castedo, and Carlos Saá. "Cycloisomerization of Aromatic Homo- and Bis-homopropargylic Alcohols via Catalytic Ru Vinylidenes: Formation of Benzofurans and Isochromenes." Organic Letters 11, no. 22 (November 19, 2009): 5350–53. http://dx.doi.org/10.1021/ol902212h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pombeiro, Armando J. L. "Electron-donor/acceptor properties of carbynes, carbenes, vinylidenes, allenylidenes and alkynyls as measured by electrochemical ligand parameters." Journal of Organometallic Chemistry 690, no. 24-25 (December 2005): 6021–40. http://dx.doi.org/10.1016/j.jorganchem.2005.07.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bertha, Ferenc, József Fetter, Károly Lempert, Mária Kajtár-Peredy, Gábor Czira, and Ernő Koltai. "Relative migratory aptitudes of hydrogen, benzoyl, 4-methoxyphenyl and 4-nitrophenyl groups in some unsaturated carbenes (vinylidenes)." Tetrahedron 57, no. 42 (October 2001): 8889–95. http://dx.doi.org/10.1016/s0040-4020(01)00873-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bruneau, Christian, and Pierre H. Dixneuf. "Metal Vinylidenes and Allenylidenes in Catalysis: Applications in Anti-Markovnikov Additions to Terminal Alkynes and Alkene Metathesis." Angewandte Chemie International Edition 45, no. 14 (March 27, 2006): 2176–203. http://dx.doi.org/10.1002/anie.200501391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Utegenov, Kamil I., Vasily V. Krivykh, Oleg S. Chudin, Alexander F. Smol'yakov, Fedor M. Dolgushin, Oleg V. Semeikin, Nikolai A. Shteltser, and Nikolai A. Ustynyuk. "Adducts of Mn and Re vinylidenes with P–OR nucleophiles: Hydrolysis rather than the intramolecular Michaelis–Arbuzov rearrangement." Journal of Organometallic Chemistry 867 (July 2018): 113–24. http://dx.doi.org/10.1016/j.jorganchem.2017.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bucher, Janina, Tim Stößer, Matthias Rudolph, Frank Rominger, and A. Stephen K. Hashmi. "CO Extrusion in Homogeneous Gold Catalysis: Reactivity of Gold Acyl Species Generated through Water Addition to Gold Vinylidenes." Angewandte Chemie International Edition 54, no. 5 (December 15, 2014): 1666–70. http://dx.doi.org/10.1002/anie.201409859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mutoh, Yuichiro, Youichi Ishii, and Shinichi Saito. "Direct Formation of Disubstituted Vinylidenes from Internal Alkynes at Group 8 Metal Complexes and its Application to Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 78, no. 7 (July 1, 2020): 691–702. http://dx.doi.org/10.5059/yukigoseikyokaishi.78.691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beach, Nicholas J., Andrew E. Williamson, and Gregory J. Spivak. "A comparison of Cp*- and Tp-ruthenium carbyne complexes prepared via site selective electrophilic addition to neutral ruthenium vinylidenes." Journal of Organometallic Chemistry 690, no. 21-22 (November 2005): 4640–47. http://dx.doi.org/10.1016/j.jorganchem.2005.07.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bertha, Ferenc, Jozsef Fetter, Karoly Lempert, Maria Kajtar-Peredy, Gabor Czira, and Erno Koltai. "ChemInform Abstract: Relative Migratory Aptitudes of Hydrogen, Benzoyl, 4-Methoxyphenyl and 4-Nitrophenyl Groups in Some Unsaturated Carbenes (Vinylidenes)." ChemInform 33, no. 4 (May 23, 2010): no. http://dx.doi.org/10.1002/chin.200204057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ye, Longwu, Yanzhao Wang, Donald H. Aue, and Liming Zhang. "Experimental and Computational Evidence for Gold Vinylidenes: Generation from Terminal Alkynes via a Bifurcation Pathway and Facile C–H Insertions." Journal of the American Chemical Society 134, no. 1 (December 28, 2011): 31–34. http://dx.doi.org/10.1021/ja2091992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bucher, Janina, Tim Stoesser, Matthias Rudolph, Frank Rominger, and A. Stephen K. Hashmi. "ChemInform Abstract: CO Extrusion in Homogeneous Gold Catalysis: Reactivity of Gold Acyl Species Generated Through Water Addition to Gold Vinylidenes." ChemInform 46, no. 24 (May 27, 2015): no. http://dx.doi.org/10.1002/chin.201524102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bruce, Michael I., Alexandre Burgun, Guillaume Grelaud, Claude Lapinte, Brian W. Skelton, and Natasha N. Zaitseva. "Reactions of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) with Alkynyl-Iron- and -Ruthenium Complexes: Synthesis of Ru{C=CC(CN)=C6H4=C(CN)2}(PPh3)2Cp, a New Donor - Acceptor Molecular Array." Australian Journal of Chemistry 65, no. 7 (2012): 763. http://dx.doi.org/10.1071/ch11493.

Full text
Abstract:
Reactions of 7,7,8,8-tetracyanoquinodimethane (TCNQ) with the alkynyl-iron and ruthenium complexes [M](C≡CR) {[M] = Fe(dppe)Cp*, Ru(PPh3)2Cp; R = H, Ph} are described. The iron complex Fe(C≡CPh)(dppe)Cp* (2a) is oxidized by TCNQ to give the kinetically stable salt [2a•+][TCNQ]•– . Displacement of [TCNQ]•– is achieved by ionic metathesis upon addition of KPF6 to produce [2a•+]PF6. In contrast, Fe(C≡CH)(dppe)Cp* (2b) reacted with TCNQ to give a mixture of compounds containing Fe(=C=CH2)(dppe)Cp* (3a), {Fe(dppe)Cp*}2(μ-C=CHCH=C) (3b), and the zwitterionic complex Fe+{=C=CHC(CN)2C6H4C–(CN)2}(dppe)Cp* (3c). In contrast, the reaction of TCNQ with Ru(C≡CR)(PPh3)2Cp (4a, R = Ph; 4b, R = H) gave selectively the zwitterionic vinylidenes Ru+{=C=CRC(CN)2C6H4C–(CN)2}(PPh3)2Cp (5a, R = Ph; 5b, R = H), in which the Ru centres are positively charged and the counter-anion is located on the further C(CN)2 group. On heating 5b, elimination of HCN affords Ru{C≡CC(CN)=C6H4=C(CN)2}(PPh3)2Cp (1), while similar treatment of 5a gives Ru{η3-C(CN)2CPh=C6H4=C(CN)2}(PPh3)Cp (6) with loss of PPh3. X-ray structures of 1, 5a, and 6, cyclic voltammetry, and UV-vis spectroscopy of 1 provided evidence for the electronic structures of the new complexes.
APA, Harvard, Vancouver, ISO, and other styles
44

Bustelo, Emilio, Manuel Jiménez-Tenorio, M. Carmen Puerta, and Pedro Valerga. "Ruthenium Allenylidene/Alkenylcarbyne Complexes Triggering Keto−Enol Tautomerism: An Alternative Approach to γ-Keto Vinylidenes from Simple Ketones and 1,3-Dicarbonyl Compounds." Organometallics 25, no. 16 (July 2006): 4019–25. http://dx.doi.org/10.1021/om060453y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hwang, Jae Hyung, Howon Choi, Seung Hyun Lee, Ga Hee Kim, Won Young Jeong, Dae Young Lim, and Ji Ho Youk. "Polymerization and Wet-spinning of Flame Retardant Poly(acrylonitrile-co-vinylidene chloride) Copolymers : Effect of Vinylidene Chloride Content." Polymer Korea 42, no. 6 (November 30, 2018): 1077–84. http://dx.doi.org/10.7317/pk.2018.42.6.1077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sarpong, Richmond. "Book Review of Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis . Edited by Christian Bruneau and Pierre Dixneuf (CNRS-Universé de Rennes I, France). Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim. 2008. xviii + 338 pp. $200. ISBN 978-3-527-31892-6 ." Journal of the American Chemical Society 130, no. 44 (November 5, 2008): 14901. http://dx.doi.org/10.1021/ja807249d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bamber, Michael, Simon F. T. Froom, Michael Green, Michael Schulz, and Helmut Werner. "Nucleophilic attack by isocyanides, phosphines and cyclohexenesulphide on the α-carbon of “side-on” bonded μ-σ : η2-(4e)-vinylidenes; formation of thioketene and thioaldehyde dimolybdenum complexes." Journal of Organometallic Chemistry 434, no. 3 (August 1992): C19—C25. http://dx.doi.org/10.1016/0022-328x(92)83373-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Son, Tae Won, Jong Hwan Kim, Won Mi Choi, Fei Fei Han, and Oh Kyeong Kwon. "Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films." Polymer Korea 35, no. 2 (March 31, 2011): 130–35. http://dx.doi.org/10.7317/pk.2011.35.2.130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, Hong-Ying, Lan Xu, Na Si, and Xiao-Peng Tang. "Thermal treatment for nanofibrous membrane." Thermal Science 18, no. 5 (2014): 1685–87. http://dx.doi.org/10.2298/tsci1405685l.

Full text
Abstract:
Poly(vinylidene fluoride) nanofibrous membranes with high porosity, large electrolyte solution uptake, and adequate mechanical properties were prepared by electrospinning. The physical properties of the electrospun poly(vinylidene fluoride) membranes can be improved by thermal treatment. Results showed after the thermal treatment, there had appeared ever-increasing tensile strength and elongation of the poly(vinylidene fluoride) membranes. The crystal structures of poly(vinylidene fluoride) fibers were greatly improved.
APA, Harvard, Vancouver, ISO, and other styles
50

Bernhardt, Wolfgang, Hans-Thomas Schacht, and Heinrich Vahrenkamp. "Umwandlungen zwischen Vinyliden- und Alkylidin-verbrückten Dreikernclustern / Interconversions between Vinylidene and Alkylidyne Bridged Trinuclear Clusters." Zeitschrift für Naturforschung B 44, no. 9 (September 1, 1989): 1060–66. http://dx.doi.org/10.1515/znb-1989-0913.

Full text
Abstract:
Based on the observation that the alkylidyne bridged cluster HFeCo2(CO)9(μ3-C—CH3) spontaneously loses H2 to form the vinylidene bridged cluster FeCo2(CO)9(μ3-C=CH2), the interconversions between these types of ligands on mixed trinuclear clusters were investigated. It was found that in all cases clusters of the type HM3μ3-C—CH2R) could be transformed into clusters of the type M3(μ3-C=CHR); for M3 = FeCo2, FeCoMo, RuCoMo, RuCoW, OsCoMo, OsCoW; for R = H and in one case CH3; for dehydrogenation by thermolysis and in one case H+/H- elimination. Conversely, hydrogenation of the vinylidene bridged clusters to the alkylidyne bridged clusters was only possible for the FeCoMo, RuCoMo, and RuCoW systems, for the unsubstituted C=CH2 ligand, and for elemental hydrogen as the reagent. Together with previous observations this leads to the conclusion that among the interconvertible alkyne, vinylidene, and alkylidyne ligands the vinylidene unit represents the most stable entity on trinuclear clusters.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography