Academic literature on the topic 'Vinyl polymerization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vinyl polymerization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vinyl polymerization"
Zhang, Jinghan, Yibo Wu, Kaixuan Chen, Min Zhang, Liangfa Gong, Dan Yang, Shuxin Li, and Wenli Guo. "Characteristics and Mechanism of Vinyl Ether Cationic Polymerization in Aqueous Media Initiated by Alcohol/B(C6F5)3/Et2O." Polymers 11, no. 3 (March 14, 2019): 500. http://dx.doi.org/10.3390/polym11030500.
Full textReddy, Sirish K., Neil B. Cramer, Michael Kalvaitas, Tai Yeon Lee, and Christopher N. Bowman. "Mechanistic Modelling and Network Properties of Ternary Thiol - Vinyl Photopolymerizations." Australian Journal of Chemistry 59, no. 8 (2006): 586. http://dx.doi.org/10.1071/ch06193.
Full textDayter, Lily A., Kate A. Murphy, and Devon A. Shipp. "RAFT Polymerization of Monomers with Highly Disparate Reactivities: Use of a Single RAFT Agent and the Synthesis of Poly(styrene-block-vinyl acetate)." Australian Journal of Chemistry 66, no. 12 (2013): 1564. http://dx.doi.org/10.1071/ch13375.
Full textSatoh, Kotaro, and Masami Kamigaito. "Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations." MRS Proceedings 1613 (2014): 17–21. http://dx.doi.org/10.1557/opl.2014.153.
Full textSchlappa, Stephanie, Lee Josephine Brenker, Lena Bressel, Roland Hass, and Marvin Münzberg. "Process Characterization of Polyvinyl Acetate Emulsions Applying Inline Photon Density Wave Spectroscopy at High Solid Contents." Polymers 13, no. 4 (February 23, 2021): 669. http://dx.doi.org/10.3390/polym13040669.
Full textKumakura, Minoru, and Isao Kaetsu. "Radiation polymerization of 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water system." Collection of Czechoslovak Chemical Communications 53, no. 6 (1988): 1242–46. http://dx.doi.org/10.1135/cccc19881242.
Full textWang, Di, Zhen Yu Cao, and Qi Wang. "Study of Copolymerization Mechanism between Vinyl-POSS and Citronellal with Quantum Chemistry Program Based on DFT." Advanced Materials Research 391-392 (December 2011): 1498–502. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.1498.
Full textIHARA, Eiji. "Challenge to Vinyl Polymerization." Kobunshi 56, no. 1 (2007): 34. http://dx.doi.org/10.1295/kobunshi.56.34.
Full textSawamoto, Mitsuo. "Modern cationic vinyl polymerization." Progress in Polymer Science 16, no. 1 (January 1991): 111–72. http://dx.doi.org/10.1016/0079-6700(91)90008-9.
Full textOlaj, Oskar Friedrich. "Electrolytically initiated vinyl polymerization." Makromolekulare Chemie. Macromolecular Symposia 8, no. 1 (March 1987): 235–54. http://dx.doi.org/10.1002/masy.19870080119.
Full textDissertations / Theses on the topic "Vinyl polymerization"
Dorobantu, Ioana-Miruna. "Vinyl chloride polymerization in microdroplet reactor." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0037/document.
Full textVinyl chloride suspension polymerization is a common reaction in polymer industry allowing to obtain one of the world wide most used plastics, known as PVC (polyvinyl chloride). Its applications involve mostly the construction industry but other domains are also concerned. This polymerization process is highly complex due to the toxic nature of the monomer, the good manage of heat transfer and agitation. The control of these process variables directly impacts the characteristics of the final product. Even though the suspension polymerization of vinyl chloride has been extensively studied in batch reactors, there is a lack of data regarding the kinetics or the physicochemistry of a single monomer droplet during the reactions. The aim of this present work is to propose a microstructured device which enables obtaining monodisperse droplets within 200 µm in diameter, each one being considered as a polymerization reactor. After a good acknowledgement of the vinyl chloride/water system in microchannel the polymerization reaction was qualitatively described by means of droplet/polymer grain visualization. Real-time non-invasive Raman measurement has been performed on stationary vinyl chloride monomer droplets and has provided values of kinetic constants. A theoretical model was proposed, simulating the reaction conversion in good agreement with the experimental values. The morphologic characteristics of the PVC grains obtained in microreactor presented interesting features in terms of primary particle agglomeration or porosity
De, Bruyn Hank. "The Emulsion Polymerization of Vinyl Acetate." Thesis, The University of Sydney, 1999. http://hdl.handle.net/2123/381.
Full textDe, Bruyn Hank. "The Emulsion Polymerization of Vinyl Acetate." University of Sydney, Chemistry, 1999. http://hdl.handle.net/2123/381.
Full textVale, Hugo. "Population Balance Modeling of Emulsion Polymerization Reactors : applications to Vinyl Chloride Polymerization." Lyon 1, 2007. http://www.theses.fr/2007LYO10034.
Full textCette thèse est une contribution au développement de modèles mécanistiques de la polymérisation en émulsion et, plus particulièrement, une contribution à la modélisation de la formation des particules et de leur distribution de taille (DTP) lors de la polymérisation en émulsion du chlorure de vinyle. La première partie de l'étude est consacrée à l'obtention de données expérimentales. Des polymérisations ab initio ont été réalisées afin d'obtenir des données fiables sur l'effet de la concentration de tensioactif, concentration d'initiateur, vitesse d'agitation et rapport monomère/eau sur le nombre de particules formées et sur la cinétique de polymérisation. Des polymérisations ensemencées ont également été réalisées afin de déterminer l'influence de la quantité de semence et de la concentration de tensioactif sur la formation de particules par nucléation secondaire. Enfin, les isothermes d'adsorption du SDS et du SDBS sur des particules de latex de poly (chlorure de vinyle) ont été déterminées. La deuxième partie de l'étude concerne le développement et la validation du modèle de polymérisation. Celui-ci à la particularité d'utiliser les bilans de population propres aux systèmes ‘zéro-un-deux' pour déterminer la distribution jointe du nombre de radicaux et de la taille des particules. Dans l'ensemble, les résultats obtenus montrent que le modèle proposé est capable de décrire les principaux comportements retrouvés lors des polymérisations avec des valeurs physiquement plausibles des paramètres inconnus ou ajustables. Pour ce qui concerne la formation des particules, il s'avère que la prise en compte de la possibilité de nucléation (homogène ou micellaire) par les radicaux désorbés aide à expliquer les valeurs élevées du nombre de particules ainsi que l'effet négligeable de la concentration d'initiateur sur le nombre de particules. En autre, il est démontré que le phénomène d'agrégation des particules doit être pris en considération afin d'obtenir des DTPs cohérentes. Dans la troisième et dernière partie, deux nouvelles méthodes numériques pour la résolution de bilans de population d'intérêt pour la modélisation des systèmes de polymérisation en émulsion sont proposées et analysées
Morin, Aurélie. "Controlled radical polymerization of vinyl esters and vinyl amides : experimental and theoretical studies." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0117/document.
Full textThis thesis focus on Controlled Radical Polymerization (CRP) of vinyl esters and vinyl amides. One of the possibilities to achieve this control is a dynamic reversible trapping of the growing radical chains (P•) by a controlling agent (T) to form a dormant species (P─T’). The radical concentration in the medium can be dramatically reduced so that the unwanted terminations are disfavored and polymers with controlled molecular weights and low dispersity can be obtained. A way to achieve this control is the use of metallic complexes, which can oxidize and form a metal-carbon bond, as trapping agent in the so-called Organometallic Mediated Radical Polymerization (OMRP). So far, different transition metals have been used with gretaer or smaller success. In this study, the synthesis of copper(I) complexes and their investigation for the vinyl acetate and ethylene polymerization under OMRP conditions were performed. We also used computational chemistry as a tool to better understand why the cobalt(II) acetylacetonate (Co(acac)2) has, so far, given the best results for either vinyl acetate or vinyl amides polymerization. Thanks to Density Functional Theory (DFT), the crucial role of the monomer carbonyl group coordination to cobalt was pointed out
Altinsoy, Sule. "Polymerization And Characterization Of N-vinyl-2-pyrrolidone." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611238/index.pdf.
Full text#56256
&
#56394
-radiation in the presence of atmospheric oxygen and under vacuum at different periods. Polymerization also conducted by using chemical initiator, &
#56256
&
#56466
-Azoisobutyronitrile, AIBN, in bulk at different temperatures and times. The activation energy for polymerization was found from Arrhenius plot as 31,8 kJ/mol. By using the Fox-Flory equation T&
#56256
&
#56394
and k values calculated for each polymerization methods. The polymer obtained was white gel type. The different types of polymer obtained were investigated by FT-IR, 1H-NMR and 13C-NMR, DSC, TGA and viscosity measurement methods. According to the FT-IR and NMR results, the polymerizations proceeded via vinyl group. As expected, solution viscosity measurements and DSC results showed that the glass transition temperature of polymer increases with increasing molecular weight.
Mishima, Eri. "Organoheteroatom-Mediated Living Vinyl Polymerization under Acidic Condition." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157613.
Full textScholten, Marc Davis. "Strategies for the controlled polymerization of vinyl monomers /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textCho, Chang Gi. "Controlled polymerization of alkyl vinyl ethers via 'covalent' propagating species." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53930.
Full textPh. D.
Holt, J. M. "Studies on the formation of water soluble vinyl polymers." Thesis, University of Huddersfield, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378968.
Full textBooks on the topic "Vinyl polymerization"
1952-, Yagci Yusuf, ed. Handbook of radical vinyl polymerization. New York: Marcel Dekker, 1998.
Find full textVinyl acetate emulsion polymerization and copolymerization with acrylic monomers. Boca Raton, Fla: CRC Press, 2000.
Find full textK, Mishra Munmaya, Yagci Yusuf 1952-, and Mishra Munmaya K, eds. Handbook of vinyl polymers: Radical polymerization, process, and technology. 2nd ed. Boca Raton, FL: Taylor & Francis, 2008.
Find full textMinsker, K. S. Degradation and stabilization of vinyl-chloridebased polymers. Oxford: Pergamon Press, 1988.
Find full textMinsker, K. S. Degradation and stabilization of vinyl chloride-based polymers. Oxford: Pergamon, 1988.
Find full textT, Bhatt Ramakrishna, and United States. National Aeronautics and Space Administration., eds. The effect of polymer char on nitridation kinetics of silicon. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textT, Bhatt Ramakrishna, and United States. National Aeronautics and Space Administration., eds. The effect of polymer char on nitridation kinetics of silicon. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textEmulsion Polymerization of Vinyl Acetate. Springer, 2012.
Find full textEl-Aasser, Mohamed S. Emulsion Polymerization of Vinyl Acetate. Springer London, Limited, 2012.
Find full textEl-Aasser, Mohamed S. Emulsion Polymerization of Vinyl Acetate. Springer, 2012.
Find full textBook chapters on the topic "Vinyl polymerization"
Mori, Hideharu, Axel H. E. Müller, and Peter F. W. Simon. "Self-Condensing Vinyl Polymerization." In Hyperbranched Polymers, 139–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929001.ch5.
Full textIshizone, Takashi, Yuki Kosaka, and Raita Goseki. "Anionic Polymerization of Polar Vinyl Monomers: Vinylpyridines, (Meth)acrylates, (Meth)acrylamides, (Meth)acrylonitrile, Phenyl Vinyl Sulfoxide, Benzofulvene, and Other Monomers." In Anionic Polymerization, 127–89. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_4.
Full textHollmann, Frank. "Enzymatic Polymerization of Vinyl Polymers." In Biocatalysis in Polymer Chemistry, 143–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632534.ch6.
Full textMathers, Robert T., Andrew J. D. Magenau, Kristin Schröder, and Krzysztof Matyjaszewski. "Overview of Controlled/Living polymerization Methods of Vinyl Monomers." In Monitoring Polymerization Reactions, 29–44. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118733813.ch2.
Full textFontanille, Michel, and Yves Gnanou. "Anionic Polymerization of Vinyl and Related Monomers." In Macromolecular Engineering, 7–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631421.ch2.
Full textTanaka, Ryo, and Takeshi Shiono. "Coordination Polymerization (Styrene and Polar Vinyl Monomers)." In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_180-1.
Full textAbreu, Carlos M. R., Ana C. Fonseca, Nuno M. P. Rocha, James T. Guthrie, Arménio C. Serra, and Jorge F. J. Coelho. "Reversible Deactivation Radical Polymerization of Vinyl Chloride." In ACS Symposium Series, 227–61. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1284.ch010.
Full textTang, Huadong, Maciej Radosz, and Youqing Shen. "Controlled/"Living" Radical Polymerization of Vinyl Acetate." In ACS Symposium Series, 139–57. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1023.ch010.
Full textOkamoto, Yoshio, Kazunobu Yamada, and Tamaki Nakano. "Stereochemistry in Radical Polymerization of Vinyl Esters." In ACS Symposium Series, 57–67. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0768.ch004.
Full textTanaka, Ryo, and Takeshi Shiono. "Coordination Polymerization (Styrene and Polar Vinyl Monomers)." In Encyclopedia of Polymeric Nanomaterials, 474–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_180.
Full textConference papers on the topic "Vinyl polymerization"
Jing, Yang, Zeng Hui, and Huang Jiangping. "Vinyl Acetate Polymerization Rate Prediction Based on FOA GNN." In 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE, 2014. http://dx.doi.org/10.1109/3pgcic.2014.61.
Full textJiangping Huang, Zhig, and Huihui Tao. "A support vector machines for the polymerization rate of vinyl acetate." In 2010 8th World Congress on Intelligent Control and Automation (WCICA 2010). IEEE, 2010. http://dx.doi.org/10.1109/wcica.2010.5554278.
Full textBermesheva, Evgeniya, Alyona Wozniak, Gleb Karpov, Alena Zudina, Gleb Chesnokov, Pavel Gribanov, Maxim Topchiy, Andrey F. Asachenko, Mikhail Nechaev, and Maxim Bermeshev. "Addition polymerization of 5-vinyl-2-norbornene and 5-ethylidene-2-norbornene." In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045946.
Full textDiao, Cuimei, and Yingquan Zou. "Photoinitiated polymerization of new hybrid monomer containing vinyl ether and (methyl) acryloyl groups." In SPIE Advanced Lithography, edited by Robert D. Allen and Mark H. Somervell. SPIE, 2011. http://dx.doi.org/10.1117/12.879382.
Full textLi, Wei, and Ying Quan Zou. "Synthesize and polymerization of novel photocurable vinyl ether monomers containing perfluorinated aromatic units." In SPIE Advanced Lithography, edited by Mark H. Somervell and Thomas I. Wallow. SPIE, 2012. http://dx.doi.org/10.1117/12.916674.
Full textHuang, Jiangping, Huihui Tao, and Zhigao Zhu. "Soft-Sensing Modeling Method of Vinyl Acetate Polymerization Rate Based on BP Neural Network." In 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmtma.2010.326.
Full textKovalenko, Yulia F., and Ekaterina A. Shulaeva. "Mathematical methods of modeling of polymerizer reactor for the process of polymerization of vinyl chloride." In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0092460.
Full textHwang, Ho-Sang, Bum-Kyoung Seo, and Kune-Woo Lee. "Strippable Core-Shell Polymer Emulsion for Decontamination of Radioactive Surface Contamination." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40193.
Full textAl-Alawi, Saeed S. "Effect of temperature on the rate of polymerization of 4-vinyl pyrrolidone in the presence of poly(acrylic acid) in nonaqueous medium by Fourier transform infrared spectroscopy." In Luebeck - DL tentative, edited by Herbert M. Heise, Ernst H. Korte, and Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56450.
Full textReports on the topic "Vinyl polymerization"
Percec, Virgil, Myongsoo Lee, and C. Ackerman. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 9. Living Cationic Polymerization of 5-((4-Cyano-4'-Biphenyl) oxy)pentyl Vinyl Ethers and 7-((4-Cyano-4'-Biphenyl)oxy)heptyl Vinyl Ether, and the Mesomorphic Behavior of the Resulting Polymers. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada229769.
Full textPercec, V., Q. Zheng, and M. Lee. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 13. Synthesis and Living Cationic Polymerization of 4-((S(-)-2- Methyl-1-Butyl)Oxycarbonyl)-4'-(omega-Oxyalkyl-1-Vinyl Ether)Biphenyl with Undecanyl and Hexyl Alkyl Groups. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada235791.
Full textPerce, Virgil, Myongsoo Lee, and Dimitris Tomazos. Molecular Engineering of Liquid Crystalline Polymers by Living Cationic Polymerization. 21. Synthesis and Characterization of Poly(3-((4-Cyano-4'- Biphenyl)oxy)propyl Vinyl Ether) Macromonomers. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada248305.
Full text