Academic literature on the topic 'Vinyl'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vinyl.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vinyl"
Wibowo, Heru Budi. "ISOMERISASI POLIMER MELALUI REAKSI SAIN SAYEF UNTUK MENGUBAH KONFIGURASI HTPB (HYDROXYL TERMINATED POLYBUTADIENE) POLYMER ISOMERIZATION BY SAIN SAYEF REACTION TO MODIFY CONFIGURATION OF HTPB (HYDROXYL TERMINATED POLYBUTADIENE)." Jurnal Teknologi Dirgantara 14, no. 2 (July 21, 2017): 137. http://dx.doi.org/10.30536/j.jtd.2016.v14.a2387.
Full textKarjala, Santhosh priya, Vijay Kumar Kuttynadar Rajammal, Suresh Gopi, Rajesh Ravi, Devanathan Chockalingam, and Meenakshi Chinathambi Muthukaruppan. "INFLUENCE OF IPNS (VINYLESTER/EPOXY/POLYURETHANE) ON THE MECHANICAL PROPERTIES OF GLASS/CARBON FIBER REINFORCED HYBRID COMPOSITES." IIUM Engineering Journal 23, no. 1 (January 4, 2022): 339–48. http://dx.doi.org/10.31436/iiumej.v23i1.2031.
Full textNurhikmawati, Agita Risma, and Wachidatul Linda Yuhanna. "PEMBERDAYAAN KELOMPOK KOPERASI WANITA PUTRI JATI EMAS MELALUI PEMBUATAN HOUSEWARE DARI LIMBAH VINIL." Panrita Abdi - Jurnal Pengabdian pada Masyarakat 4, no. 3 (June 24, 2020): 273. http://dx.doi.org/10.20956/pa.v4i3.7472.
Full textNurlela, Nurlela, and Risnawati Risnawati. "PENGARUH RESIN TERHADAP PERUBAHAN WARNA PADA CAT TEMBOK." JURNAL SAINS NATURAL 5, no. 2 (December 16, 2019): 132. http://dx.doi.org/10.31938/jsn.v5i2.264.
Full textWang, Jun, Matthias Grünbacher, Simon Penner, Maged F. Bekheet, and Aleksander Gurlo. "Porous Silicon Oxycarbonitride Ceramics with Palladium and Pd2Si Nanoparticles for Dry Reforming of Methane." Polymers 14, no. 17 (August 25, 2022): 3470. http://dx.doi.org/10.3390/polym14173470.
Full textTius, Marcus A., and Joel K. Kawakami. "Vinyl Fluorides from Vinyl Stannanes." Synthetic Communications 22, no. 10 (May 1992): 1461–71. http://dx.doi.org/10.1080/00397919208021614.
Full textBurns, Tim. "Vinyl news focus: Vinyl recycling." Journal of Vinyl and Additive Technology 11, no. 4 (December 2005): 135. http://dx.doi.org/10.1002/vnl.20051.
Full textThorwirth, Sven, Michael E. Harding, John B. Dudek, and Michael C. McCarthy. "Equilibrium molecular structures of vinyl carbon chains: Vinyl acetylene, vinyl diacetylene, and vinyl cyanide." Journal of Molecular Spectroscopy 350 (August 2018): 10–17. http://dx.doi.org/10.1016/j.jms.2018.05.001.
Full textShaffer, O. L., V. Dimonie, M. S. El-Aasser, and J. W. Vanderhoff. "Morphology study of polyvinyl acetate latex by etching with PTA." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 366–67. http://dx.doi.org/10.1017/s0424820100153804.
Full textMarkley, Thomas J., Robert K. Pinschmidt, and John W. Vanderhoff. "Grafting reactions of vinyl acetate onto poly[(vinyl alcohol)-co-(vinyl acetate)]." Journal of Polymer Science Part A: Polymer Chemistry 34, no. 13 (September 30, 1996): 2581–94. http://dx.doi.org/10.1002/(sici)1099-0518(19960930)34:13<2581::aid-pola4>3.0.co;2-v.
Full textDissertations / Theses on the topic "Vinyl"
Lynam, Jason Martin. "Vinyl ketone and vinyl aldehyde complexes of ruthenium." Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265558.
Full textYusuf, Said Abdi. "Miscibility study of poly(vinyl pyrrolidone)poly(vinyl butyral) blends." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60693.
Full textCroot, Robert Arthur. "The characterisation and adsorption of vinyl alcohol vinyl acetate copolymers." Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303767.
Full textZeise, Tina. "Worte und Vinyl." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-56250.
Full textCauich-Rodriguez, Juan Valerio. "Hydrogels based on poly(vinyl alcohol-vinyl acetate) blends for biomedical applications." Thesis, Queen Mary, University of London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267577.
Full textD, Aguiar Donna-Leigh. "Surface modified cross-linked poly(vinyl alcohol)/poly(vinyl pivalate) suspension particles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5475.
Full textENGLISH ABSTRACT: In papermaking, fillers and additives are used to enhance paper properties. In this study spherical modified poly(vinyl alcohol) (PVA) particles were prepared for use as fillers. In order to determine the mechanism of adhesion of additives to cellulose (paper) fibres, these particles were modified to have surface functionality, with cationic and anionic surface charges, similar to charged polyelectrolyte additives. Typically, retention aids used to improve the fibre–fibre and fibre–filler bonding are able to conform to the surface of the fibres and fillers. Oppositely charged components show strong affinity for each other, e.g. cationic polyelectrolyte groups adhere to anionic surface charges on the fibres. The spherical PVA particles were prepared by the saponification of spherical poly(vinyl pivalate) (PVPi) precursor particles. These PVPi particles, prepared via suspension polymerisation, were cross-linked with a divinyl ether comonomer. The vinyl pivalate (VPi) suspension polymerisation was successfully carried out and afforded relatively uniformly distributed PVPi particles, with diameters of 0.5–10 mm. The cross-linked PVPi particles were then saponified in tetrahydrofuran (THF) as swelling solvent, to afford PVA with various degrees of saponification (DS). The spherical shape was lost and fibrous material was obtained when uncross-linked PVPi particles were saponified. Cross-linking the spherical PVPi particles (PVA precursor) proved innovative, and essential in maintaining the spherical form during saponification to PVA/PVPi. By varying the saponification time periods, various DS were obtained, as characterised by solid state NMR spectroscopy. Surface modification of the PVA/PVPi particles was carried out with cationic and anionic groups via the Williamson ether synthesis. Ionic modification of these rigid spherical PVA/PVPi particles was carried out in order to study their adherence to cellulose fibres, compared to the adherence of similarly modified starches with cellulose fibres. Fluorescent labelling of the different modified particles was carried out using two complimentary coloured fluorescent markers. Fluorescence imaging and scanning electron microscopy (SEM) enabled the observation of particle– fibre and particle–particle interaction. Results indicated that the negative groups are sparse on the cellulose fibres, and therefore particles with low functionality but which are able change shape and conform and adhere to the surface of the cellulose fibres are required for effective adhesion. These modified spherical PVA/PVPi particles are unique as they mirror the chemistry of functionalised starch and cellulose particles, yet maintain their shape and have a fixed size, measurable by SEM and transmission electron microscopy (TEM). Field-flow fractionation was also used to characterise and measure these relatively large cross-linked and fixed diameter particles.
AFRIKAANSE OPSOMMING: In papierproduksie word vulstowwe en bymiddels gebruik om die eienskappe van papier te verbeter. In hierdie studie is sferiese poli(vinielalkohol) (PVA) partikels berei vir gebruik as vulstowwe. Om ten einde die meganisme van die bymiddelklewing aan die sellulose vesels (papier) te bepaal, is die oppervlakke van hierdie partikels gewysig met kationiese of anioniese groepe, om 'n oppervlak soortgelyk aan dié van funksionele poliëlektrolietbymiddels te verskaf. Die retensiemiddels wat gebruik word om die vesel–vesel en vesel–vulstof binding te verbeter is tipies in staat om te konformeer aan die oppervlak van die vesels en vulstowwe. Teenoorgesteldgelaaide komponente toon 'n sterk affiniteit vir mekaar, bv. kationiese poliëlektrolietgroepe is vasklewend aan die anioniesgelaaide oppervlakke van die vesel. Die sferiese PVA partikels is berei deur die verseping van sferiese poli(vinielpivalaat) (PVPi) partikels. Hierdie voorloper PVPi partikels, berei deur suspensiepolimerisasie, is gekruisbind met 'n divinieleter ko-monomeer. Die vinielpivalaat (VPi) suspensiepolimerisasie is suksesvol uitgevoer en relatief eenvormig verspreide sferiese PVPi partikels is berei, met deursnitte tussen 0.5–10 mm. Die gekruisbinde PVPi partikels is daarna gesaponifiseer in tetrahidrofuraan (THF) as oplosmiddel, om PVA met verskillende grade van verseping (DS) te berei. Die sferiese vorm raak verlore en veselagtige materiaal is verkry wanneer PVPi partikels met geen kruisbinding verseep is. Kruisbinding van die sferiese PVPi partikels (PVA voorloper) is voordelig en noodsaaklik om die sferiese vorm tydens die verseping tot PVA/PVPi te behou. Deur die tydsduur van verseping te verander, is verskeie grade van verseping verkry en bevestig deur vaste toestand KMR spektroskopie. Oppervlakwysiging van die PVA/PVPi partikels, om kationiese en anioniese groepe aan te heg, is uitgevoer via die Williamson etersintese. Ioniese wysiging van hierdie stram, sferiese PVA/PVPi partikels is uitgevoer om ten einde hul klewing met sellulose vesels te bestudeer en te vergelyk met die klewing van soortgelyk gewysigde stysels. Fluoressensie merking van die verskillende gewysigde partikels is uitgevoer met behulp van twee komplimentêre gekleurde fluoressensie merkers. Fluoressensie beeldvorming en SEM verskaf die waarneming van partikel–vesel en partikel–partikel interaksie. Die resultate dui daarop dat die negatiewe groepe van die sellulose vesels skaars is, en daarom is partikels met ‘n lae funksionaliteit, maar wat in staat is om van vorm te verander, aan te pas en te konformeer aan die oppervlak van die sellulose vesels, nodig vir effektiewe adhesie. Hierdie gewysigde sferiese PVA/PVPi partikels is uniek aangesien hulle die chemie van gewysigde stysel en sellulose partikels naboots, maar steeds hul vorm behou met 'n vaste grootte; meetbaar deur SEM en TEM. Veld-vloei-fraksionering is ook gebruik vir die karakterisering van hierdie relatief groot, stram, gekruisbinde partikels met bepaalde deursneë.
Auden, Noel Geraint. "Ethylene-vinyl acetate copolymers." Thesis, Lancaster University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239046.
Full textWilliams, S. "Vinyl substituted dienyl complexes." Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.255855.
Full textBuck, J. "Vinyl anions in synthesis." Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353565.
Full textLaot, Christelle Marie III. "Spectroscopic Characterization of Molecular Interdiffusion at a Poly(Vinyl Pyrrolidone) / Vinyl Ester Interface." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36944.
Full text
In this research, the molecular interdiffusion across a poly(vinyl pyrrolidone))/vinyl ester monomer (PVP/VE) interface is being investigated by Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) spectroscopy. The ATR method which can be used to characterize the transport phenomena, offers several advantages, such as the ability to monitor the diffusion in situ or to observe chemical reactions. In order to separate the effects of the vinyl ester monomer diffusion and the crosslinking reaction, ATR experiments were carried out at temperatures below the normal curing temperature. Diffusion coefficients were determined by following variations in infrared bands as a function of time, and fitting this data to a Fickian model. The values of the diffusion coefficients calculated were consistent with values found in the literature for diffusion of small molecules in polymers. The dependence of diffusion coefficients on temperature followed the Arrhenius equation. Hydrogen bonding interactions were also characterized. The diffusion model used in this study, however, does not seem to be appropriate for the particular (PVP/VE) system. Because the glass transition temperature of the PVP changed as diffusion proceeded, one would expect that the mutual diffusion coefficient did not stay constant. In fact, it was shown that the Tg can drop by 140oC during the diffusion process. A more suitable model of the (PVP/VE) system should take into account plasticization, hydrogen bonding, and especially a concentration dependent diffusion coefficient. Further analysis is therefore needed.
Master of Science
Books on the topic "Vinyl"
Organization, World Health, and International Agency for Research on Cancer, eds. 1,3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). Lyon: International Agency for Research on Cancer Press, 2008.
Find full textAlain, Mousseigne, ed. Vinyl vocabulary. Munich: Hirmer, 2012.
Find full textVinyl demand. Bath: Shortlist, 2009.
Find full textHamling, Tom. Celebrity vinyl. New York: Mark Batty Publisher, 2011.
Find full textExtreme vinyl cafe. Toronto: Viking Canada, 2009.
Find full textVinyl cafe diaries. Toronto: Penguin Canada, 2007.
Find full textJohn, Stanley. Miller's collecting vinyl. London: Miller's, 2002.
Find full textLusk, Dorothy. Sleek vinyl drill. Vancouver: Thuja Books, 2000.
Find full textVinyl cafe diaries. Toronto: Viking, 2003.
Find full textPrinz, Yvonne. The Vinyl Princess. New York: HarperCollins, 2009.
Find full textBook chapters on the topic "Vinyl"
Osborne, Richard. "Vinyl, Vinyl Everywhere." In The Routledge Companion to Media Technology and Obsolescence, 200–214. New York : Routledge/Taylor & Francis Group, 2019.: Routledge, 2018. http://dx.doi.org/10.4324/9781315442686-14.
Full textGooch, Jan W. "Vinyl." In Encyclopedic Dictionary of Polymers, 793. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12538.
Full textGooch, Jan W. "Poly(vinyl acetate co vinyl chloride)." In Encyclopedic Dictionary of Polymers, 576. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9253.
Full textBährle-Rapp, Marina. "Vinyl Acetate." In Springer Lexikon Kosmetik und Körperpflege, 583. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_11036.
Full textOda, Yukari, and Yu Shinke. "Vinyl Polymers." In Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_257-1.
Full textIrvine, William M. "Vinyl Cyanide." In Encyclopedia of Astrobiology, 2602–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1830.
Full textIrvine, William M. "Vinyl Cyanide." In Encyclopedia of Astrobiology, 1743. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1830.
Full textOda, Yukari, and Yu Shinke. "Vinyl Polymers." In Encyclopedia of Polymeric Nanomaterials, 2558–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_257.
Full textGras, J. L. "Vinyl Functions." In Inorganic Reactions and Methods, 121–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch41.
Full textGooch, Jan W. "Vinyl Acetate." In Encyclopedic Dictionary of Polymers, 794. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12539.
Full textConference papers on the topic "Vinyl"
Seok Lyoo, Won, Jin Wook Cha, Kun Young Kwak, Young Jae Lee, Han Yong Jeon, Yong Sik Chung, Seok Kyun Noh, A. D’Amore, Domenico Acierno, and Luigi Grassia. "Preparation of Syndiotactic Poly(vinyl alcohol)∕Poly(vinyl pivalate∕vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification." In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455646.
Full textFilatova, E. G., O. V. Lebedeva, Yu N. Pozhidaev, A. A. Konovalenko, and R. T. Usmanov. "Aluminosilicates Modified by Poly-1-Vinyl Imidazole and Poly-4-Vinyl Pyridine." In Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/isees-18.2018.78.
Full textLiu, Chengcen, Tao Dou, Feng Qiu, Jiangao Yang, and Kai Shi. "Study on the Stability of Poly(Vinyl Alcohol)/Poly(Vinyl Acetate) Electrothermal Membrane." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516568.
Full textRaghavan, Dharmaraj. "Functionalized Clay Vinyl Ester Nanocomposites." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1143-kk05-22.
Full textDesai, Umang, Bhuwanesh Kumar Sharma, and Aparna Singh. "Vinyl acetate content tailoring in ethylene vinyl acetate improves the resilience against environmental stressors." In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC). IEEE, 2022. http://dx.doi.org/10.1109/pvsc48317.2022.9938499.
Full textKolesniková, Lucie, Stepan Urban, J. C. Guillemin, Patrik Kania, Tereza Uhlíková, Kateřina Luková, Karel Vávra, and Jan Koucký. "THE MILLIMETER WAVE SPECTRA OF VINYL ISOCYANATE AND VINYL KETENE, CANDIDATES FOR ASTRONOMICAL OBSERVATIONS." In 2022 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.wn10.
Full textIzutsu, Tomoyuki, Daisuke Odaka, Marina Komatsu, Yoshimichi Ohki, Maya Mizuno, Yoshiaki Nakamura, and Naofumi Chiwata. "Terahertz and far-infrared spectroscopic estimation of vinyl acetate content in ethylene-vinyl acetate copolymer." In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7351988.
Full textZakharenko, Olena, T. Huet, Juan-Ramon Aviles Moreno, and R. Motiyenko. "ROTATIONAL SPECTROSCOPY OF METHYL VINYL KETONE." In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.rf15.
Full textMartin-Drumel, Marie-Aline, Stephan Schlemmer, Frank Lewen, Holger Müller, Sven Thorwirth, and Oliver Zingsheim. "PURE ROTATIONAL SPECTROSCOPY OF VINYL MERCAPTAN." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.mg15.
Full textCOSTA, L., V. BRUNELLA, and P. BRACCO. "IRRADIATION EFFECTS ON POLY (VINYL CHLORIDE)." In Proceedings of the 7th International Conference on ICATPP-7. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776464_0118.
Full textReports on the topic "Vinyl"
Fink, Bruce K., Travis A. Bogetti, Molly A. Stone, John W. Gillespie, and Jr. Thermochemical Response of Vinyl-Ester Resin. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada399117.
Full textHart, Robert, Charlie Curcija, Dariush Arasteh, Howdy Goudey, Christian Kohler, and Stephen Selkowitz. Research Needs: Glass Solar Reflectance and Vinyl Siding. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1050447.
Full textFink, Bruce K., Mahendra B. Dorairaj, John W. Gillespie, and Jr. Vinyl-Ester (VE) Cure Characterization Via Direct Current Sensors. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada392622.
Full textTim Hayes. Gas Leak from Vinyl Taped Stainless Steel Dressing Jars. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/8195.
Full textHogen-Esch, Thieo E. Synthesis of New Vinyl Monomers for Chemical Agent Sensing Applications. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada398391.
Full textFox, Joseph R., Steve Bassetti, Lawrence Drzal, Jared Stonecash, and Philip schell. Optimized Resins and Sizings for Vinyl Ester/Carbon Fiber Composites. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1461504.
Full textHuggett, Clayton, and Barbara C. Levin. Toxicity of the pyrolysis and combustion of poly(vinyl chlorides) :. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.85-3286.
Full textDutta, Piyush K., and Uday Vaidya. A Study of the Long-Term Applications of Vinyl Sheet Piles. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada431046.
Full textFink, Bruce K., Emanuele F. Gillio, Geoffrey P. McKnight, John W. Gillespie, Advani Jr., and Suresh G. Co-Injection Resin Transfer Molding of Vinyl-Ester and Phenolic Composites. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada373528.
Full textStickle, W. F., J. R. Reynolds, and C. A. Jolly. Surface Characterization of Electrically Conducting Nickel Tetrathiooxalate/Poly(vinyl alcohol) Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada234598.
Full text