Academic literature on the topic 'VIDEO ANOMALY DETECTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'VIDEO ANOMALY DETECTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "VIDEO ANOMALY DETECTION"
Zhang, Yuxing, Jinchen Song, Yuehan Jiang, and Hongjun Li. "Online Video Anomaly Detection." Sensors 23, no. 17 (August 26, 2023): 7442. http://dx.doi.org/10.3390/s23177442.
Full textde Paula, Davi D., Denis H. P. Salvadeo, and Darlan M. N. de Araujo. "CamNuvem: A Robbery Dataset for Video Anomaly Detection." Sensors 22, no. 24 (December 19, 2022): 10016. http://dx.doi.org/10.3390/s222410016.
Full textDuong, Huu-Thanh, Viet-Tuan Le, and Vinh Truong Hoang. "Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey." Sensors 23, no. 11 (May 24, 2023): 5024. http://dx.doi.org/10.3390/s23115024.
Full textMonakhov, Vladimir, Vajira Thambawita, Pål Halvorsen, and Michael A. Riegler. "GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos." Sensors 23, no. 4 (February 13, 2023): 2087. http://dx.doi.org/10.3390/s23042087.
Full textYuan, Hongchun, Zhenyu Cai, Hui Zhou, Yue Wang, and Xiangzhi Chen. "TransAnomaly: Video Anomaly Detection Using Video Vision Transformer." IEEE Access 9 (2021): 123977–86. http://dx.doi.org/10.1109/access.2021.3109102.
Full textSun, Che, Chenrui Shi, Yunde Jia, and Yuwei Wu. "Learning Event-Relevant Factors for Video Anomaly Detection." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 2 (June 26, 2023): 2384–92. http://dx.doi.org/10.1609/aaai.v37i2.25334.
Full textLi, Nannan, Xinyu Wu, Huiwen Guo, Dan Xu, Yongsheng Ou, and Yen-Lun Chen. "Anomaly Detection in Video Surveillance via Gaussian Process." International Journal of Pattern Recognition and Artificial Intelligence 29, no. 06 (August 12, 2015): 1555011. http://dx.doi.org/10.1142/s0218001415550113.
Full textSun, Li, Zhiguo Wang, Yujin Zhang, and Guijin Wang. "A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection." Sensors 23, no. 3 (February 2, 2023): 1612. http://dx.doi.org/10.3390/s23031612.
Full textBansod, Suprit, and Abhijeet Nandedkar. "Transfer learning for video anomaly detection." Journal of Intelligent & Fuzzy Systems 36, no. 3 (March 26, 2019): 1967–75. http://dx.doi.org/10.3233/jifs-169908.
Full textYang, Fan, Zhiwen Yu, Liming Chen, Jiaxi Gu, Qingyang Li, and Bin Guo. "Human-Machine Cooperative Video Anomaly Detection." Proceedings of the ACM on Human-Computer Interaction 4, CSCW3 (January 5, 2021): 1–18. http://dx.doi.org/10.1145/3434183.
Full textDissertations / Theses on the topic "VIDEO ANOMALY DETECTION"
Tran, Thi Minh Hanh. "Anomaly detection in video." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22443/.
Full textTziakos, Ioannis. "Subspace discovery for video anomaly detection." Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/387.
Full textLeach, Michael Jeremy Vincent. "Automatic human behaviour anomaly detection in surveillance video." Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3014.
Full textAu, Carmen E. "Compression-based anomaly detection for video surveillance applications." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98598.
Full textThe use of a compression-based technique inherently reduces the heavy computational and storage demands that other video surveillance applications typically have placed on the system. In order to further reduce the computational and storage load, the anomaly detection algorithm is applied to edges and people, which are image features that have been extracted from the images acquired by the camera.
Laxhammar, Rikard. "Conformal anomaly detection : Detecting abnormal trajectories in surveillance applications." Doctoral thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-8762.
Full textIsupova, Olga. "Machine learning methods for behaviour analysis and anomaly detection in video." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17771/.
Full textSpasic, Nemanja. "Anomaly Detection and Prediction of Human Actions in a Video Surveillance Environment." Thesis, University of Cape Town, 2007. http://pubs.cs.uct.ac.za/archive/00000449/.
Full textGarcía, Ling Carlos. "Graphical Glitch Detection in Video Games Using CNNs." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273574.
Full textDetta projekt svarar på följande forskningsfråga: Kan man använda Convolutional Neural Networks för att upptäcka felaktiga bilder i videospel? Vi fokuserar på de vanligast förekommande grafiska defekter i videospel, felaktiga textures (sträckt, lågupplöst, saknas och platshållare). Med hjälp av en systematisk process genererar vi data med både normala och felaktiga bilder. För att hitta defekter använder vi CNN via både Classification och Semantic Segmentation, med fokus på den första metoden. Den bäst presterande Classification-modellen baseras på ShuffleNetV2 och når 80.0%, 64.3%, 99.2% och 97.0% precision på respektive sträckt-, lågupplöst-, saknas- och platshållare-buggar. Detta medan endast 6.7% av negativa datapunkter felaktigt klassifieras som positiva. Denna undersökning ser även till hur modellen generaliserar till olika grafiska miljöer, vilka de primära orsakerna till förvirring hos modellen är, hur man kan bedöma säkerheten i nätverkets prediktion och hur man bättre kan förstå modellens interna struktur.
Thornton, Daniel Richard. "Unusual-Object Detection in Color Video for Wilderness Search and Rescue." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2452.
Full textCheng, Guangchun. "Video Analytics with Spatio-Temporal Characteristics of Activities." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc799541/.
Full textBooks on the topic "VIDEO ANOMALY DETECTION"
Isupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75508-3.
Full textIsupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Springer, 2018.
Find full textIsupova, Olga. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. Springer, 2019.
Find full textBook chapters on the topic "VIDEO ANOMALY DETECTION"
Bala, Raja, and Vishal Monga. "Video Anomaly Detection." In Computer Vision and Imaging in Intelligent Transportation Systems, 227–56. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118971666.ch9.
Full textHe, Xinyu, Fei Yuan, and Yi Zhu. "Drowning Detection Based on Video Anomaly Detection." In Lecture Notes in Computer Science, 700–711. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87361-5_57.
Full textZhu, Yuansheng, Wentao Bao, and Qi Yu. "Towards Open Set Video Anomaly Detection." In Lecture Notes in Computer Science, 395–412. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19830-4_23.
Full textZhu, Sijie, Chen Chen, and Waqas Sultani. "Video Anomaly Detection for Smart Surveillance." In Computer Vision, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_845-1.
Full textZhang, Yunzuo, Kaina Guo, Zhaoquan Cai, and Tianshan Fu. "Crowd Anomaly Detection in Surveillance Video." In Advances in Artificial Intelligence and Security, 3–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06761-7_1.
Full textZhu, Sijie, Chen Chen, and Waqas Sultani. "Video Anomaly Detection for Smart Surveillance." In Computer Vision, 1315–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_845.
Full textYadav, Divakar, Arti Jain, Saumya Asati, and Arun Kumar Yadav. "Video Anomaly Detection for Pedestrian Surveillance." In Computer Vision and Machine Intelligence, 489–500. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7867-8_39.
Full textZhao, Chunyue, Beichen Li, Qing Wang, and Zhipeng Wang. "Video Anomaly Detection Based on Hierarchical Clustering." In Human Centered Computing, 547–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15127-0_55.
Full textReiter, Wolfgang. "Video Anomaly Detection in Post-Procedural Use of Laparoscopic Videos." In Informatik aktuell, 101–6. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29267-6_22.
Full textGnouma, Mariem, Ridha Ejbali, and Mourad Zaied. "Video Anomaly Detection and Localization in Crowded Scenes." In Advances in Intelligent Systems and Computing, 87–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20005-3_9.
Full textConference papers on the topic "VIDEO ANOMALY DETECTION"
Liu, Wen, Weixin Luo, Zhengxin Li, Peilin Zhao, and Shenghua Gao. "Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/419.
Full textCavas, Sumeyye, Muhammet Sebul Beratoglu, and Behcet Ugur Toreyin. "Anomaly Detection In Compressed Video." In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE, 2021. http://dx.doi.org/10.1109/siu53274.2021.9478048.
Full textDoshi, Keval, and Yasin Yilmaz. "Towards Interpretable Video Anomaly Detection." In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2023. http://dx.doi.org/10.1109/wacv56688.2023.00268.
Full textJing Wang and Zhijie Xu. "Crowd Anomaly Detection for Automated Video Surveillance." In 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0102.
Full textWu, Jie, Wei Zhang, Guanbin Li, Wenhao Wu, Xiao Tan, Yingying Li, Errui Ding, and Liang Lin. "Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/162.
Full textLv, Hui, Chunyan Xu, and Zhen Cui. "Global Information Guided Video Anomaly Detection." In MM '20: The 28th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394171.3416277.
Full textJiang, Fan, Junsong Yuan, Sotirios A. Tsaftaris, and Aggelos K. Katsaggelos. "Video anomaly detection in spatiotemporal context." In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5650993.
Full textSun, Che, Yunde Jia, and Yuwei Wu. "Evidential Reasoning for Video Anomaly Detection." In MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3548091.
Full textAu, C. E., S. Skaff, and J. J. Clark. "Anomaly Detection for Video Surveillance Applications." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.273.
Full textMeher, Chinmaya Kumar, Rashmiranjan Nayak, and Umesh Chandra Pati. "Video Anomaly Detection Using Variational Autoencoder." In 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE, 2022. http://dx.doi.org/10.1109/isssc56467.2022.10051511.
Full text