Academic literature on the topic 'Vibrotactile music'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vibrotactile music.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vibrotactile music"

1

Remache-Vinueza, Byron, Andrés Trujillo-León, Mireya Zapata, Fabián Sarmiento-Ortiz, and Fernando Vidal-Verdú. "Audio-Tactile Rendering: A Review on Technology and Methods to Convey Musical Information through the Sense of Touch." Sensors 21, no. 19 (September 30, 2021): 6575. http://dx.doi.org/10.3390/s21196575.

Full text
Abstract:
Tactile rendering has been implemented in digital musical instruments (DMIs) to offer the musician haptic feedback that enhances his/her music playing experience. Recently, this implementation has expanded to the development of sensory substitution systems known as haptic music players (HMPs) to give the opportunity of experiencing music through touch to the hearing impaired. These devices may also be conceived as vibrotactile music players to enrich music listening activities. In this review, technology and methods to render musical information by means of vibrotactile stimuli are systematically studied. The methodology used to find out relevant literature is first outlined, and a preliminary classification of musical haptics is proposed. A comparison between different technologies and methods for vibrotactile rendering is performed to later organize the information according to the type of HMP. Limitations and advantages are highlighted to find out opportunities for future research. Likewise, methods for music audio-tactile rendering (ATR) are analyzed and, finally, strategies to compose for the sense of touch are summarized. This review is intended for researchers in the fields of haptics, assistive technologies, music, psychology, and human–computer interaction as well as artists that may make use of it as a reference to develop upcoming research on HMPs and ATR.
APA, Harvard, Vancouver, ISO, and other styles
2

Verrillo, Ronald T. "Vibration Sensation in Humans." Music Perception 9, no. 3 (1992): 281–302. http://dx.doi.org/10.2307/40285553.

Full text
Abstract:
The proposition that the performer of music can use vibrotactile sensations to supplement auditory cues as feedback signals in order to enhance tonal control of the instrument is examined. As a basis for evaluating this proposition, we present some fundamental characteristics of human vibrotactile sensation, including measurements at the threshold of detectability, at suprathreshold levels, and of subject variables that could affect sensation. It is reasonable to assume that the sensory capacities of skin could enable tactile feedback cues to be used by singers and some instrumentalists in controlling the tone of their instruments.
APA, Harvard, Vancouver, ISO, and other styles
3

Berdahl, Edgar J., Austin Franklin, and Eric Sheffield. "A Spatially Distributed Vibrotactile Actuator Array (SDVAA) for music-to-vibrotactile sensory augmentation." Journal of the Acoustical Society of America 145, no. 3 (March 2019): 1710. http://dx.doi.org/10.1121/1.5101273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aker, Scott C., Hamish Innes-Brown, Kathleen F. Faulkner, Marianna Vatti, and Jeremy Marozeau. "Effect of audio-tactile congruence on vibrotactile music enhancement." Journal of the Acoustical Society of America 152, no. 6 (December 2022): 3396–409. http://dx.doi.org/10.1121/10.0016444.

Full text
Abstract:
Music listening experiences can be enhanced with tactile vibrations. However, it is not known which parameters of the tactile vibration must be congruent with the music to enhance it. Devices that aim to enhance music with tactile vibrations often require coding an acoustic signal into a congruent vibrotactile signal. Therefore, understanding which of these audio-tactile congruences are important is crucial. Participants were presented with a simple sine wave melody through supra-aural headphones and a haptic actuator held between the thumb and forefinger. Incongruent versions of the stimuli were made by randomizing physical parameters of the tactile stimulus independently of the auditory stimulus. Participants were instructed to rate the stimuli against the incongruent stimuli based on preference. It was found making the intensity of the tactile stimulus incongruent with the intensity of the auditory stimulus, as well as misaligning the two modalities in time, had the biggest negative effect on ratings for the melody used. Future vibrotactile music enhancement devices can use time alignment and intensity congruence as a baseline coding strategy, which improved strategies can be tested against.
APA, Harvard, Vancouver, ISO, and other styles
5

Egloff, Deborah, Jonas Braasch, Philip Robinson, Doug Van Nort, and Ted Krueger. "A vibrotactile music system based on sensory substitution." Journal of the Acoustical Society of America 129, no. 4 (April 2011): 2582. http://dx.doi.org/10.1121/1.3588537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aker, Scott C., Kathleen F. Faulkner, Hamish Innes-Brown, Marianna Vatti, and Jeremy Marozeau. "Some, but not all, cochlear implant users prefer music stimuli with congruent haptic stimulation." Journal of the Acoustical Society of America 155, no. 5 (May 1, 2024): 3101–17. http://dx.doi.org/10.1121/10.0025854.

Full text
Abstract:
Cochlear implant (CI) users often report being unsatisfied by music listening through their hearing device. Vibrotactile stimulation could help alleviate those challenges. Previous research has shown that musical stimuli was given higher preference ratings by normal-hearing listeners when concurrent vibrotactile stimulation was congruent in intensity and timing with the corresponding auditory signal compared to incongruent. However, it is not known whether this is also the case for CI users. Therefore, in this experiment, we presented 18 CI users and 24 normal-hearing listeners with five melodies and five different audio-to-tactile maps. Each map varied the congruence between the audio and tactile signals related to intensity, fundamental frequency, and timing. Participants were asked to rate the maps from zero to 100, based on preference. It was shown that almost all normal-hearing listeners, as well as a subset of the CI users, preferred tactile stimulation, which was congruent with the audio in intensity and timing. However, many CI users had no difference in preference between timing aligned and timing unaligned stimuli. The results provide evidence that vibrotactile music enjoyment enhancement could be a solution for some CI users; however, more research is needed to understand which CI users can benefit from it most.
APA, Harvard, Vancouver, ISO, and other styles
7

Venkatesan, Tara, and Qian Janice Wang. "Feeling Connected: The Role of Haptic Feedback in VR Concerts and the Impact of Haptic Music Players on the Music Listening Experience." Arts 12, no. 4 (July 10, 2023): 148. http://dx.doi.org/10.3390/arts12040148.

Full text
Abstract:
Today, some of the most widely attended concerts are in virtual reality (VR). For example, the videogame Fortnite recently attracted 12.3 million viewers sitting in homes all over the world to a VR Travis Scott rap concert. As such VR concerts become increasingly ubiquitous, we are presented with an opportunity to design more immersive virtual experiences by augmenting VR with other multisensory technologies. Given that sound is a multi-modal phenomenon that can be experienced sonically and vibrationally, we investigated the importance of haptic feedback to musical experiences using a combination of qualitative and empirical methodologies. Study 1 was a qualitative study demonstrating that, unlike their live counterparts, current VR concerts make it harder for audiences to form a connection with artists and their music. Furthermore, VR concerts lack multisensory feedback and are perceived as less authentic than live concert experiences. Participants also identified a variety of different kinds of touch that they receive at live concerts and suggested that ideal VR concerts would replicate physical touch and thermal feedback from the audience, emotional touch, and vibrations from the music. Specifically, users advocated for the use of haptic devices to increase the immersiveness of VR concert experiences. Study 2 isolated the role of touch in the music listening experience and empirically investigated the impact of haptic music players (HMPs) on the audio-only listening experience. An empirical, between-subjects study was run with participants either receiving vibrotactile feedback via an HMP (haptics condition) or no vibrotactile feedback (control) while listening to music. Results indicated that listening to music while receiving vibrotactile feedback increased participants’ sense of empathy, parasocial bond, and loyalty towards the artist, while also decreasing participants’ feelings of loneliness. The connection between haptics condition and these dependent variables was mediated by the feeling of social presence. Study 2 thus provides initial evidence that HMPs may be used to meet people’s need for connection, multisensory immersion, and complex forms of touch in VR concerts as identified in Study 1.
APA, Harvard, Vancouver, ISO, and other styles
8

Hiraba, Hisao, Motoharu Inoue, Kanako Gora, Takako Sato, Satoshi Nishimura, Masaru Yamaoka, Ayano Kumakura, et al. "Facial Vibrotactile Stimulation Activates the Parasympathetic Nervous System: Study of Salivary Secretion, Heart Rate, Pupillary Reflex, and Functional Near-Infrared Spectroscopy Activity." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/910812.

Full text
Abstract:
We previously found that the greatest salivation response in healthy human subjects is produced by facial vibrotactile stimulation of 89 Hz frequency with 1.9 μm amplitude (89 Hz-S), as reported by Hiraba et al. (2012, 20011, and 2008). We assessed relationships between the blood flow to brain via functional near-infrared spectroscopy (fNIRS) in the frontal cortex and autonomic parameters. We used the heart rate (HRV: heart rate variability analysis in RR intervals), pupil reflex, and salivation as parameters, but the interrelation between each parameter and fNIRS measures remains unknown. We were to investigate the relationship in response to established paradigms using simultaneously each parameter-fNIRS recording in healthy human subjects. Analysis of fNIRS was examined by a comparison of various values between before and after various stimuli (89 Hz-S, 114 Hz-S, listen to classic music, and “Ahh” vocalization). We confirmed that vibrotactile stimulation (89 Hz) of the parotid glands led to the greatest salivation, greatest increase in heart rate variability, and the most constricted pupils. Furthermore, there were almost no detectable differences between fNIRS during 89 Hz-S and fNIRS during listening to classical music of fans. Thus, vibrotactile stimulation of 89 Hz seems to evoke parasympathetic activity.
APA, Harvard, Vancouver, ISO, and other styles
9

Egloff, Deborah, Jonas Braasch, Phil Robinson, Doug Van Nort, Pauline Oliveros, and Ted Krueger. "Vibrotactile music systems for co-located and telematic performance." Journal of the Acoustical Society of America 131, no. 4 (April 2012): 3331. http://dx.doi.org/10.1121/1.4708466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alves Araujo, Felipe, Fabricio Lima Brasil, Allison Candido Lima Santos, Luzenildo de Sousa Batista Junior, Savio Pereira Fonseca Dutra, and Carlos Eduardo Coelho Freire Batista. "Auris System: Providing Vibrotactile Feedback for Hearing Impaired Population." BioMed Research International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2181380.

Full text
Abstract:
Deafness, an issue that affects millions of people around the globe, is manifested in different intensities and related to many causes. This impairment negatively affects different aspects of the social life of the deaf people, and music-centered situations (concerts, religious events, etc.) are obviously not inviting for them. The Auris System was conceived to provide the musical experimentation for people who have some type of hearing loss. This system is able to extract musical information from audio and create a representation for music pieces using different stimuli, a new media format to be interpreted by other senses than the hearing. In addition, the system defines a testing methodology based on a noninvasive brain activity recording using an electroencephalographic (EEG) device. The results of the tests are being used to better understand the human musical cognition, in order to improve the accuracy of the Auris musical representation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Vibrotactile music"

1

Birnbaum, David M. "Musical vibrotactile feedback." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101876.

Full text
Abstract:
This thesis discusses the prospect of integrating vibrotactile feedback into digital musical instruments. A holistic approach is taken, considering the role of new instruments in electronic music, as well as the concept of touch in culture and experience. Research about the human biological systems that enable vibrotactile perception is reviewed, with a special focus on its relevance to music. Out of this review, an approach to vibration synthesis is developed that integrates the current understanding of human vibrotactile perception. An account of musical vibrotactile interaction design is presented, which includes the implementation of a vibrotactile feedback synthesizer and the construction of two hardware prototypes that display musical vibration.
APA, Harvard, Vancouver, ISO, and other styles
2

Mattsson, Adam, and Martin Åhlén. "Vibraesthetics of Music : The design of BEATHOVEN: a haptic device for enjoying music through vibrotactile sensations." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85996.

Full text
Abstract:
The project has the purpose of designing and developing a wearable haptic device for experiencing music through tactile vibrations on the body, and the result is the product concept BEATHOVEN and a completely new way of experiencing music.  Music is powerful, it touches our soul and gives form to our emotions. It captures the inner landscape of our minds, resonating in endless colours and nuances and shares it with others. Music has been a part of the human species for over 40 000 years and has played a fundamental role in our evolution and society; it is believed that we sang before we even spoke. Music, along with its aesthetic qualities, has throughout history been closely tied to our auditory perception. It was originally created and designed for listeners and has long been considered as something for the hearing. That perspective is starting to get more and more blurred out, however, and music is stepping out of auditory exclusivity. The general view of music today excludes over five percent of the world's population: people with disabling hearing loss. Hearing loss can impact a person’s life in many ways and one major impact is their ability to communicate with others. Music is another form of communication, and it is one where all of these people have thus far been excluded. The goal of this project is to design and develop a product that includes more people in music.  The project is carried out in collaboration with Pariception, a company specialized in research and development of assistive devices for people with deafblindness, and stems from one of their existing products: Good Vibrations. Good Vibrations is a wearable device for experiencing music through vibrations; it is a completely unique product and differs from all other solutions on the market. There are some brands, such as SubPac and Woojer, who have developed tactile music accessories, but these products are focused on enhancing a listening experience. Good Vibrations and BEATHOVEN are unique because they aim to convey the full musical experience and to be used independently from hearing. The current project brings Good Vibrations back to its basic concept idea, to redefine, refine, and design it into a usable, viable, and desirable consumer product: BEATHOVEN.   The project is made up of three main parts; to understand how the vibrotactile experience of music can be designed into a meaningful product, to understand how music can be conveyed through vibrotactile sensations on the body, and to know where on the body the vibrations should be conveyed to optimize the experience. To do this, we have created our own approach, adopting a mix of different design approaches such as design-driven innovation, human-centered design, embodied design, and aesthetic exploration. Research strongly indicates that it is possible to perceive aesthetic qualities within music through other senses than hearing, for example through stimuli such as tactile vibrations. To aid us in the development of the product, and to explore the aesthetic qualities of vibrations, we have defined a new research subject called Vibraesthetics.  The project has resulted in BEATHOVEN, a product concept featuring five vibrotactile actuators distributed to the chest and the neck. The product takes the input from any song or piece of music and transposes its frequencies to fit within 5-1000 Hz, which is the general range of human tactile perception. The music is further divided into three registers and distributed to separate and dedicated actuators. Some of the artist's original intentions with the music may be altered, but the richness of the experience is still there and available to anyone, regardless of their hearing abilities.
Målet med projektet är att utveckla och designa en bärbar haptisk produkt för att uppleva musik genom taktila vibrationer på kroppen. Resultatet av projektet är produktkonceptet BEATHOVEN och ett helt nytt sätt att uppleva musik.  Musik är kraftfull, det berör vår själ och sätter form på våra känslor. Det fångar vårt inre landskap, resonerar i oändliga färger och nyanser och delar det med andra. Musik har varit en del av den mänskliga arten i över 40 000 år och har spelat en grundläggande roll i vår utveckling och i vårt samhälle; mycket tyder på att vi sjöng innan vi ens började prata. Musik, tillsammans med dess estetiska kvalitéer, har genom historien varit nära knuten till vår hörsel. Den skapades ursprungligen och designades för lyssnare och har länge ansetts vara något för just hörseln. Den här synen på musik börjar dock mer och mer suddas ut, och nya sätt att uppleva musiken får ta plats. Genom den allmänna synen på musik vi har i dag utesluts dock över fem procent av världens befolkning: personer med nedsatt hörsel. Hörselnedsättning kan påverka människors liv på flera sätt och en viktig inverkan är på förmågan att kommunicera med andra. Musik är en annan form av kommunikation, en form där alla dessa människor hittills har blivit exkluderade. Målet med detta projekt är att designa och utveckla en produkt som inkluderar fler personer i musik.  Projektet genomförs i samarbete med Pariception, ett företag specialiserat på forskning och utveckling av hjälpmedel för personer med dövblindhet, och grundar sig i en av deras befintliga produkter: Good Vibrations. Good Vibrations är en bärbar produkt som möjliggör upplevelsen av musik genom taktila vibrationer; det är en helt unik produkt i sig och skiljer sig från alla andra lösningar som finns på marknaden idag. Det finns ett fåtal aktörer, som SubPac och Woojer, som har utvecklat taktila musiktillbehör, men de är enbart inriktade på att förstärka upplevelsen för den som redan hör. Good Vibrations och BEATHOVEN är unika av sitt slag då de eftersträvar att förmedla den fulla musikupplevelsen, oberoende av hörseln. I det här projektet tar vi Good Vibrations tillbaka till sin kärna, för att sedan omdefiniera, förfina och utforma den till en användbar, fungerande och åtråvärd konsumentprodukt: BEATHOVEN.  Projektet består av tre huvuddelar; att förstå hur musikens vibrotaktila upplevelse kan designas till en meningsfull produkt, att förstå hur musik kan förmedlas genom vibrotaktila förnimmelser på kroppen, samt att veta var på kroppen vibrationerna ska förmedlas för att optimera upplevelsen. För att göra detta, har vi skapat ett eget tillvägagångssätt, där vi har kombinerat olika designmetoder så som; design-driven innovation, människocentrerad design, embodied design och estetisk utforskning. Forskning visar starkt på att det är möjligt att uppleva estetiska egenskaper inom musiken genom andra sinnen än hörseln, till exempel genom taktila vibrationer. För att hjälpa oss i utvecklingsarbetet av produkten och för att bättre undersöka och förstå vibrationernas estetiska egenskaper har vi definierat ett nytt forskningsämne som heter Vibroestetik.  Resultatet av projektet är BEATHOVEN, ett produktkoncept bestående av vibrotaktila aktuatorer fördelade på bröstet och nacken. Produkten översätter vilken låt eller musik som helst och transponerar ner den till ett område på 5-1000 Hz, vilket är det allmänna omfånget för vår huds taktila uppfattningsförmåga. Musiken är sedan uppdelad i tre register och distribueras till separata aktuatorer. En viss del av konstnärens ursprungliga tankar och idéer med musiken kan förändras eller filtreras bort, men upplevelsens rikedom finns fortfarande kvar och är tillgänglig för alla, oavsett deras hörsel.
APA, Harvard, Vancouver, ISO, and other styles
3

Michailidis, Tychonas. "On the hunt for feedback : vibrotactile feedback in interactive electronic music performances." Thesis, Birmingham City University, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695294.

Full text
Abstract:
The expressivity of musical performance is highly dependent on the feedback relationship between the performer and the instrument. Despite current advances in music technology, performers still struggle to retain the same expressive nuances of acoustic instruments. The capacity of performative musical expression in technologically-driven music is mitigated by the limitations of controllers and other sensor-based devices used in the performance of such music. Due to their physical properties, such devices and components are unable to provide mainly the haptic and vibrotactile experience between the instrument and the user, thus breaking the link with traditional musical performance. Such limitations are apparent to performers, suggesting often the existence of an unnatural barrier between the technology and the performer. The thesis proposes the use of vibrotactile feedback as means to enhance performer’s expressivity and creativity in technology mediated performances and situate vibrotactile feedback as part of the tradition of instrumental musical playing. Achieved through the use of small controllable electric motors, vibrotactile feedback can nourish communicative pathways between the performer and technology, a relationship that is otherwise limited or non-existing. The ability to experience an instrument's communicative response can significantly improve the performer-instrument relationship, and in turn the music performed. Through a series of case studies, compositions and performances, the dissertation suggests ways in which vibrotactile feedback may be applied to enhance the experience between the technology and the performer. As a result performers are able to develop expressive nuances and have better control of the technology during performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Frid, Emma. "Perceptual Characterization of a Tactile Display for Live Electronic Music Performance : Designing a Vibrotactile Notification Tool for the CIRMMT Live Electronics Framework (CLEF)." Thesis, KTH, Medieteknik och interaktionsdesign, MID, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159245.

Full text
Abstract:
This study was conducted to assess physical and perceptual properties of a tactile display for a vibrotactile notification system within the CIRMMT Live Electronics Framework (CLEF), a Max-based modular environment for composition and performance of live electronic music. The tactile display was composed of two rotating eccentric mass actuators driven by a PWM signal generated from an Arduino microcontroller. Physical measurements using an accelerometer were carried out in order to estimate intensity and spectral peak frequency as function of duty cycle of the PWM signal. In addition, three user-based studies were conducted to estimate perceptual vibrotactile absolute threshold, differential threshold and temporal differential threshold. Obtained results provided us with precise guidelines that facilitate the design of perceptually robust vibrotactile stimuli for our tactile application. A set of eight simple tactons (vibrotactile icons) was defined, whereafter an absolute identification test was conducted in order to estimate mean tacton recognition rates. Results were promising; mean tacton recognition rate was found to be 74 %. Based on all findings described above, a Max-based prototype used for exploration of tactile stimuli was developed. The prototype contained a library of tactile notification presets to be loaded into CLEF, along with a simple tacton editor for design of customized tactile events.
Syftet med denna studie var att undersöka fysiska och perceptuella egenskaper hos en taktil display som designats för att presentera taktila notifikationssignaler till användare av CIRMMT Live Electronics Framework (CLEF), en Max-baserad modulär miljö för komposition och framförande av musikstycken som involverar Live Electronics. Live Electronics är ett begrepp som innefattar elektronik som används för att generera, processera eller modifiera ljud i realtid. Den taktila display som användes i denna studie var uppbyggd av två roterande excentriska massor, drivna av en pulsbreddsmodulerad signal som genereras av en Arduino mikrokontroller. Accelerometermätningar och tre användarbaserade studier genomfördes för att undersöka följande: intensitet och spektral toppfrekvens som funktion av pulskvot, sensorisk tröskel och intensitetsdiskriminering mellan presenterade stimuli, samt JND i millisekunder för två efterföljande taktila stimuli. Erhållna resultat analyserades varefter riktlinjer för design av perceptuellt robusta signaler för vår taktila display sattes upp. I slutfasen av studien designades åtta taktila signaler, varefter en användarbaserad studie genomfördes för att uppskatta hur lätta dessa signaler var att identifiera. En genomsnittlig identifikationsnivå på 74 % kunde noteras. Baserat på ovan beskrivna resultat utvecklades slutligen en taktil modulprototyp i form av ett bibliotek av fördefinierade taktila stimuli. Denna prototyp inkluderande även en funktion som gav användaren möjlighet att designa och skräddarsy egna taktila signaler.
APA, Harvard, Vancouver, ISO, and other styles
5

Crawshaw, Alexis Story. "La musique électro-Somesthésique : approches spatiales, théorisation et expérimentations créatives." Electronic Thesis or Diss., Paris 8, 2022. http://www.theses.fr/2022PA080074.

Full text
Abstract:
Ce travail de recherche propose l’idée d’une musique électro-somesthésique (MES). Nous la définissons en tant qu'une musique informatique qui cible la somesthésie dans des perspectives artistiques et musicales. La MES engage les sens somatiques non-cochléaires sensibles aux ondes mécaniques. Nous proposons que l’expérience somesthésique de l’espace est qualitativement distincte des autres sens. Ces sensations opèrent en haute précision dans notre espace intime : à travers notre seuil corporel et voire à l’intérieur de nous-même. Ces subtilités offrent un terrain novateur artistique à explorer. Toutefois, les considérations spatiales potentielles sont complexes et peuvent prêter à confusion. Ainsi, pour mieux apprécier leurs relations et expérimenter des idées compositionnelles, nous avançons des considérations théoriques avec quelques preuves de concept techniques et artistiques. Dans la première partie, nous abordons l’espace conceptuel de l’expression spatiale MES : les relations spatiales parmi les niveaux du percepteur, du contenu et de l’environnement. Dans la seconde partie, nous élaborons les possibilités matricielles du rendu spatial en informatique : trois paradigmes principaux de la manipulation spatiale—la physique (par l’acoustique), le virtuel (par l’informatique), le perceptuel (par des illusions d’espace pas apparentes)—qui passent par deux optiques : où des événements sonores sont relatifs au niveau du corps (égocentrée) ou où ils sont relatifs à l’environnement externe au corps (allocentrée). Ensemble, ces cas théoriques constituent un espace créateur prometteur et les expérimentations pratiques explorent des chemins pour ses investigations futures
This work of research proposes the idea of electro-somaesthetic music (ESM). We define it as a computer music that targets somatosensation for artistic and musical ends. ESM engages the non-cochlear somatic senses sensitive to mechanical waves. We propose that the somatosensory experience of space is qualitatively distinct from other senses. These sensations operate at high resolution within our intimate space: across our bodily threshold and even within the interior space of our bodies. These subtleties offer a novel artistic terrain for exploration. However, its potential spatial considerations are complex, and these can lend themselves to confusion. As such, to better appreciate their relationships and experiment with compositional ideas, we advance some theoretical considerations with several technical and artistic proofs of concept. In the first part, we address the conceptual space of ESM spatial expression. We examine the relationships among the levels of the perceiver, the content, and the environment. In the second part, we elaborate upon the matrix of possibilities regarding computational spatial rendering: three principal paradigms of spatial manipulation—physical (via acoustics), virtual (via computation), perceptual (via non-evident spatial illusions)—that transpire through two lenses: where sonic events are relative to the level of the body (egocentric) or where they are relative to the environment external to the body (allocentric). Together, these theoretical cells form a promising creative space and our practical experimentations explore paths forward toward future investigations
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vibrotactile music"

1

Knutzen, Håkon, Tellef Kvifte, and Marcelo M. Wanderley. "Vibrotactile Feedback for an Open Air Music Controller." In Lecture Notes in Computer Science, 41–57. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12976-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giordano, Marcello, John Sullivan, and Marcelo M. Wanderley. "Design of Vibrotactile Feedback and Stimulation for Music Performance." In Springer Series on Touch and Haptic Systems, 193–214. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58316-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qi, Di, Mina Shibasaki, Youichi Kamiyama, Sakiko Tanaka, Bunsuke Kawasaki, Chisa Mitsuhashi, Yun Suen Pai, and Kouta Minamizawa. "Furekit: Wearable Tactile Music Toolkit for Children with ASD." In Haptics: Science, Technology, Applications, 310–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_35.

Full text
Abstract:
AbstractChildren with autism spectrum disorder (ASD) face the challenge of social interaction and communication, leading to them often requiring significant support from others in their daily lives. This includes challenges like basic communication to convey their emotions to comprehension in early education. To aid with their early development, we propose Furekit, a wearable toolkit that encourages physical interaction via audio and tactile stimuli. Furekit can be attached to various parts of the body, can be operated wirelessly, and is equipped with both a speaker and a vibrotactile actuator. The audio and tactile stimuli are triggered when touched via a conductive pad on the surface, aiming to aid these children’s learning and social experience. From our conducted workshop with children with ASD, we found that Furekit was well-received and was able to encourage their spontaneous physical movement. In the workshop, Furekit shows its potential as an educational and communication tool for children with ASD.
APA, Harvard, Vancouver, ISO, and other styles
4

Ignoto, Patrick, Ian Hattwick, and Marcelo M. Wanderley. "Development of a Vibrotactile Metronome to Assist in Conducting Contemporary Classical Music." In Advances in Intelligent Systems and Computing, 248–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60384-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Yingjie, Jing Ou, Nick Bryan-Kinns, Qingchun Kang, Junshuai Zhang, and Bing Guo. "Using Vibrotactile Device in Music Therapy to Support Wellbeing for People with Alzheimer’s Disease." In Advances in Ergonomics in Design, 353–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79760-7_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sion, Yulia, Sunil Sudevan, and David Lamas. "Be Me Vest - Exploring the Emotional Effects of Music and Sound-Based Vibrotactile Stimuli." In Lecture Notes in Computer Science, 318–31. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35599-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giordano, Marcello, and Marcelo M. Wanderley. "Perceptual and Technological Issues in the Design of Vibrotactile-Augmented Interfaces for Music Technology and Media." In Haptic and Audio Interaction Design, 89–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41068-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Katz, Mark. "2. Bodies and senses." In Music and Technology: A Very Short Introduction, 18—C2.F1. Oxford University PressNew York, 2022. http://dx.doi.org/10.1093/actrade/9780199946983.003.0002.

Full text
Abstract:
Abstract Starting from the premise that our bodies are the primary and constant mediators of the music we experience, this chapter investigates how technology mediates the relationship between music and the human body. Often technologies offer a compromise: in providing new ways to experience music, they limit access to some of our senses. Radio, recordings, and streaming audio, for example, expand our access to music while removing or reducing the visual element of musical listening. Other technologies are designed to enhance our embodied experience of music, whether by providing visual elements or engaging with our sense of touch through what is known as vibrotactile feedback. Case studies explore music that is made but not seen, musical haptics, 18th- and 19th-century musical androids, Vocaloids, and musical holograms.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vibrotactile music"

1

Branje, Carmen, Michael Maksimouski, Maria Karam, Deborah I. Fels, and Frank Russo. "Vibrotactile Display of Music on the Human Back." In 2010 Third International Conference on Advances in Computer-Human Interactions. IEEE, 2010. http://dx.doi.org/10.1109/achi.2010.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yeganeh, Nashmin, Ivan Makarov, Snorri Steinn Stefánsson Thors, Hafliði Ásgeirsson, Árni Kristjánsson, and Rúnar Unnþórsson. "Vibrotactile Sleeve to Improve Music Enjoyment of Cochlear Implant Users." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95591.

Full text
Abstract:
Abstract This study presents a new design of a wearable vibrotactile device — a tactile sleeve consisting of three voice coil actuators (Model: Lofelt L5). The device was made within an R&D project aimed at developing a wearable for enhancing the music perception of cochlear implant recipients. The aim is to provide tactile stimulation in addition to the cochlear implant stimulation — generating an audio-tactile music experience. We also present the results of an experiment performed to investigate whether the sleeve can be used to identify songs from tactile stimulation and investigate the effects of different encodings. Five short music segments were used, and the tactile stimulation provided by each voice coil actuator conveyed song information (Bass or drum). Participants had intact hearing. At the beginning of the experiment, the participants listened to one song via headphones. Afterward, they were presented with various tactile encodings of the songs in random order. Their task was to identify the encoding of the song that was played. In this experiment, an investigation of the best combination of information from the bass versus drums was conducted. The results confirm that the sleeve can provide tactile stimulation that can be used to identify songs without audio. The results also provide insights into which encodings are most useful for conveying music.
APA, Harvard, Vancouver, ISO, and other styles
3

Baijal, Anant, Julia Kim, Carmen Branje, Frank Russo, and Deborah I. Fels. "Composing vibrotactile music: A multi-sensory experience with the emoti-chair." In 2012 IEEE Haptics Symposium (HAPTICS). IEEE, 2012. http://dx.doi.org/10.1109/haptic.2012.6183839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karam, Maria, Gabe Nespoli, Frank Russo, and Deborah I. Fels. "Modelling Perceptual Elements of Music in a Vibrotactile Display for Deaf Users: A Field Study." In 2009 Second International Conferences on Advances in Computer-Human Interactions (ACHI). IEEE, 2009. http://dx.doi.org/10.1109/achi.2009.64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamazaki, Yusuke, and Shoichi Hasegawa. "Providing 3D Guidance and Improving the Music-Listening Experience in Virtual Reality Shooting Games Using Musical Vibrotactile Feedback." In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE, 2023. http://dx.doi.org/10.1109/vr55154.2023.00043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Leon, Jin Kang, Chase Crispin, and Audrey Girouard. "Playing with Feeling: Exploring Vibrotactile Feedback and Aesthetic Experiences for Developing Haptic Wearables for Blind and Low Vision Music Learning." In ASSETS '23: The 25th International ACM SIGACCESS Conference on Computers and Accessibility. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3597638.3608397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography