Journal articles on the topic 'Vesicular Acetylcholine Transporter'

To see the other types of publications on this topic, follow the link: Vesicular Acetylcholine Transporter.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vesicular Acetylcholine Transporter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Duerr, Janet S., Jennifer Gaskin, and James B. Rand. "Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines." American Journal of Physiology-Cell Physiology 280, no. 6 (June 1, 2001): C1616—C1622. http://dx.doi.org/10.1152/ajpcell.2001.280.6.c1616.

Full text
Abstract:
We have identified four neurons (VC4, VC5, HSNL, HSNR) in Caenorhabditis elegans adult hermaphrodites that express both the vesicular acetylcholine transporter and the vesicular monoamine transporter. All four of these cells are motor neurons that innervate the egg-laying muscles of the vulva. In addition, they all express choline acetyltransferase, the synthetic enzyme for acetylcholine. The distributions of the vesicular acetylcholine transporter and the vesicular monoamine transporter are not identical within the individual cells. In mutants deficient for either of these transporters, there is no apparent compensatory change in the expression of the remaining transporter. This is the first report of neurons that express two different vesicular neurotransmitter transporters in vivo.
APA, Harvard, Vancouver, ISO, and other styles
2

Koulen, Peter. "Vesicular acetylcholine transporter (VAChT)." NeuroReport 8, no. 13 (September 1997): 2845–47. http://dx.doi.org/10.1097/00001756-199709080-00008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bravo, Dawn T., Natalia G. Kolmakova, and Stanley M. Parsons. "Choline is transported by vesicular acetylcholine transporter." Journal of Neurochemistry 91, no. 3 (November 2004): 766–68. http://dx.doi.org/10.1111/j.1471-4159.2004.02746.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ojeda, Ana M., Natalia G. Kolmakova, and Stanley M. Parsons. "Acetylcholine Binding Site in the Vesicular Acetylcholine Transporter†." Biochemistry 43, no. 35 (September 2004): 11163–74. http://dx.doi.org/10.1021/bi049562b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Efange, S. M. N. "In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter." FASEB Journal 14, no. 15 (December 2000): 2401–13. http://dx.doi.org/10.1096/fj.00-0204rev.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Efange, S. M. N., E. M. Garland, J. K. Staley, A. B. Khare, and D. C. Mash. "Vesicular Acetylcholine Transporter Density and Alzheimer’s Disease." Neurobiology of Aging 18, no. 4 (July 1997): 407–13. http://dx.doi.org/10.1016/s0197-4580(97)00038-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cho, Goang-Won, Myung-Hee Kim, Young-Gyu Chai, Michelle L. Gilmor, Alan I. Levey, and Louis B. Hersh. "Phosphorylation of the Rat Vesicular Acetylcholine Transporter." Journal of Biological Chemistry 275, no. 26 (March 22, 2000): 19942–48. http://dx.doi.org/10.1074/jbc.m902174199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Varoqui, Hélène, and Jeffrey D. Erickson. "Active Transport of Acetylcholine by the Human Vesicular Acetylcholine Transporter." Journal of Biological Chemistry 271, no. 44 (November 1, 1996): 27229–32. http://dx.doi.org/10.1074/jbc.271.44.27229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prado, Vania F., Ashbeel Roy, Benjamin Kolisnyk, Robert Gros, and Marco A. M. Prado. "Regulation of cholinergic activity by the vesicular acetylcholine transporter." Biochemical Journal 450, no. 2 (February 15, 2013): 265–74. http://dx.doi.org/10.1042/bj20121662.

Full text
Abstract:
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Kitzman, Patrick. "Changes in vesicular glutamate transporter 2, vesicular GABA transporter and vesicular acetylcholine transporter labeling of sacrocaudal motoneurons in the spastic rat." Experimental Neurology 197, no. 2 (February 2006): 407–19. http://dx.doi.org/10.1016/j.expneurol.2005.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Giboureau, Nicolas, Ian Mat Som, Aurelie Boucher-Arnold, Denis Guilloteau, and Michael Kassiou. "PET Radioligands for the Vesicular Acetylcholine Transporter (VAChT)." Current Topics in Medicinal Chemistry 10, no. 15 (October 1, 2010): 1569–83. http://dx.doi.org/10.2174/156802610793176846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Keller, James E., and Stanley M. Parsons. "A critical histidine in the vesicular acetylcholine transporter." Neurochemistry International 36, no. 2 (February 2000): 113–17. http://dx.doi.org/10.1016/s0197-0186(99)00110-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Krantz, David E., Clarissa Waites, Viola Oorschot, Yongjian Liu, Rachel I. Wilson, Philip K. Tan, Judith Klumperman, and Robert H. Edwards. "A Phosphorylation Site Regulates Sorting of the Vesicular Acetylcholine Transporter to Dense Core Vesicles." Journal of Cell Biology 149, no. 2 (April 17, 2000): 379–96. http://dx.doi.org/10.1083/jcb.149.2.379.

Full text
Abstract:
Vesicular transport proteins package classical neurotransmitters for regulated exocytotic release, and localize to at least two distinct types of secretory vesicles. In PC12 cells, the vesicular acetylcholine transporter (VAChT) localizes preferentially to synaptic-like microvesicles (SLMVs), whereas the closely related vesicular monoamine transporters (VMATs) localize preferentially to large dense core vesicles (LDCVs). VAChT and the VMATs contain COOH-terminal, cytoplasmic dileucine motifs required for internalization from the plasma membrane. We now show that VAChT undergoes regulated phosphorylation by protein kinase C on a serine (Ser-480) five residues upstream of the dileucine motif. Replacement of Ser-480 by glutamate, to mimic the phosphorylation event, increases the localization of VAChT to LDCVs. Conversely, the VMATs contain two glutamates upstream of their dileucine-like motif, and replacement of these residues by alanine conversely reduces sorting to LDCVs. The results provide some of the first information about sequences involved in sorting to LDCVs. Since the location of the transporters determines which vesicles store classical neurotransmitters, a change in VAChT trafficking due to phosphorylation may also influence the mode of transmitter release.
APA, Harvard, Vancouver, ISO, and other styles
14

Nagy, P. M., and I. Aubert. "Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus." Neuroscience 218 (August 2012): 1–11. http://dx.doi.org/10.1016/j.neuroscience.2012.05.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Albin, Roger L., Christine Minderovic, and Robert A. Koeppe. "Normal Striatal Vesicular Acetylcholine Transporter Expression in Tourette Syndrome." eneuro 4, no. 4 (July 2017): ENEURO.0178–17.2017. http://dx.doi.org/10.1523/eneuro.0178-17.2017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Roghani, A., J. Feldman, S. A. Kohan, A. Shirzadi, C. B. Gundersen, N. Brecha, and R. H. Edwards. "Molecular cloning of a putative vesicular transporter for acetylcholine." Proceedings of the National Academy of Sciences 91, no. 22 (October 25, 1994): 10620–24. http://dx.doi.org/10.1073/pnas.91.22.10620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gras, Christelle, Bénédicte Amilhon, Ève M. Lepicard, Odile Poirel, Jacqueline Vinatier, Marc Herbin, Sylvie Dumas, et al. "The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone." Nature Neuroscience 11, no. 3 (February 17, 2008): 292–300. http://dx.doi.org/10.1038/nn2052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Naciff, Jorge M., Hidemi Misawa, and John R. Dedman. "Molecular characterization of the mouse vesicular acetylcholine transporter gene." NeuroReport 8, no. 16 (November 1997): 3467–73. http://dx.doi.org/10.1097/00001756-199711100-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

O'Grady, Gina L., Corien Verschuuren, Michaela Yuen, Richard Webster, Manoj Menezes, Johanna M. Fock, Natalie Pride, et al. "Variants inSLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome." Neurology 87, no. 14 (September 2, 2016): 1442–48. http://dx.doi.org/10.1212/wnl.0000000000003179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aran, Adi, Reeval Segel, Kota Kaneshige, Suleyman Gulsuner, Paul Renbaum, Scott Oliphant, Tomer Meirson, et al. "Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome." Neurology 88, no. 11 (February 10, 2017): 1021–28. http://dx.doi.org/10.1212/wnl.0000000000003720.

Full text
Abstract:
Objective:To identify the genetic basis of a recessive congenital neurologic syndrome characterized by severe hypotonia, arthrogryposis, and respiratory failure.Methods:Identification of the responsible gene by exome sequencing and assessment of the effect of the mutation on protein stability in transfected rat neuronal-like PC12A123.7 cells.Results:Two brothers from a nonconsanguineous Yemeni Jewish family manifested at birth with severe hypotonia and arthrogryposis. The older brother died of respiratory failure at 5 days of age. The proband, now 4.5 years old, has been mechanically ventilated since birth with virtually no milestones achievement. Whole exome sequencing revealed homozygosity of SLC18A3 c.1078G>C, p.Gly360Arg in the affected brothers but not in other family members. SLC18A3 p.Gly360Arg is not reported in world populations but is present at a carrier frequency of 1:30 in healthy Yemeni Jews. SLC18A3 encodes the vesicular acetylcholine transporter (VAChT), which loads newly synthesized acetylcholine from the neuronal cytoplasm into synaptic vesicles. Mice that are VAChT-null have been shown to die at birth of respiratory failure. In human VAChT, residue 360 is located in a conserved region and substitution of arginine for glycine is predicted to disrupt proper protein folding and membrane embedding. Stable transfection of wild-type and mutant human VAChT into neuronal-like PC12A123.7 cells revealed similar mRNA levels, but undetectable levels of the mutant protein, suggesting post-translational degradation of mutant VAChT.Conclusion:Loss of function of VAChT underlies severe arthrogryposis and respiratory failure. While most congenital myasthenic syndromes are caused by defects in postsynaptic proteins, VAChT deficiency is a presynaptic myasthenic syndrome.
APA, Harvard, Vancouver, ISO, and other styles
21

Varoqui, Hélène, Marie-Françoise Diebler, François-Marie Meunier, James B. Rand, Ted B. Usdin, Tom I. Bonner, Lee E. Eiden, Jeffrey D. Erickson, and Maurice Israël. "Identification of the vesicular acetylcholine transporter: cloning and expression." Journal of Physiology-Paris 88, no. 6 (January 1994): 368. http://dx.doi.org/10.1016/0928-4257(94)90034-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Israël, Maurice, and Yves Dunant. "Mediatophore, a protein supporting quantal acetylcholine release." Canadian Journal of Physiology and Pharmacology 77, no. 9 (October 10, 1999): 689–98. http://dx.doi.org/10.1139/y99-080.

Full text
Abstract:
After having reconstituted in artificial membranes the calcium-dependent acetylcholine release step, and shown that essential properties of the mechanism were preserved, we purified from Torpedo electric organ nerve terminals a protein, the mediatophore, able to release acetylcholine upon calcium action. A plasmid encoding for Torpedo mediatophore was introduced into cells deficient for acetylcholine release and for the expression of the cholinergic genomic locus defined by the co-regulated choline acetyltransferase and vesicular transporter genes. The transfected cells became able to release acetylcholine in response to a calcium influx in the form of quanta. The cells had to be loaded with acetylcholine since they did not synthesize it, and without transporter they could not concentrate it in vesicles. We may then attribute the observed quanta to mediatophores. We know from previous works that like the release mechanism, mediatophore is activated at high calcium concentrations and desensitized at low calcium concentrations. Therefore only the mediatophores localized within the calcium microdomain would be activated synchronously. Synaptic vesicles have been shown to take up calcium and those of the active zone are well situated to control the diffusion of the calcium microdomain and consequently the synchronization of mediatophores. If this was the case, synchronization of mediatophores would depend on vesicular docking and on proteins ensuring this process.Key words: acetylcholine release, presynaptic proteins, quantal release, mediatophore, transfection.
APA, Harvard, Vancouver, ISO, and other styles
23

Santos, M. S., V. F. Prado, J. Barbosa, C. Kushmerick, M. V. Gomez, and M. A. M. Prado. "Visualization of the Vesicular Acetylcholine Transporter in Living Cholinergic Cells." Journal of Neurochemistry 75, no. 3 (December 11, 2002): 1332. http://dx.doi.org/10.1046/j.1471-4159.2000.751332.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khare, Parul, Ana M. Ojeda, Ananda Chandrasekaran, and Stanley M. Parsons. "Possible Important Pair of Acidic Residues in Vesicular Acetylcholine Transporter." Biochemistry 49, no. 14 (April 13, 2010): 3049–59. http://dx.doi.org/10.1021/bi901953j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nguyen, Marie L., Gregory D. Cox, and Stanley M. Parsons. "Kinetic Parameters for the Vesicular Acetylcholine Transporter: Two Protons Are Exchanged for One Acetylcholine†." Biochemistry 37, no. 38 (September 1998): 13400–13410. http://dx.doi.org/10.1021/bi9802263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lima, Ricardo de Freitas, Vania F. Prado, Marco A. M. Prado, and Christopher Kushmerick. "Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter." Journal of Neurochemistry 113, no. 4 (May 2010): 943–51. http://dx.doi.org/10.1111/j.1471-4159.2010.06657.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Yongjian, and Robert H. Edwards. "Differential Localization of Vesicular Acetylcholine and Monoamine Transporters in PC12 Cells but Not CHO Cells." Journal of Cell Biology 139, no. 4 (November 17, 1997): 907–16. http://dx.doi.org/10.1083/jcb.139.4.907.

Full text
Abstract:
Previous studies have indicated that neuro-endocrine cells store monoamines and acetylcholine (ACh) in different secretory vesicles, suggesting that the transport proteins responsible for packaging these neurotransmitters sort to distinct vesicular compartments. Molecular cloning has recently demonstrated that the vesicular transporters for monoamines and ACh show strong sequence similarity, and studies of the vesicular monoamine transporters (VMATs) indicate preferential localization to large dense core vesicles (LDCVs) rather than synaptic-like microvesicles (SLMVs) in rat pheochromocytoma PC12 cells. We now report the localization of the closely related vesicular ACh transporter (VAChT). In PC12 cells, VAChT differs from the VMATs by immunofluorescence and fractionates almost exclusively to SLMVs and endosomes by equilibrium sedimentation. Immunoisolation further demonstrates colocalization with synaptophysin on SLMVs as well as other compartments. However, small amounts of VAChT also occur on LDCVs. Thus, VAChT differs in localization from the VMATs, which sort predominantly to LDCVs. In addition, we demonstrate ACh transport activity in stable PC12 transformants overexpressing VAChT. Since previous work has suggested that VAChT expression confers little if any transport activity in non-neural cells, we also determined its localization in transfected CHO fibroblasts. In CHO cells, VAChT localizes to the same endosomal compartment as the VMATs by immunofluorescence, density gradient fractionation, and immunoisolation with an antibody to the transferrin receptor. We have also detected ACh transport activity in the transfected CHO cells, indicating that localization to SLMVs is not required for function. In summary, VAChT differs in localization from the VMATs in PC12 cells but not CHO cells.
APA, Harvard, Vancouver, ISO, and other styles
28

Giboureau, Nicolas, Kylee M. Aumann, Corinne Beinat, and Michael Kassiou. "Development of Vesicular Acetylcholine Transporter Ligands: Molecular Probes for Alzheimers Disease." Current Bioactive Compounds 6, no. 3 (September 1, 2010): 129–55. http://dx.doi.org/10.2174/157340710793237353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ferreira, Lucimar T., Magda S. Santos, Natalia G. Kolmakova, Janaina Koenen, Jose Barbosa, Marcus V. Gomez, Cristina Guatimosim, et al. "Structural requirements for steady-state localization of the vesicular acetylcholine transporter." Journal of Neurochemistry 94, no. 4 (June 10, 2005): 957–69. http://dx.doi.org/10.1111/j.1471-4159.2005.03244.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yao, Weiping, and Donald A. Godfrey. "Vesicular Acetylcholine Transporter in the Rat Cochlear Nucleus: An Immunohistochemical Study." Journal of Histochemistry & Cytochemistry 47, no. 1 (January 1999): 83–90. http://dx.doi.org/10.1177/002215549904700109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bravo, Dawn T., Natalia G. Kolmakova, and Stanley M. Parsons. "New transport assay demonstrates vesicular acetylcholine transporter has many alternative substrates." Neurochemistry International 47, no. 4 (September 2005): 243–47. http://dx.doi.org/10.1016/j.neuint.2005.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bravo, Dawn, and Stanley M. Parsons. "Microscopic kinetics and structure–function analysis in the vesicular acetylcholine transporter." Neurochemistry International 41, no. 5 (November 2002): 285–89. http://dx.doi.org/10.1016/s0197-0186(02)00058-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Alfonso, A., K. Grundahl, J. Duerr, H. Han, and J. Rand. "The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter." Science 261, no. 5121 (July 30, 1993): 617–19. http://dx.doi.org/10.1126/science.8342028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Song, Hong-jun, Guo-li Ming, Edward Fon, Elizabeth Bellocchio, Robert H. Edwards, and Mu-ming Poo. "Expression of a Putative Vesicular Acetylcholine Transporter Facilitates Quantal Transmitter Packaging." Neuron 18, no. 5 (May 1997): 815–26. http://dx.doi.org/10.1016/s0896-6273(00)80320-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bravo, Dawn T., Natalia G. Kolmakova, and Stanley M. Parsons. "Transmembrane Reorientation of the Substrate-Binding Site in Vesicular Acetylcholine Transporter†." Biochemistry 43, no. 27 (July 2004): 8787–93. http://dx.doi.org/10.1021/bi049846w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Capettini, Suellem B., Márcio F. D. Moraes, Vânia F. Prado, Marco A. M. Prado, and Grace S. Pereira. "Vesicular acetylcholine transporter knock-down mice show sexual dimorphism on memory." Brain Research Bulletin 85, no. 1-2 (April 2011): 54–57. http://dx.doi.org/10.1016/j.brainresbull.2011.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

de Castro, Braulio M., Xavier De Jaeger, Cristina Martins-Silva, Ricardo D. F. Lima, Ernani Amaral, Cristiane Menezes, Patricia Lima, et al. "The Vesicular Acetylcholine Transporter Is Required for Neuromuscular Development and Function." Molecular and Cellular Biology 29, no. 19 (July 27, 2009): 5238–50. http://dx.doi.org/10.1128/mcb.00245-09.

Full text
Abstract:
ABSTRACT The vesicular acetylcholine (ACh) transporter (VAChT) mediates ACh storage by synaptic vesicles. However, the VAChT-independent release of ACh is believed to be important during development. Here we generated VAChT knockout mice and tested the physiological relevance of the VAChT-independent release of ACh. Homozygous VAChT knockout mice died shortly after birth, indicating that VAChT-mediated storage of ACh is essential for life. Indeed, synaptosomes obtained from brains of homozygous knockouts were incapable of releasing ACh in response to depolarization. Surprisingly, electrophysiological recordings at the skeletal-neuromuscular junction show that VAChT knockout mice present spontaneous miniature end-plate potentials with reduced amplitude and frequency, which are likely the result of a passive transport of ACh into synaptic vesicles. Interestingly, VAChT knockouts exhibit substantial increases in amounts of choline acetyltransferase, high-affinity choline transporter, and ACh. However, the development of the neuromuscular junction in these mice is severely affected. Mutant VAChT mice show increases in motoneuron and nerve terminal numbers. End plates are large, nerves exhibit abnormal sprouting, and muscle is necrotic. The abnormalities are similar to those of mice that cannot synthesize ACh due to a lack of choline acetyltransferase. Our results indicate that VAChT is essential to the normal development of motor neurons and the release of ACh.
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Myung-Hee, Mei Lu, Melissa Kelly, and Louis B. Hersh. "Mutational Analysis of Basic Residues in the Rat Vesicular Acetylcholine Transporter." Journal of Biological Chemistry 275, no. 9 (February 25, 2000): 6175–80. http://dx.doi.org/10.1074/jbc.275.9.6175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Prior, Chris, Ian G. Marshall, and Stanley M. Parsons. "The pharmacology of vesamicol: An inhibitor of the vesicular acetylcholine transporter." General Pharmacology: The Vascular System 23, no. 6 (November 1992): 1017–22. http://dx.doi.org/10.1016/0306-3623(92)90280-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Siegal, Deborah, Jeffrey Erickson, ??e??ene Varoqui, Lee Ang, Kathryn S. Kalasinsky, Frank J. Peretti, Sally S. Aiken, Dennis J. Wickham, and Stephen J. Kish. "Brain vesicular acetylcholine transporter in human users of drugs of abuse." Synapse 52, no. 4 (2004): 223–32. http://dx.doi.org/10.1002/syn.20020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Y., E. S. Schweitzer, M. J. Nirenberg, V. M. Pickel, C. J. Evans, and R. H. Edwards. "Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells." Journal of Cell Biology 127, no. 5 (December 1, 1994): 1419–33. http://dx.doi.org/10.1083/jcb.127.5.1419.

Full text
Abstract:
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH-terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.
APA, Harvard, Vancouver, ISO, and other styles
42

VEMUGANTI, R. "Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia." Neurochemistry International 47, no. 1-2 (July 2005): 136–42. http://dx.doi.org/10.1016/j.neuint.2005.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

de Castro, B. M., G. S. Pereira, V. Magalhães, J. I. Rossato, X. De Jaeger, C. Martins-Silva, B. Leles, et al. "Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice." Genes, Brain and Behavior 8, no. 1 (February 2009): 23–35. http://dx.doi.org/10.1111/j.1601-183x.2008.00439.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Prendergast, Mark A., and Jerry J. Buccafusco. "(–)-Nicotine increases mRNA encoding G3PDH and the vesicular acetylcholine transporter in vivo." NeuroReport 9, no. 7 (May 1998): 1385–89. http://dx.doi.org/10.1097/00001756-199805110-00025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Emond, Patrick, Sylvie Mavel, Yolanda Zea-Ponce, Michael Kassiou, Lucette Garreau, Sylvie Bodard, Marie-Laure Drossard, Sylvie Chalon, and Denis Guilloteau. "(E)-[125I]-5-AOIBV: a SPECT radioligand for the vesicular acetylcholine transporter." Nuclear Medicine and Biology 34, no. 8 (November 2007): 967–71. http://dx.doi.org/10.1016/j.nucmedbio.2007.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Santos, Magda S., José Barbosa, Christopher Kushmerick, Marcus V. Gomez, Vania F. Prado, and Marco A. M. Prado. "Visualization and Trafficking of the Vesicular Acetylcholine Transporter in Living Cholinergic Cells." Journal of Neurochemistry 74, no. 6 (January 18, 2002): 2425–35. http://dx.doi.org/10.1046/j.1471-4159.2000.0742425.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Boppana, Sridhar, Natalie Kendall, Opeyemi Akinrinsola, Daniel White, Krushali Patel, and Hakeem Lawal. "Immunolocalization of the vesicular acetylcholine transporter in larval and adult Drosophila neurons." Neuroscience Letters 643 (March 2017): 76–83. http://dx.doi.org/10.1016/j.neulet.2017.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Misawa, Hidemi. "Molecular biology of cholinergic gene locus: choline acetyltransferase and vesicular acetylcholine transporter." Japanese Journal of Pharmacology 73 (1997): 34. http://dx.doi.org/10.1016/s0021-5198(19)44647-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Boppana, Sridhar, and Hakeem O. Lawal. "Data on the specificity of an antibody to Drosophila vesicular acetylcholine transporter." Data in Brief 15 (December 2017): 257–61. http://dx.doi.org/10.1016/j.dib.2017.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tezini, G. C. S. V., L. E. V. Silva, M. Oliveira, S. Guatimosim, R. Fazan, V. F. Prado, M. A. M. Prado, and H. C. Salgado. "Cardiovascular autonomic regulation in mice overexpressing the vesicular acetylcholine transporter (VAChT) gene." Autonomic Neuroscience 192 (November 2015): 77–78. http://dx.doi.org/10.1016/j.autneu.2015.07.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography