Journal articles on the topic 'Vesicle tethering complex exocyst'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vesicle tethering complex exocyst.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wiederkehr, Andreas, Johan-Owen De Craene, Susan Ferro-Novick, and Peter Novick. "Functional specialization within a vesicle tethering complex." Journal of Cell Biology 167, no. 5 (2004): 875–87. http://dx.doi.org/10.1083/jcb.200408001.
Full textLuo, Guangzuo, Jian Zhang, and Wei Guo. "The role of Sec3p in secretory vesicle targeting and exocyst complex assembly." Molecular Biology of the Cell 25, no. 23 (2014): 3813–22. http://dx.doi.org/10.1091/mbc.e14-04-0907.
Full textEckardt, Nancy A. "An Exocyst Vesicle Tethering Complex in Plants." Plant Cell 20, no. 5 (2008): 1188. http://dx.doi.org/10.1105/tpc.108.200511.
Full textZhang, Weiwei, Lei Huang, Chunhua Zhang, and Christopher J. Staiger. "Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis." Plant Cell 33, no. 7 (2021): 2454–78. http://dx.doi.org/10.1093/plcell/koab116.
Full textFendrych, Matyáš, Lukáš Synek, Tamara Pečenková, et al. "Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana." Molecular Biology of the Cell 24, no. 4 (2013): 510–20. http://dx.doi.org/10.1091/mbc.e12-06-0492.
Full textMorgera, Francesca, Margaret R. Sallah, Michelle L. Dubuke, et al. "Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1." Molecular Biology of the Cell 23, no. 2 (2012): 337–46. http://dx.doi.org/10.1091/mbc.e11-08-0670.
Full textRiquelme, Meritxell, Erin L. Bredeweg, Olga Callejas-Negrete, et al. "The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth." Molecular Biology of the Cell 25, no. 8 (2014): 1312–26. http://dx.doi.org/10.1091/mbc.e13-06-0299.
Full textMedkova, Martina, Y. Ellen France, Jeff Coleman, and Peter Novick. "The rab Exchange Factor Sec2p Reversibly Associates with the Exocyst." Molecular Biology of the Cell 17, no. 6 (2006): 2757–69. http://dx.doi.org/10.1091/mbc.e05-10-0917.
Full textLira, Matías, Rodrigo G. Mira, Francisco J. Carvajal, Pedro Zamorano, Nibaldo C. Inestrosa, and Waldo Cerpa. "Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex." Cells 9, no. 11 (2020): 2402. http://dx.doi.org/10.3390/cells9112402.
Full textFais, Milena, Giovanna Sanna, Manuela Galioto, et al. "LRRK2 Modulates the Exocyst Complex Assembly by Interacting with Sec8." Cells 10, no. 2 (2021): 203. http://dx.doi.org/10.3390/cells10020203.
Full textNovick, P., M. Medkova, G. Dong, A. Hutagalung, K. Reinisch, and B. Grosshans. "Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis." Biochemical Society Transactions 34, no. 5 (2006): 683–86. http://dx.doi.org/10.1042/bst0340683.
Full textRossi, Guendalina, Kelly Watson, Wade Kennedy, and Patrick Brennwald. "The tomosyn homologue, Sro7, is a direct effector of the Rab GTPase, Sec4, in post-Golgi vesicle tethering." Molecular Biology of the Cell 29, no. 12 (2018): 1476–86. http://dx.doi.org/10.1091/mbc.e18-02-0138.
Full textInoue, Mayumi, Shian-Huey Chiang, Louise Chang, Xiao-Wei Chen, and Alan R. Saltiel. "Compartmentalization of the Exocyst Complex in Lipid Rafts Controls Glut4 Vesicle Tethering." Molecular Biology of the Cell 17, no. 5 (2006): 2303–11. http://dx.doi.org/10.1091/mbc.e06-01-0030.
Full textPrigent, Magali, Thierry Dubois, Graça Raposo, et al. "ARF6 controls post-endocytic recycling through its downstream exocyst complex effector." Journal of Cell Biology 163, no. 5 (2003): 1111–21. http://dx.doi.org/10.1083/jcb.200305029.
Full textRivera-Molina, Felix, and Derek Toomre. "Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion." Journal of Cell Biology 201, no. 5 (2013): 673–80. http://dx.doi.org/10.1083/jcb.201212103.
Full textArasaki, Kohei, Hana Kimura, Mitsuo Tagaya, and Craig R. Roy. "Legionella remodels the plasma membrane–derived vacuole by utilizing exocyst components as tethers." Journal of Cell Biology 217, no. 11 (2018): 3863–72. http://dx.doi.org/10.1083/jcb.201801208.
Full textLiu, Jianglan, Xiaofeng Zuo, Peng Yue, and Wei Guo. "Phosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells." Molecular Biology of the Cell 18, no. 11 (2007): 4483–92. http://dx.doi.org/10.1091/mbc.e07-05-0461.
Full textSynek, Lukáš, Roman Pleskot, Juraj Sekereš, et al. "Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit." Proceedings of the National Academy of Sciences 118, no. 36 (2021): e2105287118. http://dx.doi.org/10.1073/pnas.2105287118.
Full textMathieson, Erin M., Yasuyuki Suda, Mark Nickas, et al. "Vesicle Docking to the Spindle Pole Body Is Necessary to Recruit the Exocyst During Membrane Formation inSaccharomyces cerevisiae." Molecular Biology of the Cell 21, no. 21 (2010): 3693–707. http://dx.doi.org/10.1091/mbc.e10-07-0563.
Full textMarković, Vedrana, Ivan Kulich, and Viktor Žárský. "Functional Specialization within the EXO70 Gene Family in Arabidopsis." International Journal of Molecular Sciences 22, no. 14 (2021): 7595. http://dx.doi.org/10.3390/ijms22147595.
Full textSakurai-Yageta, Mika, Chiara Recchi, Gaëlle Le Dez, et al. "The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA." Journal of Cell Biology 181, no. 6 (2008): 985–98. http://dx.doi.org/10.1083/jcb.200709076.
Full textConibear, Elizabeth, Jessica N. Cleck, and Tom H. Stevens. "Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p." Molecular Biology of the Cell 14, no. 4 (2003): 1610–23. http://dx.doi.org/10.1091/mbc.e02-10-0654.
Full textDe Craene, Johan-Owen, Jeff Coleman, Paula Estrada de Martin, et al. "Rtn1p Is Involved in Structuring the Cortical Endoplasmic Reticulum." Molecular Biology of the Cell 17, no. 7 (2006): 3009–20. http://dx.doi.org/10.1091/mbc.e06-01-0080.
Full textVerPlank, Lynn, and Rong Li. "Cell Cycle-regulated Trafficking of Chs2 Controls Actomyosin Ring Stability during Cytokinesis." Molecular Biology of the Cell 16, no. 5 (2005): 2529–43. http://dx.doi.org/10.1091/mbc.e04-12-1090.
Full textLuo, L., M. Hannemann, S. Koenig, et al. "The Caenorhabditis elegans GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology." Molecular Biology of the Cell 22, no. 14 (2011): 2564–78. http://dx.doi.org/10.1091/mbc.e10-06-0493.
Full textGrosshans, Bianka L., Anna Andreeva, Akanksha Gangar, et al. "The yeast lgl family member Sro7p is an effector of the secretory Rab GTPase Sec4p." Journal of Cell Biology 172, no. 1 (2006): 55–66. http://dx.doi.org/10.1083/jcb.200510016.
Full textZhang, Xiaoyu, Kelly Orlando, Bing He, et al. "Membrane association and functional regulation of Sec3 by phospholipids and Cdc42." Journal of Cell Biology 180, no. 1 (2008): 145–58. http://dx.doi.org/10.1083/jcb.200704128.
Full textLiu, Jianglan, Peng Yue, Vira V. Artym, Susette C. Mueller, and Wei Guo. "The Role of the Exocyst in Matrix Metalloproteinase Secretion and Actin Dynamics during Tumor Cell Invadopodia Formation." Molecular Biology of the Cell 20, no. 16 (2009): 3763–71. http://dx.doi.org/10.1091/mbc.e08-09-0967.
Full textZajac, Allison, Xiaoli Sun, Jian Zhang, and Wei Guo. "Cyclical Regulation of the Exocyst and Cell Polarity Determinants for Polarized Cell Growth." Molecular Biology of the Cell 16, no. 3 (2005): 1500–1512. http://dx.doi.org/10.1091/mbc.e04-10-0896.
Full textWalsh, Tony G., Yong Li, Christopher M. Williams, Elizabeth W. Aitken, Robert K. Andrews, and Alastair W. Poole. "Loss of the exocyst complex component EXOC3 promotes hemostasis and accelerates arterial thrombosis." Blood Advances 5, no. 3 (2021): 674–86. http://dx.doi.org/10.1182/bloodadvances.2020002515.
Full textHou, Hongna, Jianbo Fang, Jiahui Liang, et al. "OsExo70B1 Positively Regulates Disease Resistance to Magnaporthe oryzae in Rice." International Journal of Molecular Sciences 21, no. 19 (2020): 7049. http://dx.doi.org/10.3390/ijms21197049.
Full textŽárský, Viktor, and Martin Potocký. "Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst." Biochemical Society Transactions 38, no. 2 (2010): 723–28. http://dx.doi.org/10.1042/bst0380723.
Full textEstey, Mathew P., Caterina Di Ciano-Oliveira, Carol D. Froese, Margaret T. Bejide, and William S. Trimble. "Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission." Journal of Cell Biology 191, no. 4 (2010): 741–49. http://dx.doi.org/10.1083/jcb.201006031.
Full textArasaki, Kohei, Daichi Takagi, Akiko Furuno, et al. "A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex." Molecular Biology of the Cell 24, no. 18 (2013): 2907–17. http://dx.doi.org/10.1091/mbc.e13-01-0014.
Full textElbert, Maya, Guendalina Rossi, and Patrick Brennwald. "The Yeast Par-1 Homologs Kin1 and Kin2 Show Genetic and Physical Interactions with Components of the Exocytic Machinery." Molecular Biology of the Cell 16, no. 2 (2005): 532–49. http://dx.doi.org/10.1091/mbc.e04-07-0549.
Full textMasgrau, Aina, Andrea Battola, Trinidad Sanmartin, Leszek P. Pryszcz, Toni Gabaldón, and Manuel Mendoza. "Distinct roles of the polarity factors Boi1 and Boi2 in the control of exocytosis and abscission in budding yeast." Molecular Biology of the Cell 28, no. 22 (2017): 3082–94. http://dx.doi.org/10.1091/mbc.e17-06-0404.
Full textNishida‐Fukuda, Hisayo. "The Exocyst: Dynamic Machine or Static Tethering Complex?" BioEssays 41, no. 8 (2019): 1900056. http://dx.doi.org/10.1002/bies.201900056.
Full textDonovan, Kirk W., and Anthony Bretscher. "Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process." Journal of Cell Biology 210, no. 2 (2015): 181–89. http://dx.doi.org/10.1083/jcb.201501118.
Full textBoehm, Cordula, and Mark C. Field. "Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex." Wellcome Open Research 4 (November 29, 2019): 112. http://dx.doi.org/10.12688/wellcomeopenres.15142.2.
Full textBoehm, Cordula, and Mark C. Field. "Evolution of late steps in exocytosis: conservation, specialization." Wellcome Open Research 4 (July 26, 2019): 112. http://dx.doi.org/10.12688/wellcomeopenres.15142.1.
Full textHe, Bing, Fengong Xi, Jian Zhang, Daniel TerBush, Xiaoyu Zhang, and Wei Guo. "Exo70p mediates the secretion of specific exocytic vesicles at early stages of the cell cycle for polarized cell growth." Journal of Cell Biology 176, no. 6 (2007): 771–77. http://dx.doi.org/10.1083/jcb.200606134.
Full textMunson, Mary, Dante Lepore, Michael Feyder, et al. "Exocyst Tethering Complex Regulation of SNARE Proteins and Membrane Fusion." Biophysical Journal 118, no. 3 (2020): 340a—341a. http://dx.doi.org/10.1016/j.bpj.2019.11.1896.
Full textMunson, Mary, Dante Lepore, Michael Feyder, et al. "Activation of the Exocyst Tethering Complex for SNARE Complex Regulation and Membrane Fusion." FASEB Journal 34, S1 (2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.00212.
Full textLees, Joshua A., Calvin K. Yip, Thomas Walz, and Frederick M. Hughson. "Molecular organization of the COG vesicle tethering complex." Nature Structural & Molecular Biology 17, no. 11 (2010): 1292–97. http://dx.doi.org/10.1038/nsmb.1917.
Full textMukherjee, Debarati, Arpita Sen, and R. Claudio Aguilar. "RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking." Small GTPases 5, no. 4 (2014): e983870. http://dx.doi.org/10.4161/sgtp.28453.
Full textZhang, Xiaoyu, Erfei Bi, Peter Novick, et al. "Cdc42 Interacts with the Exocyst and Regulates Polarized Secretion." Journal of Biological Chemistry 276, no. 50 (2001): 46745–50. http://dx.doi.org/10.1074/jbc.m107464200.
Full textJose, Mini, Sylvain Tollis, Deepak Nair, et al. "A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis." Molecular Biology of the Cell 26, no. 13 (2015): 2519–34. http://dx.doi.org/10.1091/mbc.e14-11-1527.
Full textEssid, Miriam, Navin Gopaldass, Kunito Yoshida, Christien Merrifield, and Thierry Soldati. "Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole." Molecular Biology of the Cell 23, no. 7 (2012): 1267–82. http://dx.doi.org/10.1091/mbc.e11-06-0576.
Full textYu, Sidney, Ayano Satoh, Marc Pypaert, Karl Mullen, Jesse C. Hay, and Susan Ferro-Novick. "mBet3p is required for homotypic COPII vesicle tethering in mammalian cells." Journal of Cell Biology 174, no. 3 (2006): 359–68. http://dx.doi.org/10.1083/jcb.200603044.
Full textMukherjee, Indrani, and Charles Barlowe. "Overexpression of Sly41 suppresses COPII vesicle–tethering deficiencies by elevating intracellular calcium levels." Molecular Biology of the Cell 27, no. 10 (2016): 1635–49. http://dx.doi.org/10.1091/mbc.e15-10-0704.
Full text