Journal articles on the topic 'Vertical External Cavity Surface-Emitting Laser (VECSEL)'

To see the other types of publications on this topic, follow the link: Vertical External Cavity Surface-Emitting Laser (VECSEL).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vertical External Cavity Surface-Emitting Laser (VECSEL).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

宋宴蓉, 宋宴蓉, 张鹏 张鹏, 张新平 张新平, 颜博霞 颜博霞, 周翊 周翊, 毕勇 毕勇, 张志刚 张志刚, et al. "Intracavity frequency-doubled green vertical external cavity surface emitting laser." Chinese Optics Letters 6, no. 4 (2008): 271–73. http://dx.doi.org/10.3788/col20080604.0271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rahim, M., A. Khiar, F. Felder, M. Fill, H. Zogg, and M. W. Sigrist. "5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications." Applied Physics B 100, no. 2 (June 11, 2010): 261–64. http://dx.doi.org/10.1007/s00340-010-4055-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sokoł, Adam K., and Robert P. Sarzała. "Influence of Pumping Beam Width on Vecsel Output Power." International Journal of Electronics and Telecommunications 60, no. 3 (October 28, 2014): 239–45. http://dx.doi.org/10.2478/eletel-2014-0030.

Full text
Abstract:
Abstract The paper is devoted to a numerical analysis of an influence of a pumping beam diameter on output power of optically pumped vertical-external-cavity surface-emitting lasers. Simulations have been carried out for a structure with a GaInNAs/GaAs active region operating at 1.32 urn. Various assembly configurations have been considered. Results obtained show that laser power scaling is strongly affected by thermal properties of the device.
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Xue Mei, Li Qin, Yong Qiang Ning, Yun Liu, and Li Jun Wang. "Structural Improvement of 920 nm Optically Pumped Semiconductor Vertical External-Cavity Surface Emitting Laser (OPS-VECSEL)." Key Engineering Materials 552 (May 2013): 373–76. http://dx.doi.org/10.4028/www.scientific.net/kem.552.373.

Full text
Abstract:
920 nm OPS-VECSEL has an important application in laser display. We constructed and optimized a 920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) with active region of In0.09Ga0.91As quantum well (QW) system pumped by 808 nm laser diode module. By the finite element method, self-consistent solutions of the semiconductor electronic and optical equations are realized to calculate the characteristics parameters of OPS-VECSEL. The performances of device, especially the mode, the threshold and the optical-optical translation efficiency, were analyzed by dealing with different numbers of QWs (1, 2 and 3) in one period, QW depth, barrier width, the component and dimension of the non-absorption layer. We chose the best structure of them. On this basis, we optimized the external cavity mirrors reflectivity and the simulation showed that the performances would be significantly increased.
APA, Harvard, Vancouver, ISO, and other styles
5

Liang, Xue Mei, Li Jun Wang, Yong Qiang Ning, and Yun Liu. "Structural Amelioration of 920 Nm Optically Pumped Semiconductor Vertical External-Cavity Surface Emitting Laser (OPS-VECSEL)." Advanced Materials Research 614-615 (December 2012): 1278–81. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.1278.

Full text
Abstract:
920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) has an important application in laser display. We constructed and optimized a 920 nm OPS-VECSEL with active region of In0.09Ga0.91As quantum well (QW) system pumped by 808 nm laser diode module. By the finite element method, self-consistent solutions of the semiconductor electronic and optical equations are realized to calculate the characteristics parameters of OPS-VECSEL. The performances of device especially the mode, the threshold and the optical-optical translation efficiency were analyzed by dealing with different number of QWs (1, 2 and 3) in one period, QW depth, barrier width, the component and dimension of the non-absorption layer. We chose an improved structure of them. On this basis, we ameliorated the number of QW periods and the simulation showed that in order to obtain high performance device, the choice of the number of QW periods must be cautious.
APA, Harvard, Vancouver, ISO, and other styles
6

Jornod, Nayara, Valentin J. Wittwer, Maxim Gaponenko, Martin Hoffmann, Nils Hempler, Graeme P. A. Malcolm, Gareth T. Maker, and Thomas Südmeyer. "Ultrafast optical parametric oscillator pumped by a vertical external-cavity surface-emitting laser (VECSEL)." Optics Express 25, no. 23 (November 7, 2017): 28983. http://dx.doi.org/10.1364/oe.25.028983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Cheng, Rami ElAfandy, and Jung Han. "Distributed Bragg Reflectors for GaN-Based Vertical-Cavity Surface-Emitting Lasers." Applied Sciences 9, no. 8 (April 17, 2019): 1593. http://dx.doi.org/10.3390/app9081593.

Full text
Abstract:
A distributed Bragg reflector (DBR) is a key building block in the formation of semiconductor microcavities and vertical cavity surface emitting lasers (VCSELs). The success in epitaxial GaAs DBR mirrors paved the way for the ubiquitous deployment of III-V VCSELs in communication and mobile applications. However, a similar development of GaN-based blue VCSELs has been hindered by challenges in preparing DBRs that are mass producible. In this article, we provide a review of the history and current status of forming DBRs for GaN VCSELs. In general, the preparation of DBRs requires an optimization of epitaxy/fabrication processes, together with trading off parameters in optical, electrical, and thermal properties. The effort of epitaxial DBRs commenced in the 1990s and has evolved from using AlGaN, AlN, to using lattice-matched AlInN with GaN for DBRs. In parallel, dielectric DBRs have been studied since 2000 and have gone through a few design variations including epitaxial lateral overgrowth (ELO) and vertical external cavity surface emitting lasers (VECSEL). A recent trend is the use of selective etching to incorporate airgap or nanoporous GaN as low-index media in an epitaxial GaN DBR structure. The nanoporous GaN DBR represents an offshoot from the traditional epitaxial approach and may provide the needed flexibility in forming manufacturable GaN VCSELs. The trade-offs and limitations of each approach are also presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Ghasemkhani, Mohammadreza, Alexander R. Albrecht, Seth D. Melgaard, Denis V. Seletskiy, Jeffrey G. Cederberg, and Mansoor Sheik-Bahae. "Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs)." Optics Express 22, no. 13 (June 24, 2014): 16232. http://dx.doi.org/10.1364/oe.22.016232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wójcik-Jedlińska, A., J. Muszalski, M. Bugajski, and M. Łukowski. "Angular and Temperature Tuning of Emission from Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)." Acta Physica Polonica A 114, no. 5 (November 2008): 1437–43. http://dx.doi.org/10.12693/aphyspola.114.1437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peng Zhang, 张鹏, 宋晏蓉 Yanrong Song, 张新平 Xinping Zhang, 田金荣 Jinrong Tian, and 张志刚 Zhigang Zhang. "High power vertical-external-cavity surface-emitting laser." Chinese Optics Letters 8, no. 4 (2010): 401–3. http://dx.doi.org/10.3788/col20100804.0401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Heinen, Bernd, Fan Zhang, Mino Sparenberg, Bernardette Kunert, Martin Koch, and Wolfgang Stolz. "On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)." IEEE Journal of Quantum Electronics 48, no. 7 (July 2012): 934–40. http://dx.doi.org/10.1109/jqe.2012.2196678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cederberg, J. G., A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae. "Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF." Journal of Crystal Growth 393 (May 2014): 28–31. http://dx.doi.org/10.1016/j.jcrysgro.2013.09.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Park, Si-Hyun, and Heonsu Jeon. "Microchip-Type InGaN Vertical External-Cavity Surface-Emitting Laser." Optical Review 13, no. 1 (January 2006): 20–23. http://dx.doi.org/10.1007/s10043-006-0020-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hoffmann, M., Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller. "Modelocked quantum dot vertical external cavity surface emitting laser." Applied Physics B 93, no. 4 (October 25, 2008): 733–36. http://dx.doi.org/10.1007/s00340-008-3267-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Jiye, Jianwei Zhang, Zhuo Zhang, Yugang Zeng, Xing Zhang, Hongbo Zhu, Youwen Huang, et al. "High-power vertical external-cavity surface-emitting laser emitting switchable wavelengths." Optics Express 28, no. 22 (October 14, 2020): 32612. http://dx.doi.org/10.1364/oe.405062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xie, Yi, Jeroen Beeckman, Krassimir Panajotov, and Kristiaan Neyts. "Vertical-cavity surface-emitting laser with a liquid crystal external cavity." Optics Letters 39, no. 22 (November 12, 2014): 6494. http://dx.doi.org/10.1364/ol.39.006494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Wei, Thorsten Ackemann, Marc Schmid, Nigel Langford, and Allister I. Ferguson. "Femtosecond synchronously mode-locked vertical-external cavity surface-emitting laser." Optics Express 14, no. 5 (March 6, 2006): 1810. http://dx.doi.org/10.1364/oe.14.001810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Muszalski, Jan, Artur Broda, Artur Trajnerowicz, Anna Wójcik-Jedlińska, Robert P. Sarzała, Michał Wasiak, Piotr Gutowski, Iwona Sankowska, Justyna Kubacka-Traczyk, and Krystyna Gołaszewska-Malec. "Switchable double wavelength generating vertical external cavity surface-emitting laser." Optics Express 22, no. 6 (March 12, 2014): 6447. http://dx.doi.org/10.1364/oe.22.006447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Alharthi, Sami S., Edmund Clarke, Ian D. Henning, and Michael J. Adams. "1305-nm Quantum Dot Vertical-External-Cavity Surface-Emitting Laser." IEEE Photonics Technology Letters 27, no. 14 (July 15, 2015): 1489–91. http://dx.doi.org/10.1109/lpt.2015.2426371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Leinonen, Tomi, Sanna Ranta, Antti Laakso, Yuri Morozov, Mika Saarinen, and Markus Pessa. "Dual-wavelength generation by vertical external cavity surface-emitting laser." Optics Express 15, no. 20 (2007): 13451. http://dx.doi.org/10.1364/oe.15.013451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fan, Li, Mahmoud Fallahi, Jörg Hader, Aramais R. Zakharian, Jerome V. Moloney, Wolfgang Stolz, Stephan W. Koch, Robert Bedford, and James T. Murray. "Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser." Applied Physics Letters 90, no. 18 (April 30, 2007): 181124. http://dx.doi.org/10.1063/1.2735554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Leinonen, T., Y. A. Morozov, A. Harkonen, and M. Pessa. "Vertical external-cavity surface-emitting laser for dual-wavelength generation." IEEE Photonics Technology Letters 17, no. 12 (December 2005): 2508–10. http://dx.doi.org/10.1109/lpt.2005.859483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dellunde, J., A. Valle, and K. A. Shore. "Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes." Journal of the Optical Society of America B 13, no. 11 (November 1, 1996): 2477. http://dx.doi.org/10.1364/josab.13.002477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

JIN, R., G. KHITROVA, D. BOGGAVARAPU, H. M. GIBBS, S. W. KOCH, M. S. TOBIN, and R. P. LEAVITT. "PHYSICS OF SEMICONDUCTOR VERTICAL-CAVITY SURFACE-EMITTING LASERS." Journal of Nonlinear Optical Physics & Materials 04, no. 01 (January 1995): 141–61. http://dx.doi.org/10.1142/s0218863595000070.

Full text
Abstract:
We describe recent progress in the physics of light-matter interactions in vertical-cavity surface-emitting-laser (VCSEL) structures. Enhanced spontaneous emission indicates strong medium-cavity coupling. The linewidth broadening factor is more accurately determined in VCSELs, supporting many-body theory of semiconductor nonlinearities. Threshold behavior of VCSELs and microlasers is investigated by photon-correlation experiment and quantum laser theory with emphasis on the importance of second-order coherence properties. External optical injection into a VCSEL cavity leads to injection locking, instabilities, acceleration of coherent energy transfer and sideband lasing, most of which are modeled successfully by recently-developed first-principles semiconductor laser theory.
APA, Harvard, Vancouver, ISO, and other styles
25

Valle, A., L. Pesquera, and K. A. Shore. "Polarization selection and sensitivity of external cavity vertical-cavity surface-emitting laser diodes." IEEE Photonics Technology Letters 10, no. 5 (May 1998): 639–41. http://dx.doi.org/10.1109/68.669220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Giudice, G. E., D. V. Kuksenkov, L. G. De Peralta, and H. Temkin. "Single-mode operation from an external cavity controlled vertical-cavity surface-emitting laser." IEEE Photonics Technology Letters 11, no. 12 (December 1999): 1545–47. http://dx.doi.org/10.1109/68.806841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Illek, Stefan, Tony Albrecht, Peter Brick, Stephan Lutgen, Ines Pietzonka, Michael Furitsch, Wolfgang Diehl, Johann Luft, and Klaus Streubel. "Vertical-External-Cavity Surface-Emitting Laser With Monolithically Integrated Pump Lasers." IEEE Photonics Technology Letters 19, no. 24 (December 2007): 1952–54. http://dx.doi.org/10.1109/lpt.2007.909671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hoffmann, Martin, Oliver D. Sieber, Valentin J. Wittwer, Igor L. Krestnikov, Daniil A. Livshits, Yohan Barbarin, Thomas Südmeyer, and Ursula Keller. "Femtosecond high-power quantum dot vertical external cavity surface emitting laser." Optics Express 19, no. 9 (April 13, 2011): 8108. http://dx.doi.org/10.1364/oe.19.008108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Fan, Bernd Heinen, Matthias Wichmann, Christoph Möller, Bernardette Kunert, Arash Rahimi-Iman, Wolfgang Stolz, and Martin Koch. "A 23-watt single-frequency vertical-external-cavity surface-emitting laser." Optics Express 22, no. 11 (May 19, 2014): 12817. http://dx.doi.org/10.1364/oe.22.012817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gaafar, Mahmoud, Dalia Al Nakdali, Christoph Möller, Ksenia A. Fedorova, Matthias Wichmann, Mohammad Khaled Shakfa, Fan Zhang, Arash Rahimi-Iman, Edik U. Rafailov, and Martin Koch. "Self-mode-locked quantum-dot vertical-external-cavity surface-emitting laser." Optics Letters 39, no. 15 (July 31, 2014): 4623. http://dx.doi.org/10.1364/ol.39.004623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Laurain, Alexandre, Declan Marah, Robert Rockmore, John McInerney, Jorg Hader, Antje Ruiz Perez, Wolfgang Stolz, and Jerome V. Moloney. "Colliding pulse mode locking of vertical-external-cavity surface-emitting laser." Optica 3, no. 7 (July 13, 2016): 781. http://dx.doi.org/10.1364/optica.3.000781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Wei, Alison McDonald, Thorsten Ackemann, Erling Riis, and Gail McConnell. "Femtosecond synchronously in-well pumped vertical-external-cavity surface-emitting laser." Optics Express 18, no. 1 (December 22, 2009): 187. http://dx.doi.org/10.1364/oe.18.000187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Iakovlev, V., J. Walczak, M. Gębski, A. K. Sokół, M. Wasiak, P. Gallo, A. Sirbu, et al. "Double-diamond high-contrast-gratings vertical external cavity surface emitting laser." Journal of Physics D: Applied Physics 47, no. 6 (January 10, 2014): 065104. http://dx.doi.org/10.1088/0022-3727/47/6/065104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhuo, Zhang, Zhang Jianwei, Zhang Jiye, Zeng Yugang, Zhang Jun, Zhou Yinli, Zhang Xing, et al. "Switchable two-wavelength emission using vertical external-cavity surface-emitting laser." Optik 264 (August 2022): 169409. http://dx.doi.org/10.1016/j.ijleo.2022.169409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fan, Li, Chris Hessenius, Mahmoud Fallahi, Jörg Hader, Hongbo Li, Jerome V. Moloney, Wolfgang Stolz, Stephan W. Koch, James T. Murray, and Robert Bedford. "Highly strained InGaAs∕GaAs multiwatt vertical-external-cavity surface-emitting laser emitting around 1170nm." Applied Physics Letters 91, no. 13 (September 24, 2007): 131114. http://dx.doi.org/10.1063/1.2790838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang Peng, 张鹏, 戴特力 Dai Teli, 梁一平 Liang Yiping, 范嗣强 Fan Siqiang, 蒋茂华 Jiang Maohua, and 张玉 Zhang Yu. "Optimization of Pump Pulses in a Vertical-External-Cavity Surface-Emitting Laser." Chinese Journal of Lasers 40, no. 4 (2013): 0402001. http://dx.doi.org/10.3788/cjl201340.0402001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hopkins, J. M., R. D. Preston, A. J. Maclean, S. Calvez, H. Sun, J. NG, M. Steer, M. Hopkinson, and D. Burns. "High performance 2.2 μm optically-pumped vertical external-cavity surface-emitting laser." Journal of Modern Optics 54, no. 12 (August 15, 2007): 1677–83. http://dx.doi.org/10.1080/09500340601104702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Ki-Sung, Jaeryung Yoo, Gibum Kim, Sangmoon Lee, Soohaeng Cho, Junyoun Kim, Taek Kim, and Yongjo Park. "Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser." IEEE Photonics Technology Letters 19, no. 23 (December 2007): 1925–27. http://dx.doi.org/10.1109/lpt.2007.908771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yoo, Jaeryung, Kisung Kim, Sangmoon Lee, Seongjin Lim, Gibum Kim, Junyoun Kim, Soohaeng Cho, Junho Lee, Taek Kim, and Yongjo Park. "Gain structure optimization of vertical external cavity surface emitting laser at 920nm." Applied Physics Letters 89, no. 13 (September 25, 2006): 131125. http://dx.doi.org/10.1063/1.2356327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rahim, M., M. Arnold, F. Felder, K. Behfar, and H. Zogg. "Midinfrared lead-chalcogenide vertical external cavity surface emitting laser with 5μm wavelength." Applied Physics Letters 91, no. 15 (October 8, 2007): 151102. http://dx.doi.org/10.1063/1.2798254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Gi Bum, Jun-Youn Kim, Junho Lee, Jaeryung Yoo, Ki-Sung Kim, Sang-Moon Lee, Soohaeng Cho, Seong-Jin Lim, Taek Kim, and Yongjo Park. "End-pumped green and blue vertical external cavity surface emitting laser devices." Applied Physics Letters 89, no. 18 (October 30, 2006): 181106. http://dx.doi.org/10.1063/1.2372689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Morozov, M. Yu, Yu A. Morozov, and I. V. Krasnikova. "Dynamic regimes of the dual-wavelength vertical external cavity surface-emitting laser." Journal of Communications Technology and Electronics 55, no. 10 (October 2010): 1162–68. http://dx.doi.org/10.1134/s1064226910100104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

LI Xiu-shan, 李秀山, 宁永强 NING Yong-qiang, 崔锦江 CUI Jin-jiang, 张星 ZHANG Xing, 贾鹏 JIA Peng, 秦莉 QIN Li, 张金龙 ZHANG Jin-long, 刘云 LIU Yun, and 王立军 WANG Li-jun. "Vertical External Cavity Surface Emitting Laser with Dielectric Film Integrated on Substrate." Chinese Journal of Luminescence 36, no. 5 (2015): 572–76. http://dx.doi.org/10.3788/fgxb20153605.0572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schmid, Marc, Sarah Benchabane, Firuz Torabi-Goudarzi, Richard Abram, Allister I. Ferguson, and Erling Riis. "Optical in-well pumping of a vertical-external-cavity surface-emitting laser." Applied Physics Letters 84, no. 24 (June 14, 2004): 4860–62. http://dx.doi.org/10.1063/1.1760887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kriso, Christian, Sascha Kress, Tasnim Munshi, Marius Grossmann, Roman Bek, Michael Jetter, Peter Michler, Wolfgang Stolz, Martin Koch, and Arash Rahimi-Iman. "Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser." Optics Express 27, no. 9 (April 15, 2019): 11914. http://dx.doi.org/10.1364/oe.27.011914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Peng, Lin Mao, Xiaojian Zhang, Tao Wang, Lijie Wang, and Renjiang Zhu. "Compact dual-wavelength vertical-external-cavity surface-emitting laser with simple elements." Optics Express 29, no. 11 (May 14, 2021): 16572. http://dx.doi.org/10.1364/oe.423074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cermak, Peter, Meriam Triki, Arnaud Garnache, Laurent Cerutti, and Daniele Romanini. "Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser." IEEE Photonics Technology Letters 22, no. 21 (November 2010): 1607–9. http://dx.doi.org/10.1109/lpt.2010.2075922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bertseva, E., A. A. Kachanov, and A. Campargue. "Intracavity laser absorption spectroscopy of N2O with a vertical external cavity surface emitting laser." Chemical Physics Letters 351, no. 1-2 (January 2002): 18–26. http://dx.doi.org/10.1016/s0009-2614(01)01321-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Esposito, Elric, Stefanie Keatings, Kyle Gardner, John Harris, Erling Riis, and Gail McConnell. "Confocal laser scanning microscopy using a frequency doubled vertical external cavity surface emitting laser." Review of Scientific Instruments 79, no. 8 (August 2008): 083702. http://dx.doi.org/10.1063/1.2966395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Panajotov, Krassimir, Marc Sciamanna, Ignace Gatare, Mikel Arteaga, and Hugo Thienpont. "Nonlinear Dynamics of Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2011 (October 11, 2011): 1–16. http://dx.doi.org/10.1155/2011/469627.

Full text
Abstract:
Nonlinear dynamics of Vertical-Cavity Surface-Emitting Lasers (VCSELs) induced by optical injection, optical feedback, current modulation and mutual coupling is reviewed. Due to the surface emission and cylindrical symmetry VCSELs lack strong polarization anisotropy and may undergo polarization switching. Furthermore, VCSELs may emit light in multiple transverse modes. These VCSEL properties provide new features to the rich nonlinear dynamics induced by an external perturbation. We demonstrate for the case of orthogonal optical injection that new Hopf bifurcation on a two-polarization-mode solution delimits the injection locking region and that polarization switching and injection locking of first-order transverse mode lead to a new resonance tongue for large positive detunings. Similarly, the underlying polarization mode competition leads to chaotic-like behavior in case of gain switching and the presence of two transverse modes additionally reduces the possibility of regular dynamics. The bistable property of VCSEL makes it possible to investigate very fundamental problems of bistable systems with time-delay, such as the coherence resonance phenomenon. We also demonstrate that the synchronization quality between unidirectionally coupled VCSELs can be significantly enhanced when the feedback-induced chaos in the master laser involves both orthogonal LP fundamental transverse modes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography