To see the other types of publications on this topic, follow the link: Verres à quantum dots.

Journal articles on the topic 'Verres à quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Verres à quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mujala, Abdul, Muhammad Reza, and Kana Puspita. "Atomic Structure and Its Connection to The Quranic Verses' Context." Elkawnie 9, no. 1 (August 18, 2023): 48. http://dx.doi.org/10.22373/ekw.v9i1.14842.

Full text
Abstract:
Abstract: The growth of science in the twenty-first century, particularly in chemistry, is critically dependent on the integration of science and the Qur'an. Since numerous verses in the Qur'an disclose the fundamental principles of chemistry, such as the size of an atom, the integration of science and the Qur'an is nothing new in modern science, especially chemistry. As a result, this article will go into further detail regarding the atomic structure's physical setting and how it relates to Qur'anic verses. Writing this paper involved conducting literature searches on both contemporary science and Qur'anic interpretations of atomic structure. The word "dzarrah" appears in QS Az-Zalzalah verses 7-8, An-Nisa verse 40, and Yunus verse 61, and is interpreted as the size of a mustard seed that the human intellect may yet attain. However, "dzarrah" is often frequently interpreted as atomic size, since the atomic radius of the smallest atom (Hydrogen) and biggest atom (Organesson) atoms are 1.2 x 10-10 m and 1.52 x 10-10 m, respectively, with 1 million being smaller than the radius of mustard seed (5 x 10-4 m). Thus, the word dzarrah, which is translated as the size of a mustard seed, is less proportional to describe a much smaller atomic size. This atomic scale later served as a precursor for new developments in chemical research, such as nanomaterials and quantum dots.Abstrak: Integrasi sains dan Al-Qur’an menjadi dasar yang penting untuk pengembangan ilmu sains pada abad ke-21, khususnya dalam ilmu kimia. Integrasi sains dengan Al-Qur’an sebetulnya bukanlah hal baru dalam sains modern, khususnya kimia, karena ada banyak ayat-ayat Al-Qur’an yang mengungkapkan tentang konsep dasar kimia, misalnya ukuran atom. Oleh karena itu, artikel ini akan membahas secara lebih jelas tentang konteks materi struktur atom dan kaitannya dengan ayat-ayat Al-Qur’an. Metode penulisan artikel ini menggunakan kajian literatur, baik itu dari segi sains modern dan tafsir Al-Qur’an tentang struktur atom. Kata “dzarrah” muncul dalam QS Az-Zalzalah ayat 7-8, QS An-Nisa ayat 40, dan QS Yunus ayat 61, yang ditafsirkan seukuran biji sawi yang ukurannya masih dapat dijangkau oleh pikiran manusia. Namun, “dzarrah” juga kerap diterjemahkan seukuran atom, padahal jari-jari 1 atom paling kecil (Hidrogen) dan paling besar (Organesson) berturut-turut adalah 1,2 x 10-10 m dan 1,52 x 10-10 m, dimana 1 juta lebih kecil dari jari-jari biji sawi (5 x 10-4 m). Sehingga kata dzarrah yang diterjemahkan sebagai ukuran biji sawi kurang proporsional untuk menggambarkan ukuran atom yang jauh lebih kecil. Ukuran atom ini kemudian menjadi cikal bakal perkembangan penelitian di bidang kimia, misalnya nanomaterial dan quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
2

Kouwenhoven, Leo, and Charles Marcus. "Quantum dots." Physics World 11, no. 6 (June 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reed, Mark A. "Quantum Dots." Scientific American 268, no. 1 (January 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Artemyev, M. V., and U. Woggon. "Quantum dots in photonic dots." Applied Physics Letters 76, no. 11 (March 13, 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loss, Daniel, and David P. DiVincenzo. "Quantum computation with quantum dots." Physical Review A 57, no. 1 (January 1, 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

López, Juan Carlos. "Quantum leap for quantum dots." Nature Reviews Neuroscience 4, no. 3 (March 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zunger, Alex. "Semiconductor Quantum Dots." MRS Bulletin 23, no. 2 (February 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Full text
Abstract:
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
APA, Harvard, Vancouver, ISO, and other styles
8

Barachevsky, V. A. "Photochromic quantum dots." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Full text
Abstract:
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
APA, Harvard, Vancouver, ISO, and other styles
9

Barachevsky, V. A. "Photochromic Quantum Dots." Russian Physics Journal 64, no. 11 (March 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Evanko, Daniel. "Bioluminescent quantum dots." Nature Methods 3, no. 4 (April 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lindberg, V., and B. Hellsing. "Metallic quantum dots." Journal of Physics: Condensed Matter 17, no. 13 (March 19, 2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kaputkina, N. E., and Yu E. Lozovik. "“Spherical” quantum dots." Physics of the Solid State 40, no. 11 (November 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dukes, Albert D., James R. McBride, and Sandra Rosenthal. "Luminescent Quantum Dots." ECS Transactions 33, no. 33 (December 17, 2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tinkham, M. "Metallic quantum dots." Philosophical Magazine B 79, no. 9 (September 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin, and Bruce E. Cohen. "Caged Quantum Dots." Journal of the American Chemical Society 130, no. 47 (November 26, 2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pile, David. "Intraband quantum dots." Nature Photonics 9, no. 1 (December 23, 2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Guyot-Sionnest, Philippe. "Colloidal quantum dots." Comptes Rendus Physique 9, no. 8 (October 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhou, Weidong, and James J. Coleman. "Semiconductor quantum dots." Current Opinion in Solid State and Materials Science 20, no. 6 (December 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gershoni, David. "Pyramidal quantum dots." Nature Photonics 4, no. 5 (May 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nomura, Masahiro, and Yasuhiko Arakawa. "Shaking quantum dots." Nature Photonics 6, no. 1 (December 22, 2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein, and John L. Hutchison. "Electrodeposited quantum dots." Surface Science 311, no. 1-2 (May 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev, and A. L. Aseev. "AlInAs quantum dots." JETP Letters 105, no. 2 (January 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati, and C. N. R. Rao. "Phosphorene quantum dots." Chemical Physics Letters 699 (May 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

H. Sargent, E. "Infrared Quantum Dots." Advanced Materials 17, no. 5 (March 8, 2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nozik, A. J., H. Uchida, P. V. Kamat, and C. Curtis. "GaAs Quantum Dots." Israel Journal of Chemistry 33, no. 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bacon, Mitchell, Siobhan J. Bradley, and Thomas Nann. "Graphene Quantum Dots." Particle & Particle Systems Characterization 31, no. 4 (November 27, 2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tárnok, Attila. "Quantum of dots." Cytometry Part A 77A, no. 10 (September 24, 2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce, and S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots." Optics and Photonics News 13, no. 12 (December 1, 2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto, and Akira Endo. "Quantum Charge Fluctuations in Quantum Dots." Journal of the Physical Society of Japan 69, no. 3 (March 15, 2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Burkard, Guido, Daniel Loss, and David P. DiVincenzo. "Coupled quantum dots as quantum gates." Physical Review B 59, no. 3 (January 15, 1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lozada-Cassou, M., Shi-Hai Dong, and Jiang Yu. "Quantum features of semiconductor quantum dots." Physics Letters A 331, no. 1-2 (October 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Molotkov, S. N., and S. S. Nazin. "Quantum cryptography based on quantum dots." Journal of Experimental and Theoretical Physics Letters 63, no. 8 (April 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh, and D. Vasileska. "Quantum transport in ballistic quantum dots." Physica E: Low-dimensional Systems and Nanostructures 3, no. 1-3 (October 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 2 (February 26, 2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pachos, Jiannis K., and Vlatko Vedral. "Topological quantum gates with quantum dots." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 6 (October 16, 2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin, and Irina A. Yugova. "Quantum beats in semiconductor quantum dots." Journal of Luminescence 108, no. 1-4 (June 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls, and Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots." Angewandte Chemie 124, no. 50 (November 7, 2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bryant, Garnett W. "Quantum dots in quantum well structures." Journal of Luminescence 70, no. 1-6 (October 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei, and Jianxin Zhong. "Quantum confinement in graphene quantum dots." physica status solidi (RRL) - Rapid Research Letters 8, no. 5 (March 31, 2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls, and Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots." Angewandte Chemie International Edition 51, no. 50 (November 7, 2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth, and Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)." Small 11, no. 38 (October 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yong, Ken-Tye. "Quantum Dots for Biophotonics." Theranostics 2, no. 7 (2012): 629–30. http://dx.doi.org/10.7150/thno.4757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhao, Rongzheng, Shuhao Liu, Xuewen Zhao, Mengyue Gu, Yuhao Zhang, Mengting Jin, Yanhao Wang, Yonghong Cheng, and Jinying Zhang. "Violet phosphorus quantum dots." Journal of Materials Chemistry A 10, no. 1 (2022): 245–50. http://dx.doi.org/10.1039/d1ta09132h.

Full text
Abstract:
Violet phosphorus quantum dots have been produced for the first time, which are effective fluorescent probes to selectively detect Cu2+. The morphology, microstructure and fluorescence properties have been tuned using synthesis parameters.
APA, Harvard, Vancouver, ISO, and other styles
44

Xing, Ming, Huaibin Shen, Wei Zhao, Yanfei Liu, Yingda Du, Zhenxiang Yu, and Xia Chen. "dsDNA-coated quantum dots." BioTechniques 50, no. 4 (April 2011): 259–61. http://dx.doi.org/10.2144/000113650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Han, Chang-Yeol, Hyun-Sik Kim, and Heesun Yang. "Quantum Dots and Applications." Materials 13, no. 4 (February 18, 2020): 897. http://dx.doi.org/10.3390/ma13040897.

Full text
Abstract:
It is the unique size-dependent band gap of quantum dots (QDs) that makes them so special in various applications. They have attracted great interest, especially in optoelectronic fields such as light emitting diodes and photovoltaic cells, because their photoluminescent characteristics can be significantly improved via optimization of the processes by which they are synthesized. Control of their core/shell heterostructures is especially important and advantageous. However, a few challenges remain to be overcome before QD-based devices can completely replace current optoelectronic technology. This Special Issue provides detailed guides for synthesis of high-quality QDs and their applications. In terms of fabricating devices, tailoring optical properties of QDs and engineering defects in QD-related interfaces for higher performance remain important issues to be addressed.
APA, Harvard, Vancouver, ISO, and other styles
46

Prevenslik, Thomas. "Quantum Dots by QED." Advanced Materials Research 31 (November 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.

Full text
Abstract:
High quantum dot (QD) efficiency may be explained by excitons generated in the quantum electrodynamics (QED) confinement of electromagnetic (EM) radiation during the absorption of the laser radiation. There is general agreement that by the Mie theory laser photons are fully absorbed by QDs smaller than the laser wavelength. But how the absorbed laser photons are conserved by a QD is another matter. Classically, absorbed laser radiation is treated as heat that in a body having specific heat is conserved by an increase in temperature. However, the specific heats of QDs vanish at frequencies in the near infrared (NIR) and higher, and therefore an increase in temperature cannot conserve the absorbed laser photons. Instead by QED, the laser photon energy is first suppressed because the photon frequency is lower than the EM confinement frequency imposed by the QD geometry. To conserve the loss of suppressed EM energy, an equivalent gain must occur. But the only EM energy allowed in a QED confinement has a frequency equal to or greater than its EM resonance, and therefore the laser photons are then up-converted to the QD confinement frequency - the process called cavity QED induced EM radiation. High QD efficiency is the consequence of multiple excitons generated in proportion to very high QED induced Planck energy because at the nanoscale the EM confinement frequencies range from the vacuum ultraviolet (VUV) to soft x-rays (SXRs). Extensions of QED induced EM radiation are made to surface enhanced Raman spectroscopy (SERS) and light emission from porous silicon (PS).
APA, Harvard, Vancouver, ISO, and other styles
47

Smith, Andrew M., and Shuming Nie. "Next-generation quantum dots." Nature Biotechnology 27, no. 8 (August 2009): 732–33. http://dx.doi.org/10.1038/nbt0809-732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Viswanath, V., and S. Sayeeda Malaika. "OVERVIEW OF QUANTUM DOTS." International Journal of Pharmacy and Technology 12, no. 01 (March 31, 2020): 31895–916. http://dx.doi.org/10.32318/ijpt/0975-766x/12(1).31895-31916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Khalessi, Alexander A., Charles Y. Liu, and Michael L. J. Apuzzo. "NEUROSURGERY AND QUANTUM DOTS." Neurosurgery 64, no. 6 (June 1, 2009): 1015–28. http://dx.doi.org/10.1227/01.neu.0000347889.62762.3f.

Full text
Abstract:
Abstract THIS ARTICLE REPRESENTS the first of a 2-part exploration of quantum dots (Qdots) and their application to neurological surgery. Spanning from materials science to immunology, this initial review traces the marriage of imaging physics to biochemical specificity. Qdot science now stands poised to dramatically advance the diagnosis and therapy of neurosurgical conditions. Qdot research efforts currently involve several disciplines; this comprehensive review therefore considers multiple fields of inquiry. This first installment discusses 1) Qdot physical properties, 2) established biological and in vivo properties, 3) magnetic resonance imaging applications, and (4) existing cardiovascular and oncologic research. Finally, this review establishes the existing bounds of Qdot possibilities. The second concept article details future endovascular diagnostic and therapeutic methods derived from these seminal advances.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, C. "Electrochromic Nanocrystal Quantum Dots." Science 291, no. 5512 (March 23, 2001): 2390–92. http://dx.doi.org/10.1126/science.291.5512.2390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography