Academic literature on the topic 'Verres à quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Verres à quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Verres à quantum dots"

1

Mujala, Abdul, Muhammad Reza, and Kana Puspita. "Atomic Structure and Its Connection to The Quranic Verses' Context." Elkawnie 9, no. 1 (August 18, 2023): 48. http://dx.doi.org/10.22373/ekw.v9i1.14842.

Full text
Abstract:
Abstract: The growth of science in the twenty-first century, particularly in chemistry, is critically dependent on the integration of science and the Qur'an. Since numerous verses in the Qur'an disclose the fundamental principles of chemistry, such as the size of an atom, the integration of science and the Qur'an is nothing new in modern science, especially chemistry. As a result, this article will go into further detail regarding the atomic structure's physical setting and how it relates to Qur'anic verses. Writing this paper involved conducting literature searches on both contemporary science and Qur'anic interpretations of atomic structure. The word "dzarrah" appears in QS Az-Zalzalah verses 7-8, An-Nisa verse 40, and Yunus verse 61, and is interpreted as the size of a mustard seed that the human intellect may yet attain. However, "dzarrah" is often frequently interpreted as atomic size, since the atomic radius of the smallest atom (Hydrogen) and biggest atom (Organesson) atoms are 1.2 x 10-10 m and 1.52 x 10-10 m, respectively, with 1 million being smaller than the radius of mustard seed (5 x 10-4 m). Thus, the word dzarrah, which is translated as the size of a mustard seed, is less proportional to describe a much smaller atomic size. This atomic scale later served as a precursor for new developments in chemical research, such as nanomaterials and quantum dots.Abstrak: Integrasi sains dan Al-Qur’an menjadi dasar yang penting untuk pengembangan ilmu sains pada abad ke-21, khususnya dalam ilmu kimia. Integrasi sains dengan Al-Qur’an sebetulnya bukanlah hal baru dalam sains modern, khususnya kimia, karena ada banyak ayat-ayat Al-Qur’an yang mengungkapkan tentang konsep dasar kimia, misalnya ukuran atom. Oleh karena itu, artikel ini akan membahas secara lebih jelas tentang konteks materi struktur atom dan kaitannya dengan ayat-ayat Al-Qur’an. Metode penulisan artikel ini menggunakan kajian literatur, baik itu dari segi sains modern dan tafsir Al-Qur’an tentang struktur atom. Kata “dzarrah” muncul dalam QS Az-Zalzalah ayat 7-8, QS An-Nisa ayat 40, dan QS Yunus ayat 61, yang ditafsirkan seukuran biji sawi yang ukurannya masih dapat dijangkau oleh pikiran manusia. Namun, “dzarrah” juga kerap diterjemahkan seukuran atom, padahal jari-jari 1 atom paling kecil (Hidrogen) dan paling besar (Organesson) berturut-turut adalah 1,2 x 10-10 m dan 1,52 x 10-10 m, dimana 1 juta lebih kecil dari jari-jari biji sawi (5 x 10-4 m). Sehingga kata dzarrah yang diterjemahkan sebagai ukuran biji sawi kurang proporsional untuk menggambarkan ukuran atom yang jauh lebih kecil. Ukuran atom ini kemudian menjadi cikal bakal perkembangan penelitian di bidang kimia, misalnya nanomaterial dan quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
2

Kouwenhoven, Leo, and Charles Marcus. "Quantum dots." Physics World 11, no. 6 (June 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reed, Mark A. "Quantum Dots." Scientific American 268, no. 1 (January 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Artemyev, M. V., and U. Woggon. "Quantum dots in photonic dots." Applied Physics Letters 76, no. 11 (March 13, 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loss, Daniel, and David P. DiVincenzo. "Quantum computation with quantum dots." Physical Review A 57, no. 1 (January 1, 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

López, Juan Carlos. "Quantum leap for quantum dots." Nature Reviews Neuroscience 4, no. 3 (March 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zunger, Alex. "Semiconductor Quantum Dots." MRS Bulletin 23, no. 2 (February 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Full text
Abstract:
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
APA, Harvard, Vancouver, ISO, and other styles
8

Barachevsky, V. A. "Photochromic quantum dots." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Full text
Abstract:
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
APA, Harvard, Vancouver, ISO, and other styles
9

Barachevsky, V. A. "Photochromic Quantum Dots." Russian Physics Journal 64, no. 11 (March 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Evanko, Daniel. "Bioluminescent quantum dots." Nature Methods 3, no. 4 (April 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Verres à quantum dots"

1

Wang, Zheng. "Synthesis, properties and applications of glasses containing chalcogenide quantum dots." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS093.

Full text
Abstract:
Dans cette thèse, la synthèse, les propriétés et les applications de verres contenant des quantum dots (QDs) de chalcogénure ont été étudiées. Des verres contenant des QDs à base de chalcogénure de plomb (PbSe ou PbS) ont été préparés. Leurs propriétés optiques et leurs applications potentielles ont été explorées en combinaison avec le co-dopage aux ions Tm3+. De plus, sur la base de ces résultats, des verres contenant des QDs de ZnS ou de ZnSe, sans plomb, ont été préparés avec succès. Leurs performances luminescentes ont été encore améliorées par dopage avec des ions de métaux de transition représentés ici par le nickel. Ces résultats jettent les bases pour l’amélioration des propriétés optiques de verres contant des QDs à base de chalcogénure de plomb et aussi pour le développement de verres aux QD sans métaux lourds et donc plus respectueux de l’environnement. Bien que des améliorations futures soient possibles et nécessaires pour des applications réelles, ces verres aux QDs de chalcogénure, développés dans ce travail, présentent un potentiel d'applications dans les domaines des concentrateurs solaires luminescents, de l'anti-contrefaçon optique, de l'éclairage à semi-conducteurs et de la mesure optique de la température
In this dissertation, the synthesis, properties and applications of glasses containing chalcogenide quantum dots (QDs) have been studied. Multicomponent lead chalcogenide QDs glasses (containing PbSe or PbS QDs) were successfully prepared, and their optical properties and potential applications were explored in combination with rare earth Tm3+ ion doping. In addition, based on the results, lead-free and environmentally friendly chalcogenide QDs glasses (containing ZnS or ZnSe QDs) were successfully prepared, and its luminescent performance was further improved by doping with transition metal nickel ions. These results lay the foundation for the improvement of optical properties of lead-based chalcogenide QDs and for the development of environmentally friendly heavy metal-free chalcogenide QDs glasses. Although future improvements are possible and necessary for practical applications, these chalcogenide QDs glasses developed in this work have application potential in the fields of luminescent solar concentrators, optical anti-counterfeiting, solid-state lighting, and optical temperature sensing
APA, Harvard, Vancouver, ISO, and other styles
2

Shliahetskiy, A. A. "Quantum dots." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40495.

Full text
Abstract:
The investigation of semiconductors quantum dot began in 1981 by Alexei Ekimov. Scientists started interested in quantum dot after the quantum effects were discovered in spectrum of many nanocrystals. The term ―Quantum dot‖ appeared in 1988.
APA, Harvard, Vancouver, ISO, and other styles
3

Wardrop, Matthew Phillip. "Quantum Gates for Quantum Dots." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14938.

Full text
Abstract:
Since the mid-20th century it has been understood that a general-purpose quan- tum computer would be able to efficiently solve problems that will forever be out-of-reach for conventional computers. Since then, many quantum algorithms have been developed with applications in a wide range of domains including cryptography, simulations, machine learning and data analysis. While this has resulted in substantial attention being paid to the development of quantum com- puters, the best architectures to use in their fabrication is not yet clear. Semiconductor quantum dot devices are a particularly promising candidate for use in quantum computing architectures, as it is anticipated that once the funda- mental building blocks are implemented, they might be massively scalable using the existing lithography techniques of the semiconductor industry. So far, how- ever, it is not yet clear how best to implement the high-fidelity gates required for general-purpose quantum computation. In this thesis, we present and characterise novel theoretical proposals for fast, simple and high-fidelity two-qubit gates using magnetic (exchange) coupling for specific semiconductor quantum dot qubits; namely, the singlet-triplet and resonant-exchange qubits. These two-qubit operations are simple enough that it is feasible for them to be implemented in experiments of the near future. Success- ful implementations would significantly extend the experimentally demonstrable frontier of semi-conductor quantum dot devices as relevant to their use in uni- versal quantum computing architectures. We also develop simple parameter estimation schemes by which it is possible to substantially mitigate the dominant sources of error for our proposed gates; namely, low-frequency charge and magnetic noise. We develop the techniques in the context of pseudo-static magnetic field gradient fluctuations in singlet- triplet qubits, and demonstrate that these techniques lead to a several orders of magnitude improvement in single-qubit coherence times. With minimal effort this could be ported to other qubit architectures.
APA, Harvard, Vancouver, ISO, and other styles
4

Garrido, Mauricio. "Quantum Optics in Coupled Quantum Dots." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1273589966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chiu, Kuei-Lin. "Transport properties of graphene nanodevices - nanoribbons, quantum dots and double quantum dots." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Ka Ho Adrian. "Quantum information processing with semiconductor quantum dots." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Xiulai. "InAs quantum dots for quantum information processing." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Christ, Henning. "Quantum computation with nuclear spins in quantum dots." München Verl. Dr. Hut, 2008. http://d-nb.info/992162831/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Erdem, Rengin. "Ag2s/2-mpa Quantum Dots." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614384/index.pdf.

Full text
Abstract:
Quantum dots are fluorescent semiconductor nanocrystals that have unique optical properties such as high quantum yield and photostability. These nanoparticles are superior to organic dyes and fluorescent proteins in many aspects and therefore show great potential for both in vivo and in vitro imaging and drug delivery applications. However, cytototoxicity is still one of the major problems associated with their biological applications. The aim of this study is in vitro characterization and assessment of biological application potential of a novel silver sulfide quantum dot coated with mercaptopropionic acid (2-MPA). In vitro studies reported in this work were conducted on a mouse fibroblast cell line (NIH/3T3) treated with Ag2S/2-MPA quantum dots in 10-600 &mu
g/mL concentration range for 24 h. Various fluorescence spectroscopy and microscopy methods were used to determine metabolic activity, proliferation rate and apoptotic fraction of QD-treated cells as well as QD internalization efficiency and intracellular localization. Metabolic activity and proliferation rate of the QD treated cells were measured with XTT and CyQUANT®
cell proliferation assays, respectively. Intracellular localization and qualitative uptake studies were conducted using confocal laser scanning microscopy. Apoptosis studies were performed with Annexin V assay. Finally, we also conducted a quantitative uptake assay to determine internalization efficiency of the silver sulfide particles. Correlated metabolic activity and proliferation assay results indicate that Ag2S/2-MPA quantum dots are highly cytocompatible with no significant toxicity up to 600 &mu
g/mL treatment. Optimal cell imaging concentration was determined as 200 &mu
g/mL. Particles displayed a punctuated cytoplasmic distribution indicating to endosomal entrapment. In vitro characterization studies reported in this study indicate that Ag2S/2-MPA quantum dots have great biological application potential due to their excellent spectral and cytocompatibility properties. Near-infrared emission of silver sulfide quantum dots provides a major advantage in imaging since signal interference from the cells (autofluorescence) which is a typical problem in microscopic studies is minimum in this part of the emission spectrum. The results of this study are presented in an article which was accepted by Journal of Materials Chemistry. DOI: 10.1039/C2JM31959D.
APA, Harvard, Vancouver, ISO, and other styles
10

Korkusinski, Marek. "Correlations in semiconductor quantum dots." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/29128.

Full text
Abstract:
In this Thesis, I present a theoretical study of correlation effects in strongly interacting electronic and electron-hole systems confined in semiconductor quantum dots. I focus on three systems: N electrons in a two-dimensional parabolic confinement in the absence and in the presence of a magnetic field, an electron-hole pair confined in a vertically coupled double-quantum-dot molecule, and a charged exciton in a quantum-ring confinement in a magnetic field. To analyse these systems I use the exact diagonalisation technique in the effective-mass approximation. This approach consists of three steps: construction of a basis set of particle configurations, writing the Hamiltonian in this basis in a matrix form, and numerical diagonalisation of this matrix. Each of these steps is described in detail in the text. Using the exact diagonalisation technique I identify the properties of the systems due to correlations and formulate predictions of how these properties could be observed experimentally. I confront these predictions with results of recent photoluminescence and transport measurements. First I treat the system of N electrons in a parabolic confinement in the absence of magnetic field and demonstrate how its properties, such as magnetic moments, can be engineered as a function of the system parameters and the size of the Hilbert space. Next I analyse the evolution of the ground state of this system as a function of the magnetic field. In the phase diagram of the system I identify the spin-singlet nu = 2 phase and discuss how correlations influence its phase boundaries both as a function of the magnetic field and the number of electrons. I also demonstrate that in higher magnetic fields electronic correlations lead to the appearance of spin-depolarised phases, whose stability regions separate the weakly correlated phases with higher spin. Further on, I consider electron-hole systems. I show that the Coulomb interaction leads to entanglement of the states of an electron and a hole confined in a pair of vertically coupled quantum dots. Finally I consider the system of two electrons and one hole (a negatively charged exciton) confined in a quantum ring and in the presence of the magnetic field. I show that the energy of a single electron in the ring geometry exhibits the Aharonov-Bohm oscillations as a function of the magnetic field. In the case of the negatively charged exciton these oscillations are nearly absent due to correlations among particles, and as a result the photoluminescence spectra of the charged complex are dominated by the energy of the final-state electron. The Aharonov-Bohm oscillations of the energy of a single electron are thus observed directly in the optical spectra.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Verres à quantum dots"

1

Marcel, Bruchez, and Hotz Z. Charles. Quantum Dots. New Jersey: Humana Press, 2006. http://dx.doi.org/10.1385/1597453692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fontes, Adriana, and Beate S. Santos, eds. Quantum Dots. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacak, Lucjan, Arkadiusz Wójs, and Paweł Hawrylak. Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72002-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tartakovskii, Alexander, ed. Quantum Dots. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511998331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jacak, Lucjan. Quantum dots. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takahisa, Harayama, ed. Quantum chaos and quantum dots. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jelinek, Raz. Carbon Quantum Dots. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43911-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Ye, and Yan Wang, eds. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masumoto, Yasuaki, and Toshihide Takagahara, eds. Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Güçlü, Alev Devrim, Pawel Potasz, Marek Korkusinski, and Pawel Hawrylak. Graphene Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44611-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Verres à quantum dots"

1

Yngvason, Jakob. "Quantum dots." In Mathematical Results in Quantum Mechanics, 161–80. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8745-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hotz, Charles Z. "Quantum Dots." In Springer Protocols Handbooks, 697–710. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-375-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Jun-Jie, and Jing-Jing Li. "Quantum Dots." In SpringerBriefs in Molecular Science, 9–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-44910-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parak, Wolfgang Johann, Liberato Manna, Friedrich C. Simmel, Daniele Gerion, and Paul Alivisatos. "Quantum Dots." In Nanoparticles, 3–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Denison, A. B., Louisa J. Hope-Weeks, Robert W. Meulenberg, and L. J. Terminello. "Quantum Dots." In Introduction to Nanoscale Science and Technology, 183–98. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7757-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Ruiqian, Chang Wei, Wanlu Zhang, and Fengxian Xie. "Quantum Dots." In Encyclopedia of Color Science and Technology, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27851-8_393-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Ruiqian, Chang Wei, Wanlu Zhang, and Fengxian Xie. "Quantum Dots." In Encyclopedia of Color Science and Technology, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27851-8_393-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsao, Stanley, and Manijeh Razeghi. "Quantum Dots." In Photonics, 169–219. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119011750.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Califano, M. "Quantum dots." In Quantum Wells, Wires and Dots, 279–302. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118923337.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomić, Stanko, and Nenad Vukmirović. "Quantum Dots." In Handbook of Optoelectronic Device Modeling and Simulation, 419–48. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] |: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152301-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Verres à quantum dots"

1

Rotter, Stefan, Florian Aigner, and Joachim Burgdörfer. "Shot noise in transport through quantum dots: ballistic versus diffractive scattering." In SPIE Fourth International Symposium on Fluctuations and Noise, edited by Massimo Macucci, Lode K. Vandamme, Carmine Ciofi, and Michael B. Weissman. SPIE, 2007. http://dx.doi.org/10.1117/12.725646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barman, B., Y. Tsai, T. Scrace, J. R. Murphy, A. N. Cartwright, J. M. Pientka, I. Zutic, et al. "Conventional versus unconventional magnetic polarons: ZnMnTe/ZnSe and ZnTe/ZnMnSe quantum dots." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2064339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmed Mir, Irshad, Kishan Das, Kamla Rawat, and H. B. Bohidar. "Hot injection versus room temperature synthesis of quantum dots: A differential spectroscopic and bioanalyte sensing efficacy evaluation." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Imamoglu, A. "Quantum optics with quantum dots." In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1547864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mitchell, Andrew. "Quantum simulations with quantum dots." In Brazilian Workshop on Semiconductor Physics. Maresias - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/bwsp-2017-69942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Imamoḡlu, A. "Quantum Optics with Quantum Dots." In Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oulton, Ruth. "Quantum dots for quantum information." In 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ying, Jackie Y., Yuangang Zheng, and S. Tamil Selvan. "Synthesis and applications of quantum dots and magnetic quantum dots." In Biomedical Optics (BiOS) 2008, edited by Marek Osinski, Thomas M. Jovin, and Kenji Yamamoto. SPIE, 2008. http://dx.doi.org/10.1117/12.784053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Badolato, Antonio. "Cavity Quantum Electrodynamics with Quantum Dots." In Laser Science. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ls.2010.lthf1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Waks, Edo, Shuo Sun, Jehyung Kim, Christopher Richardson, Richard Leavitt, and Glenn Solomon. "Scalable Quantum Photonics Using Quantum Dots." In 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2018. http://dx.doi.org/10.1109/phosst.2018.8456737.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Verres à quantum dots"

1

CEDERBERG, JEFFREY G., ROBERT M. BIEFELD, H. C. SCHNEIDER, and WENG W. CHOW. Growth and Characterization of Quantum Dots and Quantum Dots Devices. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steel, Duncan G., and Lu J. Sham. Optically Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sham, Lu J. Raman-Controlled Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brickson, Mitchell Ian, and Andrew David Baczewski. Lithographic quantum dots for quantum computation and quantum simulation. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1592975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Speck, James S., and Pierre M. Petroff. Order Lattices of Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada427868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Levy, Jeremy, Hrvoje Petek, Hong K. Kim, and Sanford Asher. Quantum Information Processing with Ferroelectrically Coupled Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada545675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steel, Duncan G., and L. J. Sham. Optically Driven Spin Based Quantum Dots for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada519735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prather, Dennis W. Millimeter Wave Modulators Using Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada494764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Raymer, Michael G. Quantum Logic Using Excitonic Quantum Dots in External Optical Microcavities. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography