Dissertations / Theses on the topic 'Ventilation of work buildings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ventilation of work buildings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eftekhari, M. M. "Optimal operation of an air-conditioning plant." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234946.
Full textVorderbruggen, Joan Marie. "Evaluating How Attributes of Operable Window Design Affect Office-workers' Perception of Personal Control." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10326.
Full textEnergy and environmental concerns warrant reconsideration of operable windows as a means of ventilating and cooling office environments. To design for optimal window use and performance, architects must understand human interaction with operable windows and the factors that influence occupant participation in their thermal environment. This thesis examines workers' personal control of operable windows in their office space through the lens of the following attributes: proximity, orientation, and accessibility to operable windows, office floor height, and the operational methods of windows. Three sites in the Minneapolis metro area were examined through site visits, informalinterviews, collection of physical traces, and a questionnaire. Research data reveal that proximity is the greatest determinant of window use. Other attributes have varying degrees of influence on use of windows. Surprisingly, workers valued operable windows significantly more for fresh air than for cooling.
Committee in Charge: Professor John Rowell, Chair; Professor Brook Muller; Professor G.Z. Brown
Olausson, Jesper. "Energy efficiency in a renovated modern office with activity-based work style." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30113.
Full textSyrios, Konstantinos. "Natural ventilation of buildings in urban canyons." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420637.
Full textDemmers, T. G. M. "Ventilation of livestock buildings and ammonia emissions." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339674.
Full textCoomaraswamy, Imran Ajay. "Natural ventilation of buildings : time-dependent phenomena." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609863.
Full textLeung, Hugh, and 梁修賢. "Analysis of natural and hybrid ventilation in simple buildings." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26663107.
Full textAdamu, Zulfikar A. "The feasibility of natural ventilation in healthcare buildings." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12600.
Full textIp, Kiun Chong Karine. "Natural ventilation in buildings : modeling, control and optimization." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93829.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 192-195).
Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, in particular its thermal mass properties and heat loads incurred, affect a building's transient thermal response to incoming outdoor air. A proper ventilation schedule is also needed to make optimal use of the free direct or night cooling. To investigate these factors, a first principles heat transfer energy model is developed to numerically simulate in MATLAB the air temperature profile of a single-zone cross-ventilated room. The physics behind natural ventilation at building level is also investigated using multi-zone modeling, as done in CoolVent, an existing MIT airflow modeling tool. In the process, the simulation capabilities of MIT Design Advisor, an existing building energy simulation tool, are expanded upon from shoe-box to interconnected multi-zone modeling. Optimal natural ventilation scheduling, with a view to maximizing thermal comfort, is then studied using two optimization techniques: dynamic programming and global search optimization, using the simple room energy model as the simulation engine. In the process, an algorithm framework is developed to optimize the ventilation scheduling on a rolling day-horizon basis based on input weather data and occupancy schedule. The use of rule-based control, as opposed to the aforementioned model-optimized control, is also explored due to its ease of implementation in building automation software. The former form of control is found to maintain comparable thermal comfort when separate rules for specific scenarios, such as night-overcooling or day-overheating, are gathered together to constrain the room air temperature. It is however critical to identify and calculate proper set-points for these rules.
by Karine Ip Kiun Chong.
S.M.
Marjanovic, Ljiljana. "Supervisory control of naturally ventilated buildings." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/6889.
Full textKleiven, Tommy. "Natural ventilation in buildings : architectural concepts, consequences and possibilities." Doctoral thesis, Norwegian University of Science and Technology, Department of Architectural Design, History and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-914.
Full textThis thesis, “Natural Ventilation in Buildings -Architectural concepts, consequences and possibilities”, is the result of a PhD study financed by Hydro Aluminium/Wicona, The Research Council of Norway and the Norwegian University of Science and Technology (NTNU). The work was carried out at the Department of Architectural Design, History and Technology, Faculty of Architecture and Fine Art at NTNU in the period January 2000 to March 2003.
The study has been conducted in close collaboration with fellow researchers Bjørn J. Wachenfeldt and Tor Arvid Vik. Chapter 2 “Principles and elements of natural ventilation” is in its entirety written by the three of us together.
The main objectives of this work have been to identify and investigate the architectural consequences and possibilities of natural ventilation in office and school buildings in Northern Europe. Case studies and interviews with architects and HVAC consultants have been the most central “research instruments” in achieving this. Three buildings have been studied in detail. These are the GSW Headquarters in Germany, the B&O Headquarters in Denmark, and the Mediå Primary School in Norway. In addition, a larger set of buildings has been used to substantiate the findings.
The most important findings of this work are that:
- utilisation of natural ventilation in buildings has architectural consequences as well as possibilities.
- natural ventilation primarily affects the facades, the roof/silhouette and the layout and organisation of the interior spaces.
- the ventilation principle applied (single-sided, cross- or stack ventilation) together with the nature of the supply and extract paths, i.e. whether they are local or central, are of key importance for the architectural consequences and possibilities.
- designing a naturally ventilated building is more difficult than designing a similar but mechanically ventilated building. An interdisciplinary approach from the initial stages of design is mandatory for achieving successful natural ventilation concepts.
Abro, Riazuddin S. "Photovoltaic powered enhanced ventilation for buildings in hot climates." Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298962.
Full textMozaffarian, Romina. "Natural ventilation in buildings and the tools for analysis." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024277.
Full textDean, Brian N. (Brian Nathan) 1974. "Natural ventilation possibilities for buildings in the United States." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/65726.
Full text"June 2001."
Includes bibliographical references (p. 171-172).
In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs since the designers do not have the tools to understand the impact of using natural ventilation as an option in conditioning a building. Research has been conducted to create a better understanding of how natural ventilation can be used successfully in building designs. First, understanding the buildings that currently use natural ventilation and secondly by analyzing how buildings can operate in different climates. It is important in the building design industry to know the feasibility of designs, and is therefore important to see buildings that have used natural ventilation techniques. It is also important in the building design industry to know if the natural ventilation techniques that have been used, can be used in the climate that a building needs to be designed for. It was determined that increased airflow through natural means can significantly enhance the functionality of buildings in the United States. Throughout the United States there are numerous hours when outdoor conditions suggest using natural ventilation for a primary cooling system. Natural ventilation can help a building maintain comfort for the occupants, reduce energy usage, reduce cooling equipment size and increase indoor air quality. With the use of a natural ventilation design tool, designers can understand the impact that each of the buildings major features has on the overall comfort or energy required to make it comfortable.
by Brian N. Dean.
S.M.
Stoakes, Preston John. "Simulation of Airflow and Heat Transfer in Buildings." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35690.
Full textMaster of Science
Zemanchik, Normand Joseph. "Preferred building orientation for naturally ventilated buildings." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60641.
Full textThis project deals with obtaining the preferred building orientation for 10 regional weather stations across the province of Ontario. Different methods were utilized to obtain the preferred building orientation: the average ventilation rate method, the percentage of ventilation rates above and below the minimum summer ventilation rates, and the consecutive hours method, ie. the number of weather events that are below the minimum summer design ventilation rate for a specific building configuration. The analysis involves six building orientations (0$ sp circ$, 30$ sp circ$, 60$ sp circ$, 90$ sp circ$, 120$ sp circ$, and 150$ sp circ$) with respect to North, and exterior temperatures greater than or equal to 20$ sp circ$C, 25$ sp circ$C, or 30$ sp circ$C.
Optimizing building orientation, to minimize the number of weather events where the ventilation rates are below the summer design ventilation rate is the general goal of this research work.
A statistical analysis was carried out based on the results obtained from the data for the frequency of ventilation rates versus the ventilation rates below the summer design ventilation rate, for all 10 Ontario weather stations, for temperatures greater than or equal to 20$ sp circ$C, and all six building orientations. The output of the statistical analysis showed that for the above mentioned temperature range, that there is a relationship between the ventilation rates below the design summer ventilation rate and building orientation.
Al-Hinai, Hilal Ali Zaher. "Natural Cooling Techniques For Buildings." Thesis, Cranfield University, 1992. http://hdl.handle.net/1826/3591.
Full textShea, Andrew. "Research and marketing of natural ventilation in low energy buildings." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528275.
Full textBensalem, Rafik. "Wind driven natural ventilation in courtyard and atrium-type buildings." Thesis, University of Sheffield, 1991. http://etheses.whiterose.ac.uk/3000/.
Full textJiang, Yi 1972. "Study of natural ventilation in buildings with large eddy simulation." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8512.
Full textIncludes bibliographical references (p. 186-194).
With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and more desired by ordinary people and architects. Although natural ventilation is conceptually simple, it is difficult to design and control. At present, methods to study natural ventilation are either inaccurate or costly. This study aims at solving these problems by using large eddy simulation (LES). In LES, a three-dimensional, time-dependent method, the contribution of the large, energy-carrying structures is computed directly and only the smallest scales of turbulence are modeled. This investigation has identified a filtered dynamic subgrid-scale model of LES to study natural ventilation. The experimental data from a wind tunnel, a full-scale test chamber, and other research data have been used to validate the LES program. Methods have been developed to solve the problems encountered in validating LES models for natural ventilation studies. Studying the characteristics of different indoor and outdoor airflows helps to identify the best SGS model for those flows. By comparing the results of using large and small computational domains, an appropriate domain size is recommended to save computing time. It is also found that simulating the transient properties of incoming wind, such as the principal frequency of the turbulent fluctuations, influences the pressure distributions around buildings.
(cont.) The mechanism of natural ventilation is investigated using the numerical and experimental results. The fundamental impact of turbulence characteristics on ventilation rate is discussed and a new definition to calculate the ventilation rate is introduced. The distributions of velocities, pressures, temperature and energy spectra, and the computed ventilation rates, suggest that natural ventilation performance is significantly affected by thermal conditions and geometry of a building. LES provides the best tool to predict the effects under those conditions. Finally, with the implementation of a Lagrangian particle model, LES is applied to compute particle dispersion in buildings, which provides valuable information to improve indoor air quality. Good results were found for particles larger than 10 micrometers. Further work is needed for smaller particles.
by Yi Jiang.
Ph.D.
Hafezi, Mohammad-Reza. "Buildings in a hot climate with variable ventilation at night." Thesis, University of Leeds, 1989. http://etheses.whiterose.ac.uk/659/.
Full textAcred, Andrew. "Natural ventilation in multi-storey buildings : a preliminary design approach." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/34322.
Full textMert, Cuce Ayse Pinar. "Innovative heating, cooling and ventilation technologies for low-carbon buildings." Thesis, University of Nottingham, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716485.
Full textLeung, Wai-yip. "Indoor air quality and heating, ventilation & air conditioning systems in office buildings /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18734315.
Full textLane-Serff, Gregory. "Heat flow and air movement in buildings." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276888.
Full textKuegler, Kurt W. "Heating, ventilation and air conditioning engineering and design /." Online version of thesis, 1990. http://hdl.handle.net/1850/10982.
Full textÅhlander, Gunnar. "The air distribution in buildings with combined natural and mechanical ventilation." Licentiate thesis, KTH, Civil and Architectural Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1762.
Full textThis work describes result from both measurements on anumber of one family houses, an analytical study of a one-zonemodel and multi zone studies of a two storey building. Thesimulations are performed as both parametric studies, withcombined values of outside temperature, wind velocity and winddirection, and whole year simulations. For the latter, aclimate file for the northern Swedish city Östersund isused.
The results, for the whole year simulations, are presentedas ventilation availabilities. The ventilation availability isdefined as the relative time of the heating season during whicha specified airflow is exceeded. This specified airflow maye.g. be a Building Code requirement if such exists.
The influence of different measures, and combinations ofmeasures, on the ventilation availability has been determinedfor the different rooms. It is found that acceptableventilation availability is possibly to achieve with naturalventilation. However, it requires large supply and overflowopenings and extended ventilation chimneys. These chimneys maybe difficult to accept from an esthetical point of view. Thenatural system is also very sensitive for changes in winddirection.
To ensure required airflows at all times, an exhaust orhybrid ventilation system may be necessary.
Some recommendations may be based on this study.
-Consider the predominating wind direction. Itsan advantage to have more supply openings on the leeward side,i.e. to placehumidrooms towards the knownwindward side.-Use different chimney heights from the differenthumidrooms, to balance the internal airflows. Ifmechanical exhaust is used, it may be used only from some ofthehumidrooms, preferable the ones with closeddoors.-Use as large supply and overflow openings aspossible. Different opening areas may be used to balance theairflows, especially if the predominating wind direction isknown. Acoustic problems may be a limiting factor for theopening area. There may also exist a maximum opening area abovewhich stability problems occur.-Construct ventilation chimneys and chimney outlets ina way, that the windgenerated pressure at the outlet is alwaysnegative and independent of wind direction. Insulate thechimneys to avoid cooling of the air and decreased buoyancyforces.
-Use different chimney heights from the differenthumidrooms, to balance the internal airflows. Ifmechanical exhaust is used, it may be used only from some ofthehumidrooms, preferable the ones with closeddoors.
-Use as large supply and overflow openings aspossible. Different opening areas may be used to balance theairflows, especially if the predominating wind direction isknown. Acoustic problems may be a limiting factor for theopening area. There may also exist a maximum opening area abovewhich stability problems occur.
-Construct ventilation chimneys and chimney outlets ina way, that the windgenerated pressure at the outlet is alwaysnegative and independent of wind direction. Insulate thechimneys to avoid cooling of the air and decreased buoyancyforces.
Meguro, Wendy (Wendy Kei). "Beyond blue and red arrows : optimizing natural ventilation in large buildings." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33029.
Full textIncludes bibliographical references (p. 136-139).
Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, intuitive process, somewhere between the simple diagrams and signing off on the building, the designer must be able to verify that the design will be effective -- essentially that people will be comfortable, and that the system is robust. Today, professional experience is the only methodology to understand the broad considerations behind these new structures. Literature reviews and interviews with industry professional illustrate the lack of information available to the academic and practicing audiences describing the series of calculated decisions and challenges surrounding the design of large naturally ventilated buildings. Architecture professionals and students desiring to engage in these recent, innovative practices would therefore benefit from a resource describing the options available to evaluate a proposed design and optimize a completed building. The thesis examines the strategic decisions in evaluation and monitoring of three case study buildings (Morphosis' San Francisco Federal building, Fosters & Partners' Swiss Re building, and Behnisch & Behnisch's Genzyme building) and derives principles influencing future architecture practice.
by Wendy Meguro.
S.M.
Chilengwe, Nelson. "Optimising the airflow performance of ventilators for natural ventilation in buildings." Thesis, Sheffield Hallam University, 2005. http://shura.shu.ac.uk/19458/.
Full textde, Carvalho Iten Muriel. "Air-multiple PCMs for the free cooling and ventilation of buildings." Thesis, Coventry University, 2015. http://curve.coventry.ac.uk/open/items/58ecaa05-f407-4d55-afb9-caca08818b46/1.
Full textWu, Jiayi, and 吴佳诣. "Slope flows and thermal comfort for hospital natural ventilation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45159105.
Full textChan, Hoy-Yen. "Solar facades for heating and cooling in buildings." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12319/.
Full textMacKinnon, Ian R. (Ian Roderick) 1964. "Air distribution from ventilation ducts." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59655.
Full textYam, Chi-wai, and 任志偉. "Effect of internal thermal mass on building thermal performance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B27770631.
Full textLeung, Wai-yip, and 梁偉業. "Indoor air quality and heating, ventilation & air conditioning systemsin office buildings." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31253787.
Full textAkbari, Keramatollah. "Simulation of Indoor Radon and Energy Recovery Ventilation Systems in Residential Buildings." Doctoral thesis, Mälardalens högskola, Framtidens energi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-29274.
Full textGeens, Andrew John. "A critical appraisal of the use of displacement ventilation in commercial buildings." Thesis, University of South Wales, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322172.
Full textLi, Jianqiang. "Predicting the potential for natural ventilation of buildings in the urban environment." Thesis, University of Sheffield, 2009. http://etheses.whiterose.ac.uk/14526/.
Full textKwiatkowski, jerzy. "Moisture in buildings air-envelope interaction." Lyon, INSA, 2009. http://theses.insa-lyon.fr/publication/2009ISAL0012/these.pdf.
Full textThe aim of this thesis was to study the mass exchange between indoor air and material. The influence of several factors on moisture transfer has been verified. Also the convective mass transfer dependency on the relative humidity condition and position of the material has been checked. Finally, a new module with the sorption hysteresis model, Humi-mur, for calculations of mass flow exchanged between indoor air and material has been developed, validated and integrated into the whole building simulation tool TRNSYS. This powerful tool was used to simulate a realistic room under real climatic conditions. The tests on mass uptake have shown that the rate of mass uptake depends not only on the material and coatings but also, some relationships between mass flux and air movement and temperature have been found. The experiment on water evaporation from a free liquid surface showed that the convective mass transfer coefficient depends on the driving potential value. It was presented that for the smaller difference in the relative humidity the transport coefficient is smaller. The measurements of the convective mass transfer coefficient from a thin hygroscopic material showed that the value of the coefficient depends not only on the difference in the driving potential but also on the level of the driving potential. For the same difference the convective transport coefficient has lower values for a lower level of relative humidity. It was also shown that the convective mass transfer coefficient has lower values for samples in a vertical position than in a horizontal position. Finally, the practical use of the Humi-mur model has been presented. The results show that moisture buffering materials can improve perceived indoor air quality and prevent microbiological growth at the surface of the building envelope. It was also pointed out that neglecting the effect of sorption hysteresis on moisture flux can lead to errors in calculations
Al-Ajmi, Farraj F. "The potential for ground-sourced cooling of domestic buildings in desert." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/34538.
Full textSutcliffe, Helen C. "Infiltration and air change studies in large single cell buildings." Thesis, Coventry University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303351.
Full textHaque, Mohammed Ansarul. "An investigation of fresh air ventilation requirements for air-conditioned buildings in Singapore." Thesis, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326153.
Full textZhao, Ying. "A decision-support framework for design of natural ventilation in non-residential buildings." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27061.
Full textPh. D.
Mora, Pérez Miguel. "Computational fluid dynamics (CFD) applied to buildings sustainable design: natural ventilation. Case study." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/86208.
Full textDurante las últimas décadas los agentes involucrados en el diseño de edificios deben de utilizar estrategias fiables de diseño que les permitan aprovechar los recursos naturales del entorno con el objetivo de aumentar la eficiencia energética de los edificios así como promover el desarrollo sostenible y generar valor añadido para la sociedad. Esta tesis propone una estrategia de diseño fiable de edificios para mejorar su eficiencia energética mediante el uso de la ventilación natural (NV por sus siglas en inglés "natural ventilation"). La estrategia consiste en evaluar la solución arquitectónica más adecuada teniendo en cuenta las condiciones ambientales y el entorno de los edificios con el objetivo de maximizar el uso de la ventilación natural desde la fase inicial de su diseño. En esta tesis se aplica la estrategia de diseño a un caso de estudio real y particular. La estrategia de diseño se basa en el uso de un código numérico comercial que resuelve las ecuaciones de la mecánica de fluidos (CFD por sus siglas en inglés "computational fluid dynamics"). El software CFD simula las características que influyen en la ventilación natural y predice su comportamiento en los edificios antes de su construcción. Esta técnica numérica permite la visualización del flujo de aire en los edificios. Además, el software permite calcular parámetros que son analizados y comparados posteriormente para elegir la solución arquitectónica que suponga un mejor comportamiento de la ventilación natural. Con respecto a todas las decisiones arquitectónicas posibles, la investigación se centra en la selección de la ubicación del edificio y de la configuración de los huecos de su fachada. En primer lugar, se analiza la viabilidad de la estrategia de diseño en una región determinada: la zona costera Mediterránea de la Comunidad Valenciana. La región se caracteriza por las condiciones uniformes del viento predominante durante la estación cálida. A continuación, se utiliza una simulación de CFD validada para analizar cualitativamente y cuantitativamente la influencia de los edificios circundantes en los flujos del viento a través y alrededor de los edificios circundantes. El objetivo es comparar distintas posiciones de los huecos de la fachada para seleccionar la alternativa que mejor aproveche los recursos de ventilación natural disponibles. Además, se presenta en el marco de la selección de la configuración de la fachada una cuantificación general de la contribución de la fachada ventilada a la eficiencia energética de los edificios. En segundo lugar, se realizan dos simulaciones para analizar dos ubicaciones diferentes del edificio caso de estudio. La evaluación de la influencia de los edificios circundantes en el comportamiento de la ventilación natural del edificio caso de estudio se realiza mediante la utilización de modelos CFD validados. Se proponen distintos parámetros y visualizaciones para la evaluación cuantitativa y cualitativa de cada solución. A continuación se selecciona la mejor ubicación con respecto al comportamiento de la ventilación natural en el edificio caso de estudio. Finalmente, la investigación concluye con la construcción a escala real del edificio caso de estudio. Se valida con éxito la simulación CFD del interior del edificio utilizada desde la etapa de diseño. También se verifica con éxito el comportamiento de la ventilación natural del edificio. Además, se analizan las condiciones de confort interiores mediante la evaluación de los siguientes índices: riesgo de corrientes de aire (DR por sus siglas en inglés "draught risk"), voto promedio previsto (PMV por sus siglas en inglés "predicted mean vote") y el porcentaje previsto de personas insatisfechas (PPD por sus siglas en inglés "predicted percentage of dissatisfied people"). Los resultados muestran que el uso de la ventilación natural permite alcanzar, de manera más energéticamente eficiente, las
Durant les últimes dècades els agents involucrats en el disseny d'edificis utilitzen estratègies fiables de disseny que els permeten aprofitar els recursos naturals de l'entorn amb l'objectiu d'augmentar l'eficiència energètica dels edificis així com promoure el desenvolupament sostenible i generar valor afegit per la societat. Aquesta tesi proposa una estratègia fiable de disseny d'edificis per a millorar la seva eficiència energètica mitjançant l'ús de la ventilació natural (NV per les sigles en anglès "natural ventilation"). L'estratègia consisteix a avaluar la solució arquitectònica més adequada tenint en compte les condicions ambientals i l'entorn dels edificis amb l'objectiu de maximitzar l'ús de la ventilació natural des de la fase inicial del seu disseny. En aquesta tesi s'aplica l'estratègia de disseny a un cas d'estudi real i particular. L'estratègia de disseny es basa en l'ús d'un codi numèric comercial que resol les equacions de la mecànica de fluids (CFD per les sigles en anglès "computational fluid dynamics"). El programari CFD simula les característiques que influeixen en la ventilació natural i prediu el seu comportament en els edificis abans de la seva construcció. Aquesta tècnica numèrica permet la visualització del flux d'aire en els edificis. A més, el programari permet calcular paràmetres que són analitzats i comparats posteriorment per triar la solució arquitectònica que supose un millor comportament de la ventilació natural. Pel que fa a totes les decisions arquitectòniques possibles, la investigació es centra en la selecció de la ubicació de l'edifici i de la configuració de les obertures de la façana. En primer lloc, s'analitza la viabilitat de l'estratègia de disseny en una regió determinada: la zona costanera Mediterrània de la Comunitat Valenciana. La regió es caracteritza per les condicions uniformes del vent predominant durant l'estació càlida. A continuació, s'utilitza una simulació de CFD validada per analitzar qualitativament i quantitativament la influència dels edificis circumdants en els fluxos del vent a través i al voltant dels edificis circumdants. L'objectiu és comparar diferents posicions dels buits de la façana per seleccionar l'alternativa que millor aprofite els recursos de ventilació natural disponibles. A més, en el marc de la selecció de la configuració de la façana es presenta una quantificació general de la contribució de la façana ventilada a l'eficiència energètica dels edificis. En segon lloc, es realitzen dues simulacions per analitzar dues ubicacions diferents de l'edifici cas d'estudi. L'avaluació de la influència dels edificis circumdants en el comportament de la ventilació natural de l'edifici cas d'estudi es realitza mitjançant la utilització de models CFD validats. Es proposen diferents paràmetres i visualitzacions per a l'avaluació quantitativa i qualitativa de cada solució. A continuació es selecciona la millor ubicació pel que fa al comportament de la ventilació natural a l'edifici cas d'estudi. Finalment, la investigació conclou amb la construcció a escala real de l'edifici cas d'estudi. Es valida amb èxit la simulació CFD de l'interior de l'edifici utilitzada des de l'etapa de disseny. També es verifica amb èxit el comportament de la ventilació natural de l'edifici. A més, s'analitzen les condicions de confort interiors mitjançant l'avaluació dels següents índexs: risc de corrents d'aire (DR per les sigles en anglès "draught risk"), mitjana de vots previstos (PMV per les sigles en anglès "predicted mean vote") i el percentatge previst de persones insatisfetes (PPD per les sigles en anglès "predicted percentage of dissatisfied people"). Els resultats mostren que l'ús de la ventilació natural permet assolir, de manera més energèticament eficient, les condicions de confort.
Mora Pérez, M. (2017). Computational fluid dynamics (CFD) applied to buildings sustainable design: natural ventilation. Case study [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86208
TESIS
Charitar, Deepti. "Numerical study of the thermal performance of solar chimneys for ventilation in buildings." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20100.
Full textSpurná, Martina. "Low-Energy and Passive Buildings Economics of New Technologies." Thesis, KTH, Byggnadsteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-35054.
Full textPark, David. "The Application of the Solar Chimney for Ventilating Buildings." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73418.
Full textPh. D.
Wu, Jindong. "Thermal comfort and occupant behaviour in office buildings in south-east China." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29435/.
Full textSørnes, Kari. "Heating and Ventilation of Highly Energy Efficient Residential Buildings: Environmental Assessment of Technology Alternatives." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13635.
Full textGomaa, Bakr M. "Wind channels : a novel passive ventilation system for deep plan high-rise residential buildings." Thesis, University of Nottingham, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546571.
Full text