Dissertations / Theses on the topic 'Ventilation – Design and construction'

To see the other types of publications on this topic, follow the link: Ventilation – Design and construction.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Ventilation – Design and construction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kinsman, Roger Gordon. "Outlet discharge coefficients of ventilation ducts." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59271.

Full text
Abstract:
Discharge coefficients are an important parameter in the prediction of the air displacement performance of ventilation outlets and in the design of ventilation ducts.
Discharge coefficients of a wooden ventilation duct 8.54 metres in length and of a constant 0.17 m$ sp2$ cross sectional area were measured. Four different outlet shapes and 3 aperture ratios of each shape were tested. A split plot experimental design was used to evaluate the effect of outlet shape, outlet size, and distance from the fan on discharge coefficient. The relationship between duct performance characteristics and discharge coefficient was examined. A mathematical equation to predict the discharge coefficient was developed and tested.
Discharge coefficient values measured ranged from 0.19 to 1.25 depending on the aperture ratio and distance from the fan. Outlet shape had no significant effect. The apparent effects of aperture ratio and size are due to the effects of head ratio. The equation predicting the discharge coefficient had a maximum error of 5 percent for the aperture ratios of 0.5 and 1.0, and 15 percent at an aperture ratio of 1.5.
APA, Harvard, Vancouver, ISO, and other styles
2

MacKinnon, Ian R. (Ian Roderick) 1964. "Air distribution from ventilation ducts." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59655.

Full text
Abstract:
A wooden, perforated, uniform cross-section duct was examined to determine the optimum levels of aperture ratio and fan speed with respect to uniformity of discharge. The optimum aperture ratio for the 8.54 m long duct was 1.0 with a uniformity coefficient of 90.28%. The fan speed had little effect on the uniformity of discharge. The friction factor was experimentally determined to be 0.048 for a non-perforated duct and this value was assumed to be the same for a perforated duct of similar construction. A kinetic energy correction factor was used to analyze the flow in the duct. Values for this correction factor were determined from experimental data. Values of the coefficient of discharge and the total duct energy were calculated. A mathematical model was proposed based on the conservation of momentum and the Bernoulli's equation. The model responded favourably and predicted the duct velocity nearly perfectly and slightly underestimated the total duct energy.
APA, Harvard, Vancouver, ISO, and other styles
3

Neale, James Richard Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "Experimental and numerical investigation of noise generation from the expansion of high velocity HVAC flows on board ocean going fast ferries." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/28371.

Full text
Abstract:
This thesis details a study of strategies used to limit the flow generated noise encountered in the outlet diffusers of high velocity heating, ventilation and air conditioning (HVAC) duct systems. The underlying noise rating criterion is drawn from the specifications covering ocean going aluminium fast ferries. Although directed primarily towards the fast ferry industry the results presented herein are applicable to other niche high velocity HVAC applications. Experimental tests have been conducted to prove the viability of a high velocity HVAC duct system in meeting airflow requirements whilst maintaining acceptable passenger cabin noise levels. A 50 mm diameter circular jet of air was expanded using a primary conical diffuser with a variety of secondary outlet configurations. Noise measurements were taken across a velocity range of 15 to 60 m/s. An optimum outlet design has been experimentally identified by varying the diffuser angle, outlet duct length and the termination grill. A 4 to 5 fold reduction in required duct area was achieved with the use of a distribution velocity of 20 to 30 ms-1, without exceeding the prescribed passenger cabin noise criteria. The geometric configuration of the diffuser outlet assembly was found to have a pronounced effect on the noise spectrum radiating from the duct outlet. The development of a numerical model capable of predicting the flow induced noise generated by airflow exiting a ventilation duct is also documented. The model employs a Large Eddy Simulation (LES) CFD model to calculate the turbulent flow field through the duct diffuser section and outlet. The flow-generated noise is then calculated using a far field acoustic postprocessor based on the Ffowcs-Williams and Hawkings integral based formulation of Lighthill???s acoustic analogy. Time varying flow field variables are used to calculate the fluctuating noise sources located at the duct outlet and the resulting far field sound pressure levels. This result is then used to calculate the corresponding far field sound intensity and sound power levels. The numerical acoustic model has been verified and validated against the measured experimental results for multiple outlet diffuser configurations.
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Yan. "Modelling of ducted ventilation system in agricultural structures." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60519.

Full text
Abstract:
Air distribution ducts are used in the environmental control of livestock and poultry building as well as the conditioning of most agricultural produce.
In order to simplify the approach to the design of ventilation ducts, a mathematical equation has been derived to describe the average air velocity of a duct.
The primary objective of the research work was to test goodness of fit of an equation describing the average air velocity of perforated ventilation ducts, under balanced as well as unbalanced air distribution: $V = H sb{o}{X over L} + (V sb{L}-H sb{o}) {X sp2 over L sp2}$.
This equation was successfully tested using data measured from 14 ducts of constant cross-sectional area, built of wood or polyethylene with outlets of various shapes and aperture ratios. Results indicated that aperture ratio and distance along the duct are the two most significant factors influencing the average duct air velocity values, but material and outlet shape had little effect.
APA, Harvard, Vancouver, ISO, and other styles
5

El, Moueddeb Khaled. "Principles of energy and momentum conservation to analyze and model air flow for perforated ventilation ducts." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42024.

Full text
Abstract:
A theoretical model was developed to predict the air distribution pattern and thus to design perforated ventilation ducts equipped with a fan. The analysis of the air distribution pattern of such systems requires accurate measurement procedures. Several experimental methods were tested and compared. Accordingly, the piezometric flush taps and thermo-anemometer were selected to measure respectively the duct air pressure and the outlet air flow.
Based on the equations of energy and momentum conservation, a model was formulated to predict the air flow performance of perforated ventilation ducts and to evaluate the outlet discharge angle and the duct regain coefficients without evaluating frictional losses. The basic assumptions of the model were validated by experimentally proving the equivalence of the friction losses expressed in the 2 cited equations. When compared to experimental results measured from four wooden perforated ventilation ducts with aperture ratios of 0.5, 1.0, 1.5, and 2.0, the model predicted the outlet air flow along the full length of perforated duct operated under turbulent flow conditions with a maximum error of 9%. The regain coefficient and the energy correction factor were equal to one, and the value of the discharge coefficient remained constant at 0.65, along the full length of the perforated duct. The outlet air jet discharge angle varied along the entire duct length, and was not influenced by friction losses for turbulent flow.
Assuming a common effective outlet area, the model was extended to match the performance of the fan and the perforated duct and to determine their balance operating point.
APA, Harvard, Vancouver, ISO, and other styles
6

Axelsson, Daniel. "Design and Development of a Spray Booth." Thesis, Linköping University, Department of Management and Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11829.

Full text
Abstract:

As a part of a more extensive project of developing a new finishing line at the Bolivian door manufacturer Tecno Carpinteria San Pedro this thesis presents the development process for a special designed spray booth. The thesis covers every phase from a product idea to a final concept design.

Working with finishing of furniture and other wooden products can effect the workers health in a negative way and damage the environment. The final result of the manufactured door is also depending on the how well the ventilation system in the working area is. Because of these reasons it is important to use safety equipment and a good ventilation system in the working area. As a part of this new finishing line San Pedro is in need of a special designed spray booth to control the spread of paint particles and other hazard substances that is a result of the finishing process.

Together with the consultant firm CADEFOR a spray booth is designed and a proposal design is presented in this thesis. The result is a design built up with a dry filter solution together with an extractor that creates a cross draft airflow towards the rear part of the spray booth. The result of the project together with some recommendations of increasing the capacity in the finishing line are also presented.

APA, Harvard, Vancouver, ISO, and other styles
7

De, Abreu Negreiros Bianca. "Building design and environmental performance : thermal comfort through thermal mass and natural ventilation in social housing in Northeast Brazil." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/building-design-and-environmental-performance-thermal-comfort-through-thermal-mass-and-natural-ventilation-in-social-housing-in-northeast-brazil(71a83bde-8a7c-43d1-a181-2bb340dcb639).html.

Full text
Abstract:
Environmental consciousness leads the construction industry to greater concerns about local adaptation, less waste of resources and energy efficiency In Brazil, earth construction is a feasible approach to house building in many locations and can play a useful part in resolving the housing problems faced by that country, being already a popular approach to providing affordable housing for low income groups within the population, particularly in the Northeast Region of the country, although usually not built correctly. Although used since the colonial period, from 1500, knowledge around earth systems is not formally embedded within the Brazilian building standards and this is unhelpful in terms of promoting quality of performance of buildings thus constructed. For example, appropriate use of high thermal mass in conjunction with natural ventilation, which is frequently used in Brazil due to energy costs, can significantly influence the thermal comfort within residences, but appropriate guidance is lacking. This research considers the combined effects of earth construction and natural ventilation upon thermal comfort within social housing in Northeast Brazil. The main thesis hypothesis is that the use of thermal mass provided by earth construction combined with natural ventilation results in acceptable levels of thermal performance with respect to thermal comfort in both hot and humid and hot and dry climates. The aim is to evaluate the thermal performance of high thermal mass dwellings using adobe system combined with natural ventilation in the bioclimatic zones of Brazil's Northeast Region. The method explores thermal performance simulation using Design Builder, a graphical interface for Energy Plus program. The assessment uses parametric analysis and the adaptive thermal comfort index from de Dear and Brager (1998). The results suggest that earth construction provides a high number of comfort hours in all bioclimatic zones in Northeast Brazil and ventilation use enhances the comfort sensation.
APA, Harvard, Vancouver, ISO, and other styles
8

Ferrucci, Margherita. "Ventilation naturelle en architecture : méthodes, outils et règles de conception." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1080.

Full text
Abstract:
La ventilation naturelle est une stratégie passive qui permet l'échange naturel d'air entre le bâtiment et l'environnement extérieur. Elle assure une bonne qualité de l'air intérieur, améliore le confort thermique et elle réduit les besoins énergétiques, les émissions de gaz à effet de serre et les symptômes liés au syndrome du bâtiment malsain. Bien que les avantages et les bénéfices de la ventilation naturelle soient multiples, son usage est rare dans l'architecture contemporaine. Bien sûr, il existe des limites à sa mise en œuvre dans certains bâtiments, comme la mauvaise qualité de l'air extérieur, mais ces problèmes ne justifient pas une utilisation si peu répandue. La cause de sa faible diffusion est principalement liée à la difficulté de la conception plutôt que aux facteurs physiques liés à l'environnement. La thèse vise à fournir différents outils pour comprendre la dynamique des fluides dans les bâtiments et développer des techniques et des méthodes pour aider la conception des bâtiments ventilés naturellement. L'approche adoptée dans la thèse est modélisée selon les besoins du concepteur qui peut choisir d'utiliser différents types de supports tels que: utiliser des outils graphiques ou des modélisations numériques, s'inspirer de l'architecture contemporaine et répéter les solutions technologiques existantes, utiliser des outils de modélisation physique, s'inspirer du passé ou du monde naturel. Ici plusieurs aspects de la ventilation naturelle sont traités en apportant à chacun une contribution innovante afin de créer des outils d'aide pour différents phases de la conception : Les objectifs de la thèse sont de créer des outils innovants qui simplifient la conception à des niveaux différents. Nous avons créé donc, des outils et des modèles graphiques simplifiés pour choisir la forme du bâtiment et son orientation, des lignes directrices pour le dimensionnement des dispositifs de ventilation (cheminées de toit), des méthodes expérimentales simplifiées associées à des codes de lecture des écoulements d'air. Nous avons également élargit le panorama culturel et historiques et nous avons créé des indications morphologiques dérivant de l'analyse de l'architecture biomimétique. Grâce à une analyse CFD paramétrique, des outils graphiques sont générés pour évaluer, de manière comparative, les performances de ventilation d'une famille morphologique de bâtiments et choisir la forme du bâtiment, son orientation et la position des ouvertures. Nous créons des lignes directrices pour la conception et le pré-dimensionnement des dispositifs de ventilation. Les règles sont déterminées par une analyse comparative de neuf projets de bâtiments contemporains ventilés naturellement dans lesquels le dispositif de ventilation est présent. Une soufflerie est conçue et réalisée pour simplifier les visualisations des écoulements d'air autour des modèles de bâtiments et nous proposons une méthode pour réaliser des expérimentations de support à la conception. Le système de refroidissement géothermique d'une ancienne villa à Costozza (Vicence, Italie) est étudié. Cette section élargit la connaissance du patrimoine architectural italien et souligne l'importance de redécouvrir des solutions technologiques bioclimatiques existantes, toujours en fonction. On analyse une structure animale: le nid d'un insecte. Il s'agit d'un archétype bioclimatique qu'il peut être utilisé dans l'architecture en tant que technologie biomimétique
Natural ventilation is a passive ventilation strategy of confined spaces that consists of natural air exchange between the building and the outdoor environment. Natural ventilation ensures a good indoor air quality, it improves the thermal comfort and it reduces the greenhouses gases emission, the energy demand and the symptoms associated with the Sick Building Syndrome. Although the advantages and benefits of natural ventilation are multiple, its application is rare to contemporary architecture. By the way, there are some limits to its implementation, such as the bad quality of outdoor air, but that does not justify a so limited design of naturally ventilated buildings. The cause of its rare diffusion is primarily the difficulty of design rather than the factors related to the environment. The thesis intends to provide multiple tools for understanding the fluid dynamics in buildings and to develop techniques and methods to support the design of naturally ventilated buildings. The approach adopted in the thesis is modeled according to the needs of the designer. In fact, a designer can choose to use different types of support tools such as: use of graphic tools or numerical models, inspiration to contemporary architecture to provide the existing technology solutions, use of physical modeling tools, inspiration to the past or to the nature. Often, the design is a global process and does not need a single tool but the designer uses more than one. Here, several aspects of natural ventilation are dealt with, trying to make an innovative contribution to each of these themes, in particular : Through a parametric CFD analysis, graphical tools are generated to evaluate, adopting a comparative approach, the ventilative performance of a morphological family of buildings and to choose the shape of the building, its orientation and the position of the openings. Guidelines are set for the design and pre-dimensioning of ventilation devices. The rules are determined by a comparative analysis of nine contemporary ventilation projects in which the ventilation device is present. An optimized wind tunnel is created to simplify airflow visualizations around building models. We provide also a method to make simplified experimentations, an aiding-design tool, and a code that allows to understand the views with the smoke. We study the geothermal cooling system of an ancient villa in Costozza (Vicenza, Italy). This section extends the knowledge of the Italian architectural heritage and highlights the importance of rediscovering existing bioclimatic technology solutions, still in operation. An animal structure is analysed: the bug of an insect. This is a bioclimatic archetype and therefore it can be applied to architecture as a biomimetic technology
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmadi, Mohsen. "Design and construction of a high-bandwidth computer controlled rotary vane ventilator." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq55293.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gross, Steven James. "A Feasibility Study of Model-Based Natural Ventilation Control in a Midrise Student Dormitory Building." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/449.

Full text
Abstract:
Past research has shown that natural ventilation can be used to satisfy upwards of 98% of the yearly cooling demand when utilized in the appropriate climate zone. Yet widespread implementation of natural ventilation has been limited in practice. This delay in market adoption is mainly due to lack of effective and reliable control. Historically, control of natural ventilation was left to the occupant (i.e. they are responsible for opening and closing their windows) because occupants are more readily satisfied when given control of the indoor environment. This strategy has been shown to be effective during summer months, but can lead to both over and under ventilation, as well as the associated unnecessary energy waste during the winter months. This research presents the development and evaluation of a model-based control algorithm for natural ventilation. The proposed controller is designed to modulate the operable windows based on ambient temperature, wind speed, wind direction, solar radiation, indoor temperature and other building characteristics to ensure adequate ventilation and thermal comfort throughout the year without the use of mechanical ventilation and cooling systems. A midrise student dormitory building, located in Portland OR, has been used to demonstrate the performance of the proposed controller. Simulation results show that the model-based controller is able to reduce under-ventilated hours to 6.2% of the summer season (June - September) and 2.5% of the winter (October - May) while preventing over-heating during 99% of the year. In addition, the model-based-controller reduces the yearly energy cost by 33% when compared to a conventional heat pump system. As a proactive control, model-based control has been used in a wide range of building control applications. This research serves as proof-of-concept that it can be used to control operable windows to provide adequate ventilation year-round without significantly affecting thermal comfort. The resulting control algorithm significantly improves the reliability of natural ventilation design and could lead to a wider adoption of natural ventilation in appropriate climate zones.
APA, Harvard, Vancouver, ISO, and other styles
11

Bothma, Johan. "Landscape and architectural devices for energy-efficient South African suburban residential design." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/22852.

Full text
Abstract:
The study relates international knowledge of climatically responsive and energy-efficient design to work done in South Africa. It also explores the relevance of design devices from international regions to the climates of this country. The research approach explores existing analyses of the main climate regions and the effects of climate factors on human comfort in each, in order to derive appropriate design solutions for the climate of South Africa. In South Africa obstacles exist in the face of energy efficiency. The cheapness of electricity to the consumer and the virtual non-existence of appropriate legislation appear to be two of the most significant obstacles. Design and subsequent construction of suburban residences is carried out with little regard for climatic context. Water is shown to be a particularly scarce and unevenly distributed commodity, which the affluent have greater access to and consume in greater quantities. However, it is demonstrated that the South African climate is virtually ideal for several climate-responsive energy-efficiency techniques. Especially due to the high solar radiation levels there is potential for various active and passive solar design techniques and technologies. The impact of atmospheric temperature and humidity, wind, radiation and precipitation on human comfort is investigated. Humidity and wind are demonstrated to be very influential on human comfort, whereas radiation and wind are the most easily manipulated through design. Furthermore, the specific topography and location of a site can influence the microclimate and solar access of an area to a significant degree. The South African climate is predominantly either hot semi-arid or temperate. Most of the western interior is hot arid whereas the eastern interior and highveld is predominantly temperate, with temperatures increasing to the north and decreasing to the south. The only cool region of the country is found in the highlands of the Drakensberg, with a significant portion of the eastern coast being hot humid. Methodologies and guidelines for both layout, or macro design, and detailed design of residential suburbs are explored. The manipulation of solar radiation, sunlight and wind, as well as the management of rainwater and used household water is explored. It is shown that designing suburbs to create access to solar radiation forms the basis of solar design, with solar access control, material and surface treatment largely determining the success of individual designs. Wind manipulation is achieved mainly through planting design, influencing mostly heat loss and gain ratios into buildings. Effective household water management can substantially reduce its consumption. Further research is needed in all aspects of climate-responsive design, especially classification of the South African climate and development of design techniques adapted to this context.
Dissertation (M (Landscape Architecture))--University of Pretoria, 2006.
Architecture
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
12

Yau, Cheong-hung Kent, and 游昌鴻. "Indoor air quality improvement: a case study of the transformation of an industrial building." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45008760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Beviss-Challinor, Lauren Margaret. "Design, build and test a passive thermal system for a loft : a roof solar chimney application for South African weather conditions." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/348.

Full text
Abstract:
Thesis (MEng (Mechanical and Mechatronic Engineering))--Stellenbosch University, 2007.
ENGLISH: The design, construction and testing of a passive thermal system, a roof solar chimney, for a loft is considered. Unlike conventional solar chimneys the solar collector is constructed from corrugated iron roof sheets with the aim that it can be integrated into existing buildings at a lower cost or used in low cost housing developments. The main objective of the study was to determine the feasibility of such low-cost design to regulate thermal conditions in a loft, that is heating the loft during winter and enhancing natural ventilation during summer, by carrying out an experimental and analytical study. The results obtained from the experimental study showed that for winter the solar chimney, having a channel width, depth and length of 0.7 m, 0.1 m and 1.8 m respectively and with a peal solar radiation of 850 W/m², heated the room air 5°C higher than the ambient temperature during the hottest periods of the day, which is only marginally better than a loft with conventional roof insulation. At night, it was found that reverse airflow occurred through the chimney, cooling the loft down to ambient temperature, due to radiation heat loss from the roof collector to the night sky. For summer operation, the experimental data showed that the chimney was able to maintain the loft at ambient temperature and the analytical study found that the chimney was able to enhance natural ventilation effectively, reaching air exchange rate of 6.6 per hour for the 4.6 m³ volume space. It was also found that the chimney’s performance dropped rapidly and significantly during periods of low solar radiation and at night. A sensitivity analysis illustrated that for both summer and winter operation, the size, tilt angle and absorptivity of the roof collector greatly effected the efficiency and mass flow rates of the system, agreeing well with other literature. These results prove that this low cost solar chimney cooling design was feasible to enhance natural ventilation mainly during hot summer conditions with high solar radiation. Compared to a loft with only conventional roof insulation, the chimney did not perform effectively during the winter to heat the loft up, meaning that winter operation for this specific design is not feasible. Possible improvements to the design include using construction materials with higher thermal capacities to retain heat energy and ensure continued operation during periods of low solar radiation, as well as using selective absorber coatings on the collector surface. It is recommended that further work on the project include the integration of these improvements into the present design and to use the findings obtained from the sensitivity analysis to improve system efficiencies. CFD analysis of the test-rig will be insightful as an additional means to validate and compare with the analytical and experimental data obtained in this report. With the continuation of these studies, this low-cost solar chimney design can be optimised, validated on a commercial scale and built into existing and new housing developments. Incorporating such a passive thermal device will aid homeowners in air regulation and thermal comfort of their living space as well as saving on energy requirements.
Sponsored by the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University
APA, Harvard, Vancouver, ISO, and other styles
14

Adams, Noah John. "The effect of pressure differential and provider movement on isolation room containment efficiency." Oklahoma City : [s.n.], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lauck, Jeffrey Stephen. "Evaluation of Phase Change Materials for Cooling in a Super-Insulated Passive House." PDXScholar, 2013. http://pdxscholar.library.pdx.edu/open_access_etds/1444.

Full text
Abstract:
Due to factors such as rising energy costs, diminishing resources, and climate change, the demand for high performance buildings is on the rise. As a result, several new building standards have emerged including the Passive House Standard, a rigorous energy-use standard based on a super-insulated and very tightly sealed building envelope. The standard requires that that air infiltration is less than or equal to 0.6 air changes per hour at a 50 Pascal pressure difference, annual heating energy is less than or equal to 15kWh/m2, and total annual source energy is less than or equal to 120 kWh/m2. A common complaint about passive houses is that they tend to overheat. Prior research using simulation suggests that the use of Phase Change Materials (PCMs), which store heat as they melt and release heat as the freeze, can reduce the number of overheated hours and improve thermal comfort. In this study, an actual passive house duplex in Southeast Portland was thoroughly instrumented to monitor various air and surface temperatures. One unit contains 130kg of PCM while the other unit contains no PCM to serve as an experimental control. The performance of the PCM was evaluated through analysis of observed data and through additional simulation using an EnergyPlus model validated with observed data. The study found that installation of the PCM had a positive effect on thermal comfort, reducing the estimated overheated hours from about 400 to 200.
APA, Harvard, Vancouver, ISO, and other styles
16

Kenton, Amanda Gail. "Natural ventilation in theatre design." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lauzet, Nicolas. "Prise en compte cumulée du réchauffement climatique et des surchauffes urbaines en phase amont de conception frugale des bâtiments centrée sur le confort des occupants : des propositions méthodologiques." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS551.

Full text
Abstract:
Alors que les prévisions climatiques du GIEC sont de plus en plus avancées et que les phénomènes relatifs à l’Ilot de Chaleur Urbain (ICU) sont de mieux en mieux cernés, les uns et les autres ne sont toujours pas pris en compte dans la conception actuelle des bâtiments. Comment prendre en compte le réchauffement climatique à l’échelle globale et les surchauffes urbaines en phase de conception des bâtiments ? Quels sont les impacts sur la thermique des bâtiments ? Quels critères de confort pour orienter les choix des concepteurs motivés par la frugalité ? La première partie présente comment la thermique du bâtiment « voit » le climat. Actuellement, les bureaux d’études utilisent des météos moyennées sur 10 ou 30 ans de mesures qui donnent un fichier météo représentatif du climat d’une zone, mais qui suppriment les conditions extrêmes comme les vagues de chaleur. Ces dernières constituent et constitueront pourtant de plus en plus des risques sanitaires pour les personnes vulnérables. Une méthodologie est proposée pour choisir une année météorologique réelle en la repositionnant par rapport aux prévisions climatiques du GIEC. En deuxième partie du manuscrit, l’influence du type de fichier météo utilisé sur les résultats de simulation thermique dynamique (STD) est étudiée sur un bâtiment de logements collectifs situé dans le quartier Confluence à Lyon. Cette étude est centrée sur l’analyse du confort d’été qui est l’enjeu majeur pour l’adaptation aux aléas climatiques. Cette partie contient également des propositions méthodologiques pour l’analyse des risques sanitaires en ambiances intérieures lors des évènements extrêmes de canicules. Enfin en troisième et dernière partie, nous étudions la possibilité d’utiliser les résultats des outils de microclimatologie urbaine en entrée météo des modèles STD. Une expérimentation de chainage entre les outils CitySim et CIM, développés à l’EPFL de Lausanne, est menée sur le même quartier Confluence à Lyon
While the IPCC's climate forecasts are more and more advanced and the phenomena related to the Urban Heat Island (UHI) are well understood, both are still not taken into account in the design of current buildings. How to take into account the global warming and urban overheating in buildings’ design? What are the impacts on the thermal behavior of buildings? What comfort criteria can be proposed to guide the choices of designers motivated by frugality? The first part presents how the building "sees" the climate. Currently, consulting agencies use averages over 10 or 30 years of measurements that give a weather file representative of the climate of an area, but which remove extreme conditions such as heat waves. However, these are and will increasingly constitute health risks for vulnerable people. A methodology is proposed to choose a real weather year by repositioning it in relation to the IPCC climate forecast. In the second part of the manuscript, the influence of the type of weather file used for buildings simulation on the comfort results is studied for a residential building located in the Confluence district in Lyon. This study focuses on the analysis of summer comfort, which is the major issue for adaptation to current and future climates. This part also contains methodological proposals for the analysis of health risks in indoor environments during extreme heatwave events. Finally, in the third and last part, we study the possibility of using the results of a urban microclimate tool to produce weather input for the building energy models. A chaining experiment between the CitySim and CIM tools, developed at EPFL Lausanne, is conducted on the same Confluence district in Lyon
APA, Harvard, Vancouver, ISO, and other styles
18

Kuegler, Kurt W. "Heating, ventilation and air conditioning engineering and design /." Online version of thesis, 1990. http://hdl.handle.net/1850/10982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tantasavasdi, Chalermwat 1971. "Natural ventilation : design for suburban houses in Thailand." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/70306.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1998.
Includes bibliographical references (p. 93-95).
Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such as the traditional house, but has become unused nowadays because of the urbanized conditions in big cities like Bangkok. This thesis explores the potential of using natural ventilation for modern houses by using a Computational Fluid Dynamics (CFD) program. The research investigates the characteristics of Thai houses from the past to the present that climate, culture and technology have influenced. The analysis of the climate data concludes that natural ventilation can be used approximately four months a year to create conditions within the zone of thermal comfort. In a suburban housing project, site planning has a significant impact on the wind pattern and velocity. The simulation results indicate that the wind has better characteristics in the houses with square shapes than those with rectangular shapes. The vegetation around the houses also has some effect on the wind by slightly reducing its speed. Lastly, the prevailing winds from the north and north-northeast have similar wind patterns in a large housing project. The final stage is to design a prototype by using some climatic characteristics from the traditional Thai house. The air movement is inadequate in a house with regular size windows. Therefore, the study tests three more cases with larger windows. The results demonstrate that the maximum size window provides better thermal comfort. Finally, the study finds that the stack effect is negligible. The study shows the possibility to use natural ventilation for the houses in this region. The investigation has developed comprehensive design guidelines for architects. Necessary further research is presented in the end to find more solutions for climate-responsive architecture in today's physical conditions.
by Chalermwat Tantasavasdi.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
20

Alfadil, Mohammad Omar. "Design Tool for a Ground-Coupled Ventilation System." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100604.

Full text
Abstract:
Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses regression equations created from many GCV system design simulation data using Autodesk Computational Fluid Dynamics software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV systems' design performances and allows them to save time, money, and effort.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
21

Bouadma, Lila. "Pneumopathies acquises sous ventilation mécanique : construction et évaluation d'un programme de prévention." Paris 7, 2010. http://www.theses.fr/2010PA077210.

Full text
Abstract:
La pneumonie acquise sous ventilation mécanique (PAVM) est l'infection associée aux soins la plus fréquente. Nous avons étudié l'impact d'un programme multifacettes de prévention des PAVM. Huit mesures préventives ont été ciblées, elles devaient: 1) être incluses dans des recommandations récentes 2) correspondre à une action facilement et précisément mesurables 3) être liées directement aux comportements des soignants au lit du patient. Elles concernaient l'hygiène des mains, les précautions contact, l'élévation de la tête du lit, la pression de gonflage du ballonnet de la sonde d'intubation, la gestion de la sonde gastrique, la gestion de la distension gastrique, les soins de bouche et les aspirations trachéales. Nous avons étudié: l'efficacité du programme sur l'observance globale et l'observance à chacune des mesures de prévention avec 2 ans de suivi, l'influence du programme sur les facteurs individuels des soignants avec 1 an de suivi, l'intérêt de la mise en oeuvre de mesures techniques sur l'observance à certaines mesures de prévention (élévation de la tête du lit et pression de gonflage du ballonnet) avec 2 ans de suivi et l'efficacité du programme sur l'incidence des PAVM. Notre travail a établi un lien fort entre l'amélioration des pratiques de prévention et la réduction des taux de PAVM, relation encore rarement démontrée dans la littérature. Les effets favorables de ce programme restent observés à long terme. Malgré un programme de prévention très actif et synergique sur l'ensemble des déterminants impactant sur l'observance, les taux de PAVM restent élevés, rendant illusoire l'objectif d'annuler le risque de PAVM chez le patient de réanimation
Ventilator-associated pneumonia (VAP) is the most common hospital-acquired infection in the intensive care unit (ICU setting. Despite the availability of evidence-based guidelines to prevent VAP, they remain poorly implemented. The objective was to determine the effect of a 2-yr multifaceted program aimed at preventing VAP. The program involved a healthcare workers (HCWs) and included a multidisciplinary task force, an educational session, direct observations with performance feedback, technical improvements, and reminders. It focused on eight targeted measures based on well recognized published guidelines, easily and precisely defined acts, and directly concerned HCW's bedside behavior: 1 compliance with hand-hygiene rules including use of an alcohol-based hand rub, 2) proper glove and gown use, 3) keeping patients in the semi-recumbent position, 4) keeping the endotracheal tube cuff pressure >20 cm H2O, 5) using orogastric tubes rather than nasogastric tubes, 6) avoiding gastric overdistension, 7) decontaminating the patient's mouth with 0. 12% chlorhexidine at least four times/day, and 8) eliminating nonessential tracheal suction. We studied the impact of the programme on compliance with the targeted preventive measures, on HCWs'individual factors and on VA incidence and the role of technical devices. Our preventive program produced sustained VAP rate decreases in the long term. However, VAP rates remained substantial despite high compliance with preventive measures, suggesting that eliminating VAP in the ICU may be an unrealistic goal
APA, Harvard, Vancouver, ISO, and other styles
22

Simons, Martin W. "The prediction of ventilation effectiveness parameters for design studies." Thesis, Coventry University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Duckworth, Ian J. "The analysis, design and operation of auxilary ventilation systems." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chiu, Yin-Hao. "Development of unsteady design procedures for natural ventilation stacks." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Allocca, Camille 1977. "Single-sided natural ventilation : design analysis and general guidelines." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/37561.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.
Includes bibliographical references (p. 102-104).
Natural ventilation is an effective measure to save energy consumed in buildings and to improve indoor air quality. This study focuses specifically on the principles of single-sided natural ventilation design. Single-sided ventilation is very common in building designs and has been shown to produce very complicated, fluctuating airflow patterns at the openings of buildings. An ongoing challenge in natural ventilation design is therefore the ability to control the mechanisms of wind and temperature for desirable indoor environment conditions. Understanding these effects is important in determining the feasibility of natural ventilation designs. The current research approach used mainly (CFD) tools, together with analytical solutions, empirical models, and experimental results. CFD models were created and analyzed to determine the validity of using this tool for single-sided ventilation analysis and design. The impact of using computational modeling tools for the development of natural ventilation design is great to the building industry field. The focus of this CFD study was on a single room within a residential building in Cambridge, MA. Simulations were performed under varying conditions of temperature, wind speed, wind direction, opening layout and size, and internal heat load, in order to evaluate parameter trends. Airflow rates, velocity fields, and temperature distributions were derived from analytical equations and empirical models as well as from experimental measurements, in order to validate and perform further research in this area. Consequently, this investigation found CFD tools to be valid for studying single-sided natural ventilation strategies with respect to indoor, outdoor, and combined indoor and outdoor flow. From this validation, CFD was applied further to determine the effects of buoyancy, wind, and combined flow on natural ventilation rates and overall indoor conditions. For buoyancy driven flow, CFD performed well when modeling both the indoor and outdoor environment in the calculation, resulting in a 10% difference between semi-analytical and CFD results. However, for wind-driven flow, CFD was found to under predict empirical model results by approximately 25%. This under prediction was attributed to mean or time-averaged, rather than instantaneous calculations of the CFD technique applied to this study. In addition to evaluating the effects of buoyancy and wind on ventilationrates, this study also focused on the effects of wind direction, opposing buoyancy and wind forces, and mixed-mode ventilation. The results from these studies provided further insight into the field of single-sided ventilation and revealed the need for further research in this valuable area. To fully understand and utilize this natural ventilation strategy, the results from the complete single-sided ventilation study were compiled and developed into a computer design tool and a set of general design guidelines. These tools were created in such a way so that designers can use them to evaluate ventilation performance and see immediate results for an indoor environment that they propose to design. The level of analysis that is desired by designers in this area calls for a tool such as this one. This total investigation has been essential in evaluating and analyzing the important areas of the single-sided ventilation field and in providing a strong foundation for further research in improving natural ventilation design as well as in improving CFD and turbulence modeling.
by Camille Allocca.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
26

Hurtado, Mark Pastor. "Optimum Design of Compact, Quiet, and Efficient Ventilation Fans." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96519.

Full text
Abstract:
Axial ventilation fans are used to improve the air quality, remove contaminants, and to control the temperature and humidity in occupied areas. Ventilation fans are one of the most harmful sources of noise due to their close proximity to occupied areas and widespread use. The prolonged exposure to hazardous noise levels can lead to noise-induced hearing loss. Consequently, there is a critical need to reduce noise levels from ventilation fans. Since fan noise scales with the 4-6th power of the fan tip speed, minimizing the fan tip speed and optimizing the duct geometry are effective methods to reduce fan noise. However, there is a tradeoff between reducing fan speed, noise and aerodynamic efficiency. To this end, a new innovative comprehensive optimum design methodology considering both aerodynamic efficiency and noise was formulated and implemented using a multi-objective genetic algorithm. The methodology incorporates a control vortex design approach that results in a spanwise chord and twist distribution of the blades that maximize the volumetric flow rate contribution of the outer radii, i.e. the axial flow velocity increases from the fan hub to the tip. The resulting blade geometry generates a given volumetric flow rate at the minimum fan tip speed. The fan design is complemented by the design of the optimum inlet duct geometry to maximize volumetric flow rate and minimize BL thickness for low noise generation. Good agreement with experimental results validates the design process. The present study also incorporates multi-element airfoils to further increase the aerodynamic characteristics of the fan blades and enable lower fan speeds and noise. Good agreement between experiments and predictions indicate that traditional blade element momentum methods can be implemented in conjunction with multi-element airfoil aerodynamic characteristics with good accuracy. A direct comparison of fans designed with single and multi-element airfoils has shown that fans designed with multi-element airfoils aerodynamically outperform single element fans.
Doctor of Philosophy
Axial ventilation fans are widely used to improve the air quality, remove contaminants, and to control the temperature and humidity in occupied areas. However, high noise levels from ventilations fans are a harmful source of noise that can lead to irreversible noise-induced hearing loss. Therefore, this work addresses a critical need for quiet and efficient ventilation fans. To this end, a new innovative comprehensive optimum design methodology considering both aerodynamic efficiency and noise was formulated, implemented, and tested. The methodology optimizes the fan geometry to maximize the volumetric flow rate and minimize noise. The fan design is complemented by the design of the optimum inlet duct geometry to increase the volumetric flow rate and minimize BL thickness for low noise generation. Good agreement with experimental results validates the design process. The present study also incorporates multi-element airfoils to further increase the aerodynamic characteristics of the fan blades. A direct comparison of fans designed with single and multi-element airfoils has shown that fans designed with multi-element airfoils aerodynamically outperform single element airfoil fans.
APA, Harvard, Vancouver, ISO, and other styles
27

Sheward, Garcia Hugo A. "A framework for the implementation of design assistances for preliminary concept design of laboratories." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53977.

Full text
Abstract:
A framework for the implementation of automated ventilation systems engineering was proposed. An extensive research in the area of design guidelines and best practices for the design and operations of laboratories was conducted. a software prototype was created to better support the integration of ventilation engineering to early design stages was created. New methodologies for enhancing the semantics and for deriving building morphology information from early design BIM models were created. The prototype software was tested using as reference currently available practices. Findings concerning the speed of operation, the extended capabilities of the proposed framework and the implication for future research are discussed.
APA, Harvard, Vancouver, ISO, and other styles
28

Westerhoff, Kevin M. (Kevin Matthew) 1978. "Construction based design." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/84827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Barroeta, Ander. "Design of a ventilation system for carbon dioxide reduction in two gym rooms." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-14801.

Full text
Abstract:
This project is mainly focused on the improving and design of the ventilation system of two rooms at different levels of a gym (Friskis and Svettis in Gävle, Sweden) to reduce the  concentration to never be higher than 1000 ppm. For this purpose, several field measurements were performed in different locations and situations. Two main measurements were necessary. On one hand, the  level in different parts of the rooms during different activities. On the other hand, the air flow through the inlet and outlet ducts of the ventilation system. It was also important to take into account the indoor temperature and humidity. These measurements were enough to analyze the failures of the system and to recognize the worst points of each room. Comparing both rooms, the necessity of changing the ventilation system in one of these rooms was much higher, due to there were measured  values up to 3000 ppm during a typical day in the gym. With this information the consequences of high CO2 levels in human people were analyzed. Among various ventilation systems, displacement ventilation system was proposed as the new design. Theoretical calculations were made to reach to the value of 31.8  in the air change rate (ACH), which was the necessary value for the new design to keep the carbon dioxide level under 1000 ppm.
APA, Harvard, Vancouver, ISO, and other styles
30

Carey, P. S. "Direct wind tunnel modelling of natural ventilation for design purposes." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.422325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Acred, Andrew. "Natural ventilation in multi-storey buildings : a preliminary design approach." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/34322.

Full text
Abstract:
Natural ventilation is a low-energy design strategy that has the potential both to significantly reduce energy usage in buildings and to provide a healthy and comfortable indoor environment. It has particular potential for use in tall, multi-storey buildings. However, the integration of natural ventilation into these large building designs has seen mixed success. Furthermore, there is a gap between simple 'rule-of-thumb' design guidance and detailed, computational design tools. This research attempts to bridge the gap between the simple and detailed with the broad aim of providing rapid and intuitive guidance for use in preliminary design. We use a simple mathematical approach to develop a coherent and easy-to-use framework for modelling ventilating flows, which quantifies the interactions between a core set of design variables. We focus in particular on buoyancy-driven ventilation in buildings with atria, ventilation stacks and/or similar vertical spaces that span multiple floors. Simple methods centred around hand calculations and design charts are developed to inform the sizing of vents in an 'ideal design' scenario, in which the desired ventilation flow rates and air temperatures are delivered to all occupants within a building. We define a measure of the ventilation performance of an atrium and use this to provide an indication of when an atrium is beneficial to a ventilation system design and when it is detrimental. We also use a transient flow analysis to consider 'off-design' scenarios, in which undesirable flow regimes may occur, and to place design tolerances on the building envelope. It is hoped that this work will form a point of reference for further research and for future revisions of design guidance literature.
APA, Harvard, Vancouver, ISO, and other styles
32

Sadrizadeh, Sasan. "Design of Hospital Operating Room Ventilation using Computational Fluid Dynamics." Doctoral thesis, KTH, Strömnings- och klimatteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181053.

Full text
Abstract:
The history of surgery is nearly as old as the human race. Control of wound infection has always been an essential part of any surgical procedure, and is still an important challenge in hospital operating rooms today. For patients undergoing surgery there is always a risk that they will develop some kind of postoperative complication. It is widely accepted that airborne bacteria reaching a surgical site are mainly staphylococci released from the skin flora of the surgical staff in the operating room and that even a small fraction of those particles can initiate a severe infection at the surgical site.  Wound infections not only impose a tremendous burden on healthcare resources but also pose a major threat to the patient. Hospital-acquired infection ranks amongst the leading causes of death within the surgical patient population. A broad knowledge and understanding of sources and transport mechanisms of infectious particles may provide valuable possibilities to control and minimize postoperative infections. This thesis contributes to finding solutions, through analysis of such mechanisms for a range of ventilation designs together with investigation of other factors that can influence spread of infection in hospitals, particularly in operating rooms. The aim of this work is to apply the techniques of computational fluid dynamics in order to provide better understanding of air distribution strategies that may contribute to infection control in operating room and ward environments of hospitals, so that levels of bacteria-carrying particles in the air can be reduced while thermal comfort and air quality are improved.  A range of airflow ventilation principles including fully mixed, laminar and hybrid strategies were studied. Airflow, particle and tracer gas simulations were performed to examine contaminant removal and air change effectiveness. A number of further influential parameters on the performance of airflow ventilation systems in operating rooms were examined and relevant measures for improvement were identified. It was found that airflow patterns within operating room environments ranged from laminar to transitional to turbulent flows. Regardless of ventilation system used, a combination of all airflow regimes under transient conditions could exist within the operating room area. This showed that applying a general model to map airflow field and contaminant distribution may result in substantial error and should be avoided. It was also shown that the amount of bacteria generated in an operating room could be minimized by reducing the number of personnel present. Infection-prone surgeries should be performed with as few personnel as possible. The initial source strength (amount of colony forming units that a person emits per unit time) of staff members can also be substantially reduced, by using clothing systems with high protective capacity. Results indicated that horizontal laminar airflow could be a good alternative to the frequently used vertical system. The horizontal airflow system is less sensitive to thermal plumes, easy to install and maintain, relatively cost-efficient and does not require modification of existing lighting systems. Above all, horizontal laminar airflow ventilation does not hinder surgeons who need to bend over the surgical site to get a good view of the operative field. The addition of a mobile ultra-clean exponential laminar airflow screen was also investigated as a complement to the main ventilation system in the operating room. It was concluded that this system could reduce the count of airborne particles carrying microorganisms if proper work practices were maintained by the surgical staff. A close collaboration and mutual understanding between ventilation experts and surgical staff would be a key factor in reducing infection rates. In addition, effective and frequent evaluation of bacteria levels for both new and existing ventilation systems would also be important.
Tidigt i mänsklighetens utveckling har kirurgin funnits med i bilden. Hantering av infektioner har genom tiderna varit en oundviklig del av alla kirurgiska ingrepp, och finns kvar ännu idag som en viktig utmaning i operationssalar på sjukhus. För patienter som genomgår kirurgi finns alltid en risk att de efter ingreppet utvecklar någon behandlingsrelaterad komplikation. Allmänt accepterat är att de luftburna bakterier som når operationsområdet huvudsakligen består av stafylokocker frigjorda från hudfloran av operationspersonalen i operationssalen, och att endast en liten del av dessa partiklar behövs för att initiera en allvarlig infektion i det behandlade området. Sårinfektioner innebär inte bara en enorm börda för hälso- och sjukvårdsresurser, utan utgör också en betydande risk för patienten. På sjukhus förvärvad infektion finns bland de främsta dödsorsakerna i kirurgiska patientgrupper.. En bred kunskap och förståelse av spridningsmekanismer och källor till infektionsspridande partiklar kan ge värdefulla möjligheter att kontrollera och minimera postoperativa infektioner. Denna avhandling bidrar till lösningar genom analys av en rad olika ventilationssystem tillsammans med undersökning av andra faktörer som kan påverka infektionsspridningen på sjukhus, främst i operationssalar. Syftet med arbetet är att med hjälp av CFD-teknik (Computational Fluid Dynamics) få bättre förståelse för olika luftspridningsmekanismers betydelse vid ventilation av operationssalar och vårdinrättningar på sjukhus, så att halten av bacteriebärande partiklar i luften kan minskas samtidigt som termisk komfort och luftkvalité förbättras.  Flera luftflödesprinciper för ventilation inklusive omblandade strömning, riktad (laminär) strömning och hybridstrategier har studerats. Simuleringar av luft-, partikel- och spårgasflöden gjordes för alla fallstudier för att undersöka partikelevakuering och luftomsättning i rummet. Flera viktiga parametrar som påverkar detta undersöktes och relevanta förbättringar  föreslås i samarbete med industrin. Av resultaten framgår att mängden genererade bakterier i en operationssal  kan begränsas genom att minska antalet personer i operationsteamet. Infektionsbenägna operationer skall utföras med så lite personal som möjligt. Den initiala källstyrkan (mängden kolonibildande enheter som en person avger per tidsenhet) från operationsteamet kan avsevärt minskas om högskyddande kläder används. Av resultaten framgår också att ett horisontellt (laminärt) luftflöde kan vara ett bra alternativ till det ofta använda vertikala luftflödet. Ett horisontellt luftflöde är mindre känsligt för termisk påverkan från omgivningen, enkelt att installera och underhålla, relativt kostnadseffektivt och kräver vanligen ingen förändring av befintlig belysningsarmatur. Framför allt begränsar inte denna ventilationsprincip kirurgernas rörelsemönster. De kan luta kroppen över operationsområdet utan att hindra luftflödet. En flyttbar flexibel skärm för horisontell spridning av ultraren ventilationsluft i tillägg till ordinarie ventilation undersöktes också. Man fann att denna typ av tilläggsventilation kan minska antalet luftburna partiklar som bär mikroorganismer om operationspersonalen följer en strikt arbetsordning. Bra samarbete och förståelse mellan ventilationsexperter och operationsteamet på sjukhuset är nyckeln till att få ner infektionsfrekvensen. Det är också viktigt med effektiva och frekventa utvarderingar av bakteriehalten i luften, för såväl nya  som befintliga ventilationssystem.

QC 20160129

APA, Harvard, Vancouver, ISO, and other styles
33

Xie, Xiaoling. "Communications in construction design." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/7571.

Full text
Abstract:
Construction design has become an increasingly complex synthesis activity for which effective solutions depend upon co-operative participation by a number of people. Thus communication, including the integration of specialised knowledge and negotiation of differences between team members, is a vital process for collaborative design. A questionnaire survey was initially conducted to investigate communication issues and problems, which had been highlighted from a review of the literature, in current construction design. The results confirmed that communication among the different construction team members is often difficult although of paramount important to design outcomes. Based on these results, case studies have been carried out to gain further insights into communication issues and problems, and explore why and how they are caused. Through the application of multiple approaches, a model has been developed, which suggests strategies that may help participants communicate more effectively and ultimately improve the quality of construction design outcomes.
APA, Harvard, Vancouver, ISO, and other styles
34

Soto, Leticia S. M. Massachusetts Institute of Technology. "Construction design as a process for flow : applying lean principles to construction design." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42995.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2007.
Includes bibliographical references (p. 108-111).
Delays and cost overruns are the rule rather than the exception in the construction industry. Design changes due to lack of constructability late in the construction phase generating costly ripple effect which create delay and disruption throughout the entire organization, are the largest contributors to the stated rule. In the building construction industry, of increased competitiveness, demand from many companies continued effort to develop new methods and tools, in which the design for quality, cost, construability and reliability play an important role. The planning and management of building design has historically focused upon traditional methods of planning such as Critical Path Method (CPM). Little effort is made to understand the complexities of the design process; instead design managers focus on allocating work packages where the planned output is a set of deliverables. This current design method forces design teams to manage their work on a discipline basis, each working on achieving their deliverable as dictated by the design program with little regard of the relationship with other disciplines and organizations. In addition, because Architect and Engineering firms view design and construction as two separate independent phases of work in project it makes it difficult to verify constructability in a design and create flow in the overall process. The goal of this study is to look at how aligning interests, objectives and practices based on lean fundamentals, during the earliest stages of a project, as a method of improving construction performance.
by Leticia Soto.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
35

Rahman, Abdul Malek bin Abdul. "Design for natural ventilation in low cost housing in tropical climate." Thesis, Cardiff University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492980.

Full text
Abstract:
It is difficult to design for thermal comfort in low cost housing due to construction and dimensional constraints placed by regulatory and cost requirement. Low-cost houses have failed to achieve satisfactory temperatures which makes inhabitation bearable. Comparisons in building environmental behaviour have been made between the traditional Malay and modern houses in Malaysia using the Welsh School of Architecture Environmental Data Logger on five different types of low-cost houses. Two houses represent the traditional Malay house and the other three are typical of the modern low-cost designs. Analysis and comparison of data collected, was used to determine the degree of environmental and design failures in modern low-cost houses. The data was also used to validate a computer thermal model to contribute to the objectives of a parallel Tripartite Research Group Project, comprising of Universiti Sains Malaysia, the UK Building Research Establishment and The University of Wales, the aim of which was to investigate low cost housing design solutions. From a combination of environmental monitoring and computer modelling, it was determined that air movement, ventilation rate and sunshadings was the predominant criteria for thermal comfort in Malaysian homes. Since it was found that wind is almost calm for nearly half the year, air movement by temperature difference (stack effect) was investigated. The second part of this thesis investigated the double-skin roof as a solution to the problem of discomfort by achieving the required air movement and ventilation rate, as well as providing sunshading to enhance comfort. A scale model of 1:3 was constructed and placed under the solar simulator. Results obtained have been used to inform design guidelines.
APA, Harvard, Vancouver, ISO, and other styles
36

Swiegers, Jacobus Johannes. "Inlet and outlet shape design of natural circulation building ventilation systems." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97110.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: Increased awareness of environmental problems has awakened interest in renewable energy systems. Natural ventilation systems are especially of interest, as people spend most of their time indoors. Indoor air quality is an important consideration when human health and occupant comfort is to be maintained. This study focusses on determining the best inlet and outlet shape for a natural ventilation system from a chosen set of configurations. The inlet and outlet configurations were tested on a PDEC (Passive Downdraught Evaporative Cooling) shaft and solar chimney. The PDEC incorporated an evaporative cartridge made from cotton cloth. Independent models of the PDEC and solar chimney were built in a thermally controlled space where the configurations were tested at different wind speeds. The configurations were tested on a wet or dry PDEC shaft and on a hot or cold solar chimney. One-dimensional finite difference models, accounting for some two-dimensional effects in the evaporative cartridge, of the cartridge and solar chimney were developed. CFD (Computational Fluid Dynamics) models were further constructed in FLUENTr, simulating operating conditions for each inlet and outlet test. The CFD models were constructed to obtain numerical comparisons for the experimental data. The ability of the one-dimensional and CFD models to predict the performance of the PDEC and solar chimney were investigated. The results indicated that an inlet configuration called a TFI (Turbine Fan Inlet) performed the best at the tested wind speeds. The TFI was further able to significantly increase volumetric flow rate in the PDEC shaft for the dry evaporative cartridge tests. The outlet that performed best under the tests is a Windmaster Tornado Wind Turbine, or Whirlybird, which is a commercially available configuration. The one-dimensional models were not able to accurately predict conditions during start-up. The CFD models were highly accurate in predicting the experimental values. It is recommended that a two-dimensional theoretical model be developed to better predict start-up conditions.
AFRIKAANSE OPSOMMING: Verhoogde bewustheid van omgewings probleme het belangstelling in hernubare energie stelsels ontwaak. Natuurlike ventilasie stelsels is veral van belang, sedert mense die meeste van hul tyd binnenshuis spandeer. Binnenshuise lug kwaliteit is ’n belangrike oorweging wanneer menslike gesondheid en insittendes se gemak in stand gehou moet word. Hierdie studie fokus op die bepaling van die beste inlaat en uitlaat vorm van ’n gekose stel konfigurasies vir ’n natuurlike ventilasie-stelsel. Die inlaaten uitlaat-konfigurasies is op ’n PDEC (Passive Downdraught Evaporative Cooling) skag en sonkrag skoorsteen getoets. Die PDEC het ’n verdampings doek, gemaak van katoen, ingesluit. Onafhanklike modelle van die PDEC en sonkrag skoorsteen is in ’n termies-beheerde ruimte en die konfigurasies is by ’n onveranderende wind spoed getoets. Die konfigurasies is op ’n nat of droog PDEC skag en op ’n warm of koue son skoorsteen getoets. Een-dimensionele eindige verskil modelle, wat sommige twee-dimensionele effekte in ag neem in die verdampings doek, van die doek en sonkrag skoorsteen is ontwikkel. CFD (Computational Fluid Dynamics) modelle is verder gebou in FLUENTr, wat die werkstoestande vir elke inlaat en uitlaat toets simuleer. Die CFD modelle is ontwikkel om die eksperimentele data met numeriese waardes te vergelyk. Die vermoë van die een-dimensionele en CFD modelle om die verrigting van die PDEC en sonkrag skoorsteen te voorspel, is ondersoek. Die resultate dui daarop dat ’n inlaat opset genoem TFI (Turbine Fan Inlet) die beste vaar by die elke getoetsde wind spoed. Die TFI was verder in staat om die volumetriese vloeitempo in die PDEC skag aansienlik te verhoog vir die toetse met ’n droë verdamping doek. Die uitlaat wat die beste presteer het in die toetse is ’n Windmaster Tornado Wind Turbine, of Whirlybird, wat ’n kommersieel beskikbare konfigurasie is. Die een-dimensionele modelle was nie in staat om die toestande tydens die begin-fase akkuraat te voorspel nie. Die CFD modelle was hoogs akkuraat in die voorspelling van die eksperimentele waardes. Dit word aanbeveel dat ’n twee-dimensionele teoretiese model ontwikkel word om die toestande tydens begin-fase beter te voorspel.
APA, Harvard, Vancouver, ISO, and other styles
37

Karlsson, Ejwertz Viktor. "Design of user interface for heating, ventilation and air conditioning systems." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-34806.

Full text
Abstract:
The project was carried out at Karlstad University during the spring of 2014 as a degree project for a Degree of Bachelor of Science in Innovation and Design Engineering and consists of 22.5 ECTS. The supervisor was lecturer Lennart Wihk from Karlstad University. The examiner was professor Leo de Vin. The project was conducted for Swegon AB and dealt with developing a user interface for systems regulating climate parameters in indoor environments, such as hotel rooms or office environments. The area of focus has been on developing the user interface with regard to end users, giving it the right functions and making it easy to understand. Suggestions about how user interfaces of this type could look was to be delivered to Swegon. The project started with creating a foundation. This was done through literature studies, benchmarking and interviews. The information gained here was used to put together a list of requirements which was later used as a guide when developing and evaluating concepts. Idea generation-methods were used to generate concepts and the concepts were developed further to later be voted on by employees at Swegon. The votes were evaluated and two concepts were developed, based on the the voting outcome. The concepts are inspired by wishes from the end users (expressed in the interviews) and are developed with regard to principles of design. The concepts were made into prototypes, in the form of 3D-printed models. The results of the project, in short: • Two image boards. One with thoughts about functions of existing climate related user interfaces written on it, and one with thoughts of different ways of illustrating air-temperature written on it. • Explanations of and reflections about functions of four different types of user interfaces for heating, ventilation and air conditioning (HVAC) systems. • Four product semantic analyses (PSA). Three of existing user interfaces for Swegon HVAC systems and one of a concept for a user interface for HVAC systems. • Interviews with six potential end users, written down to a large extent. • A compilation of the six interviews, written down in English. • An interview with an employee at Swegon service, regarding installation of user interfaces for HVAC systems, written down to a large extent. • A functional analysis, which in this project works as a requirements specification. • 10 ideas of concepts. • Two voting-systems which are developed for use when voting for several elements which can be combined to make up a holistic concept. The voting-systems are inspired by the "morphological analysis" described by Johannesson et al. (2009). • Two final concepts of user interfaces for HVAC systems with thorough descriptions in a table in this report. The concepts are developed with respect to end users and design principles. • Simplified versions of each of the two final concepts as CAD-models and as 3D-prints.
APA, Harvard, Vancouver, ISO, and other styles
38

Al-Qahtani, Turki Haif. "An improved design of wind towers for wind induced natural ventilation." Thesis, University of Bath, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Baltuch, Edmund George. "A multi tier barcode based system for the construction management of industrial gravity ventilation equipment." Thèse, Montréal : École de technologie supérieure, 2008. http://proquest.umi.com/pqdweb?did=1562129971&sid=1&Fmt=2&clientId=46962&RQT=309&VName=PQD.

Full text
Abstract:
Thèse (M. Ing.) -- École de technologie supérieure, Montréal, 2008.
"Thesis presented to École de technologie supérieure in partial fulfillment of the requirements for the degree of master construction engineering". "by Baltuch, Edmund George" -- p. de t. CaQMUQET CaQMUQET Bibliogr : f. [174-175]. Également disponible en version électronique. CaQMUQET
APA, Harvard, Vancouver, ISO, and other styles
40

Chew, En Phin. "Superconducting Transformer Design and Construction." Thesis, University of Canterbury. Electrical and Computer Engineering, 2010. http://hdl.handle.net/10092/4977.

Full text
Abstract:
This thesis first outlines the testing undertaken on a partial core superconducting transformer under open circuit, short circuit, full load and endurance test conditions. During the endurance test, a failure occurred after 1 minute and 35 seconds. During the failure, voltage dipping and rapid liquid nitrogen boil off was observed. This prompted a failure investigation which concluded that the lack of cooling in the windings was the most probable cause to the failure. Full core transformer and superconductor theories are then introduced. A copper winding transformer model, based on a Steinmetz equivalent circuit and a reverse design method, is described. A superconductor loss model which outlines the different types of losses experienced under AC conditions is used to determine the resistance of the windings in the Steinmetz equivalent circuit. This resistance changes with the magnitude of current and the strength of the magnetic field that is present in the gaps between each layer of the windings. An alternative leakage flux model is then presented, where the flux is modelled based on the combination of the reluctance of the core and the air surrounding the windings. Based on these theories, an iterative algorithm to calculate the resistance of the superconductor is developed. A new design of a 15kVA single phase full core superconducting transformer, operating in liquid nitrogen, is presented. The issues with building the superconducting transformer are outlined. First, a copper mockup of the superconducting transformer was designed where the mockup would have the same tape and winding dimensions as the superconducting transformer, which means the same core can be used for two different sets of windings. This led to designing a core that could be easily taken apart as well as reassembled. Construction of the core, the copper windings and the superconductor windings ensued. The process of cutting the core laminations, insulating the copper and superconductor tapes, and making the steel fasteners and terminations are described. The copper mockup and superconducting transformers was then tested under open circuit, short circuit, different load and endurance conditions at both liquid nitrogen and room temperatures. These test results were then compared with the those from two models. The comparison showed a significant inaccuracy in the reactances in the models. This introduced a correction factor into the superconductor model which ii made it more accurate. However, further work is required to explain and quantify the correction factors for the copper transformer model under different load conditions.
APA, Harvard, Vancouver, ISO, and other styles
41

Sebille, Michel. "Design :construction, automorphisms and colourings." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chirattikalwong, Anawat. "Natural ventilation and solar control : design analysis of suburban Bangkok housing estates." Virtual Press, 2007. http://liblink.bsu.edu/uhtbin/catkey/1365783.

Full text
Abstract:
The housing estates boom was and is a result of the Southeast Asia economic growth after the economic crisis between 1997 and 1998. Housing estates, especially in the suburbs of Bangkok, are designed by considering only aesthetics and costs without considering the negative effects that might occur to the occupants and nature. These negative effects lead to the insufficiency energy crisis.Determining how to reduce the energy used and increase the living quality in the building type is the critical question for architects to answer. Redesigning the housing estate using sustainable design concepts, especially with a focus on the natural ventilation and shading device strategies, can lift up the occupants' living quality because such design can provide cross ventilation through the house and solar shading to reduce the heat gain in the house. Not only would such design improvements make houses more comfortable for inhabitants, they also would reduce the energy use.The methodologies of research start with spatial analyses to define the general character of this type of house, then the redesigning of a selected existing house is used to focus on natural ventilation and shading devices design in order to improve the occupants living quality and to reduce the energy used in the house. It is hoped that this project can be the first step for other architects to understand the logic of natural ventilation and shading control design strategies within the realm of sustainability.
Department of Architecture
APA, Harvard, Vancouver, ISO, and other styles
43

Arsano, Alpha Yacob. "C L I M A + : an early design natural ventilation prediction method." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111279.

Full text
Abstract:
Thesis: S.M. in Architecture Studies, Massachusetts Institute of Technology, Department of Architecture, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis. "June 2017."
Includes bibliographical references (pages 64-65).
One of the most widely discussed passive building design strategies is using natural ventilation for cooling. In addition to providing fresh air, which enhances occupant productivity and comfort, strategic implementation of natural ventilation in buildings reduces the energy needed for cooling. And this reduction in energy consumption significantly reduces carbon dioxide emissions. During the initial design phase, designers routinely use climate-file based analysis to evaluate the potential for comfort ventilation against other passive building strategies. Following this initial screening, it is customary to conduct detailed simulations to further develop design ideas. At this point, inconsistencies can arise between the early climate-file based analysis and later-stage simulations. Major differences arise from limitations of climate-file based analysis to account for influences of construction assemblies, building program, and occupant comfort preferences. This manuscript presents a building performance-based climate analysis method where quick, single-zone simulations are run in EnergyPlus. The ventilation cooling potential for a site and a building program is calculated using a series of Python scripts.
by Alpha Yacob Arsano.
S.M. in Architecture Studies
APA, Harvard, Vancouver, ISO, and other styles
44

Fennessy, Kristian (Kristian M. ). "Addressing the problem with natural ventilation : producing a guide for designers to integrate natural ventilation into the early stages of building design." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92642.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Architecture, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 66-69).
Currently, the United States alone is responsible for approximately twenty percent of the world's total energy consumption. This consumption is equivalent to roughly 100 quadrillion Btu of energy, or in plainer terms, over $1 trillion in energy expenditures annually. This sector alone comprises nearly half of all the energy consumed in the United States. Additionally, about seventy-five percent of all electricity produced in the U.S. is consumed by building operations. This precedent has convinced me that finding an alternative is worth the investment. The purpose of my thesis project is to explore substitutes to mechanical heating, ventilation, and air conditioning (HVAC) building systems. My project revisits the concept of natural ventilation and explores and evaluates its feasibility as an energy-saving and comfortable alternative to mechanical ventilation systems. Additionally, my project focuses on how buildings can be designed to naturally condition the indoor environments of our buildings. More specifically, I would like to help architects discover how they can utilize natural ventilation effectively. Using the TRNSYS simulation environment, I methodically show how a designer would use TRNSYS to make informed decisions about natural ventilation in their designs. My research is meant to be a valuable tool for other designers who are unsure or uncomfortable with utilizing this natural process to condition their buildings. The final deliverable of my thesis project is a comprehensive strategy for designers to incorporate natural ventilation in the early stages of their building design.
by Kristian Fennessy.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
45

Leung, Chi-ming. "Design consultancy vs design and build consultancy : present trends in the construction industry /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B14038869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bougdah, Hocine. "The design of lighting installations for obstructed interiors." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ward, Jack. "Conventional and modular design of domestic heat pumps." Thesis, Sheffield Hallam University, 1999. http://shura.shu.ac.uk/20498/.

Full text
Abstract:
This thesis is concerned with an experimental and theoretical investigation of domestic heat pumps. The development of heat pumps in the 1970's did not meet the original expectations and this thesis examines the reasons why. The items considered included cycling and unsteady conditions created whilst matching the heat pump's output to meet a space heating load. A detailed study was made of the hermetically sealed refrigerant compressor, the heat exchangers, and the refrigerant pressure and temperature control systems. In addition to the conventional heat pump a study was made of the advantages gained from modular designed heat pumps. The application of heat pumps to U.K. dwellings and climatic conditions was studied together with the suitability of thermostatic control. Initial studies were made of the operation of a demonstration unit. This showed how intermittent operation would reduce a heat pump performance and was followed by the development of a computer model which simulated the complete refrigerant circulation system. This allowed a study to be made of a heat pump performance at part load conditions. A computer model of the complete refrigerant cycle was developed which aided in the design and construction of a heat pump which used refrigerant R12. This was followed by the construction of a second test rig using R 134(a). The completed R 134(a) test rig was installed in an environmental chamber which could simulate outdoor weather conditions. Results from the test rigs indicated that the performance was greatly affected by on/off cycling an item that was further investigated.
APA, Harvard, Vancouver, ISO, and other styles
48

Lindmark, Amanda. "Utveckling av ytterväggskomponent : För hantering av frisk- och förbrukad luft." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-44648.

Full text
Abstract:
The following report outlines a project that has been implemented as a degree of Bachelor of Science in Innovation and Design at the Faculty of Health, Science and Technology at the University of Karlstad.. The project is carried out in behalf of Flexit AB in Töcksfors. Flexit AS/AB has an ongoing project of heat and ventilation systems for family housing. The project covers the required development of a combi device for the installation. The combi device is installed on the facade and combines the handling of outdoor and exhaust air. The device is visible on the facade of the building, therefore the design of the device impacts on how customers agrees to it. The current device was not considered enough aesthetically pleasing to be accepted by customers. The objectives of the project was to enable sales of the company’s ongoing project of heat and ventilation systems for family housing. The work has been carried out according to the product development process where the combination of functionality and design has been the main focus to achieve the objectives of the project. Several concepts were created trough design methods. The concepts were compared to the specification of requirements and one final concept was chosen for further development. The result was five different solutions of a thinner device. All the solutions had the same basic design where the front steelplate varied. The solutions were presented in CAD constructions with renderings. The result also contains simulations of the designs. The designs were considered more attractive than the original product. The solution meets 21 of 28 requirements from the product specification.
APA, Harvard, Vancouver, ISO, and other styles
49

Rozzi-Ochs, Jessica Appollonia. "Shipboard ventilation systems and design standards on board United States Coast Guard cutters." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cheong, Mun Kit. "Assessment of Vehicle Fire Development in Road Tunnels for Smoke Control Ventilation Design." Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2009. http://hdl.handle.net/10092/2863.

Full text
Abstract:
A fire in road tunnel can be dangerous and lead to serious consequences if not addressed appropriately. In a tunnel fire incident, creating a smoke free path for motorist evacuation and facilitating fire fighters to access the fire is critical for fire and rescue operations. A means of achieving this is to use ventilation fans to blow sufficient air down the tunnel ensuring no back-layering of smoke occurs upstream of the fire. The airflow necessary for such operation is known as the critical velocity which is a function of a number of factors includes; heat release rate, tunnel geometry, tunnel gradient etc. Among these parameters, the heat release rate is the most difficult to identify as this value is dependent on the types of vehicles, number of vehicles involved, the type of cargo and the quantity of cargo carried by these vehicles. There are also other factors such as the influence of ventilation condition, tunnel geometry and the use of legislation (to restrict hazardous vehicles entering in tunnel) that could affect the heat release rate in a tunnel fire. The number of possible fire scenarios is numerous. Based on current practise, fire size selection for most tunnel ventilation design often references various guidelines such as NFPA 502, BD78/99 or the PIARC technical committee report. The heat release rate, particularly for goods vehicle recommended by the guidelines varies from 20 to 30 MW. However, recent fire tests conducted in the Runehamar tunnel experiments indicate a higher heat release rate. These experiments suggest that heat release rate guidelines for goods vehicles might be underestimated. An ideal means to estimate the heat release rate in the tunnel is to use the oxygen consumption calorimetry technique. However, this approach is generally expensive, logistically complicated to perform and it is often not feasible to conduct such tests for a tunnel project at the initial design stage simply because the structure and systems are not ready for such activities. This research thesis presents an approach to establish a design fire in a road tunnel particularly the peak heat release rate for emergency tunnel ventilation system design. The analysis consists of two stages; stage one involves the use of a probabilistic approach (risk analysis) to identify the potential cause and type of vehicle which could result in a tunnel fire. Findings from the risk analysis are used in stage two in which Computational Fluid II Dynamics (CDF) modelling is used to establish the heat release rate in the tunnel considering factors such as fuel load, ventilation condition, tunnel geometry and ignition location. The Fire Dynamics Simulator (FDS 4.0.7), a CFD model of fire-driven fluid flow is used for the analysis and an urban road tunnel project in Singapore is used to illustrate this methodology. Other topic related to this research work includes the reconstruction for the Runehamar tunnel fire test using numerical approach to calibrate the FDS simulation model. The used of Probabilistic Bayesian approach and CFD approach using FDS to estimate the heat release rate in the tunnel is also investigated in this thesis. The effect of vehicle fire spread in road tunnel and numerical simulation of road tunnel fires using parallel processing is presented. Preliminary work in using FDS5 for tunnel simulation work is discussed as part of the research work in this project.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography