Academic literature on the topic 'Ventilation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ventilation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ventilation"
Daoud, Ehab, Jewelyn Cabigan, Gary Kaneshiro, and Kimiyo Yamasaki. "Split-ventilation for more than one patient, can it be done? Yes." Journal of Mechanical Ventilation 1, no. 1 (September 1, 2020): 1–7. http://dx.doi.org/10.53097/jmv.10002.
Full textMcClelland, Graham, Karl Charlton, Karen Millican, Daniel Haworth, Paul Aitken-Fell, and Michael Norton. "EP10 The impact of introducing real time feedback on ventilation rate and volume by ambulance clinicians in the North East in a simulated cardiac arrest scenario: the VANZ study." Emergency Medicine Journal 38, no. 9 (August 19, 2021): A5.2—A5. http://dx.doi.org/10.1136/emermed-2021-999.10.
Full textBhoyar, Ankit D. "Evolution and Characteristics of Bag-Valve-Mask Ventilation During Pandemic: A Review of the Literature." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 10, 2021): 25–29. http://dx.doi.org/10.22214/ijraset.2021.36227.
Full textVincent-Lambert, Craig, Andrew Makkink, and Fredrick Kloppers. "Keep pushing! Limiting interruptions to CPR; bag-valve mask versus i-gel® airway ventilation." Health SA Gesondheid 21 (October 11, 2016): 21–32. http://dx.doi.org/10.4102/hsag.v21i0.931.
Full textLozano-Zahonero, Sara, Matthias Schneider, Sashko Spassov, and Stefan Schumann. "A novel mechanical ventilator providing flow-controlled expiration for small animals." Laboratory Animals 54, no. 6 (February 19, 2020): 568–75. http://dx.doi.org/10.1177/0023677220906857.
Full textMammel, Mark C., Janice P. Ophoven, Patrick K. Lewallen, Margaret J. Gordon, Marylyn C. Sutton, and Stephen J. Boros. "High-Frequency Ventilation and Tracheal Injuries." Pediatrics 77, no. 4 (April 1, 1986): 608–13. http://dx.doi.org/10.1542/peds.77.4.608.
Full textRiley, Cheryl, and Jobeth Pilcher. "Volume-Guaranteed Ventilation." Neonatal Network 22, no. 2 (January 2003): 17–21. http://dx.doi.org/10.1891/0730-0832.22.2.17.
Full textSanderson, Ronald, Denise Whitley, and Christopher Batacan. "Automated mechanical ventilation using Adaptive Support Ventilation versus conventional ventilation including ventilator length of stay, mortality, and professional social aspects of adoption of new technology." Journal of Mechanical Ventilation 2, no. 2 (June 1, 2021): 48–52. http://dx.doi.org/10.53097/jmv.10021.
Full textKolandaivelu, Kumaran, and Chi-Sang Poon. "A miniature mechanical ventilator for newborn mice." Journal of Applied Physiology 84, no. 2 (February 1, 1998): 733–39. http://dx.doi.org/10.1152/jappl.1998.84.2.733.
Full textPearson, Steven D., Jay L. Koyner, and Bhakti K. Patel. "Management of Respiratory Failure." Clinical Journal of the American Society of Nephrology 17, no. 4 (March 10, 2022): 572–80. http://dx.doi.org/10.2215/cjn.13091021.
Full textDissertations / Theses on the topic "Ventilation"
Ramsay, Michelle Clare. "Patient-ventilator interaction in domiciliary non-invasive ventilation." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/patientventilator-interaction-in-domiciliary-noninvasive-ventilation(9b60bd3e-84b6-4605-96a8-22b4546b1e90).html.
Full textSperber, Jesper. "Protective Mechanical Ventilation in Inflammatory and Ventilator-Associated Pneumonia Models." Doctoral thesis, Uppsala universitet, Infektionssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282602.
Full textCarteaux, Guillaume. "Optimisation des interactions patient-ventilateur en ventilation assistée : intérêt des nouveaux algorithmes de ventilation." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC0027/document.
Full textDuring assisted mechanical ventilation, patient-ventilator interactions, which are associated with outcome, partly depend on ventilation algorithms.Objectives: : 1) during invasive mechanical ventilation, two modes offered real innovations and we wanted to assess whether the assistance could be customized depending on the patient's respiratory effort during proportional ventilatory modes: proportional assist ventilation with load-adjustable gain factors (PAV+) and neurally adjusted ventilator assist (NAVA); 2) during noninvasive ventilation (NIV): to assess whether NIV algorithms implemented on ICU and dedicated NIV ventilators decrease the incidence of patient-ventilator asynchrony.Methods: 1) In PAV+ we described a way to calculate the muscle pressure value from the values of both the gain adjusted by the clinician and the airway pressure. We then assessed the clinical feasibility of adjusting the gain with the goal of maintaining the muscle pressure within a normal range. 2) We compared titration of assistance between neurally adjusted ventilator assist (NAVA) and pressure support ventilation (PSV) based on respiratory effort indices. During NIV, we assessed the incidence of patient-ventilator asynchrony with and without the use of NIV algorithms: 1) using a bench model; 2) and in the clinical settings.Results: During PAV+, adjusting the gain with the goal of targeting a normal range of respiratory effort was feasible, simple, and most often sufficient to ventilate patients from the onset of partial ventilatory support until extubation. During NAVA, the analysis of respiratory effort indices allowed us to precise the boundaries within which the NAVA level should be adjusted and to compare patient-ventilator interactions with PSV within similar ranges of assistance. During NIV, our data stressed the heterogeneity of NIV algorithms implemented on ICU ventilators. We therefore reported that dedicated NIV ventilators allowed better patient-ventilator synchronization than ICU ventilators, even with their NIV algorithms engaged.Conclusions: During invasive mechanical ventilation, customizing the assistance during proportional ventilatory modes with the goal of targeting a normal range of respiratory effort optimizes patient-ventilator interactions and is feasible with PAV+. During NIV, dedicated NIV ventilators allow better patient-ventilator synchrony than ICU ventilators, even with their NIV algorithm engaged. ICU ventilators' NIV algorithms efficiency is however highly variable among ventilators
Fjellborg, Anders. "Energieffektiv ventilation." Thesis, Linköpings universitet, Energisystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76910.
Full textBengtsson, Patrik, and Joel Blomfelt. "Variabel Ventilation." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190163.
Full textMånga människor spenderar idag större delen av sitt liv inomhus. Det är vanligt att man både hemma och på jobbet vistas i utrymmen där klimatet inte styrs av väder och vind utan av ventilationssystem som är tänkta att skapa ett lämpligt inomhusklimat. Trots ventilationens centrala del av samhället hamnar ämnet dock ofta i skymundan, och i dagens läge är det ingen självklarhet att inomhusklimaten och dess luftkvalité är tillfredställande. Av dem som bygger bostäderna och lokalerna förklaras detta ofta bero på kostnadsaspekter, men i grund och botten är det annat som ligger till grund för dagens situation. En bättre förklaring är att det finns viss problematik kring ventilationens planeringsskede, vilket innebär ett väldigt förenklat arbetssätt och att kostnad prioriteras framför funktion och kvalité. Problemen har bekräftats från flera håll och forskning pågår inom området i syfte att möta de bakomliggande orsakerna. Bland annat uppförs på flera håll i världen olika typer av testbädd-bostäder utformade för mätning och datainsamling i en verklig boendemiljö. Med hjälp av dessa kan man både verifiera olika systems funktion och gynna framtagning av nya innovationer och välgrundat forskningsmaterial gällande bland annat olika ventilationslösningar som exempelvis variabel ventilation. Ett av dessa projekt, med namnet KTH Live-in Lab, utförs på KTH i Stockholm. I denna rapport presenteras ett arbete gällande jämförelser av olika ventilationslösningar för en sådan studentlägenhet som uppförs i det pågående bygg- och forskningsprojektet KTH Live-in Lab. Arbetet fokuseras på att dels hitta en lämplig ventilationslösning och sedan även koppla resultatet till en möjlig kombination att använda för variabel ventilation. I syfte att möta dagens problematik fokuserades på att frångå dagens konventionella arbetssätt och ventilationsdesign. Resultatet illustreras digitalt i form av datorsimuleringar av luftflöden i en virtuell modell av bostaden, och jämförelserna ledde till ett antal slutsatser och förslag på lämpliga okonventionella lösningar. För icke-variabel ventilation var det lämpligt att placera ett inlopp i taknivå, samt två utlopp varav ett i taknivå och ett i golvnivå. För variabel ventilation visade det sig att denna systemlösning bör kombineras med möjlighet att växla inloppet till lågt inlopp på nätter och andra scenarion utan aktivitet och rörelse i bostaden. Övriga slutsatser gäller vilka egenskaper som bör varieras beroende på vad man vill uppnå med ventilationen.
Hammash, Muna Hassan. "CARDIAC RHYTHM DURING MECHANICAL VENTILATION AND WEANING FROM VENTILATION." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/56.
Full textJerräng, Carlstedt Ludwig. "A comparison between emergency ventilation systems semi-transvers ventilation and natural ventilation in Road Tunnel A." Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65671.
Full textRashid, Dewan Md Harunur Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Wake survey behind a rotating ventilator." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2002. http://handle.unsw.edu.au/1959.4/19076.
Full textTodd, Susan Katharine. "Shock assisted ventilation." Thesis, University of Surrey, 1999. http://epubs.surrey.ac.uk/843314/.
Full textCHAIPRASIT, KRIRKPHAN. "Designing for Ventilation." The University of Arizona, 1989. http://hdl.handle.net/10150/555319.
Full textBooks on the topic "Ventilation"
Arnal, Jean-Michel. Monitoring Mechanical Ventilation Using Ventilator Waveforms. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7.
Full textClark, Nancy. Ventilation. New York: Lyons & Burford, 1987.
Find full textTukkaraja, Purushotham. Mine Ventilation. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476.
Full textBaker, David J. Artificial Ventilation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32501-9.
Full textBaker, David J. Artificial Ventilation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55408-8.
Full textAloy, Alexander, and Eva Schragl. Jet-Ventilation. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9355-6.
Full textSierra, Carlos. Mine Ventilation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49803-0.
Full textLemaire, François, ed. Mechanical Ventilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87448-2.
Full textSlutsky, Arthur S., and Laurent Brochard, eds. Mechanical Ventilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b138096.
Full textFordham, Max. Natural ventilation. [U.K.]: Pergamon, 1999.
Find full textBook chapters on the topic "Ventilation"
Arnal, Jean-Michel. "Noninvasive Ventilation." In Monitoring Mechanical Ventilation Using Ventilator Waveforms, 107–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7_5.
Full textHamzah, Mohammed, and Michael Wilhelm. "Ventilation." In Fundamentals of Pediatric Surgery, 87–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27443-0_12.
Full textBarre, H. J., L. L. Sammet, and G. L. Nelson. "Ventilation." In Environmental and Functional Engineering of Agricultural Buildings, 141–69. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1443-1_8.
Full textKlauwer, Dietrich. "Ventilation." In A Practical Handbook on Pediatric Cardiac Intensive Care Therapy, 45–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92441-0_2.
Full textYates, W. David. "Ventilation." In Safety Professional’s Reference and Study Guide, 259–78. Third edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429293054-7.
Full textWhitehead, Tom, and Arthur S. Slutsky. "Ventilation." In Classic Papers in Critical Care, 1–29. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-145-9_1.
Full textLorente-Ros, Marta, Antonio Artigas, and José A. Lorente. "Ventilation." In The Very Old Critically Ill Patients, 277–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94133-8_18.
Full textZhivov, Alexander. "Ventilation." In SpringerBriefs in Applied Sciences and Technology, 29–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77295-6_6.
Full textWorthing, Derek, Nigel Dann, and Roger Heath. "Ventilation." In Marshall and Worthing’s The Construction of Houses, 415–24. 6th ed. Sixth edition. | Abingdon, Oxon; New York, NY: Routledge, 2021. | Revised edition of: The construction of houses / Duncan Marshall ... [et al.]. 5th ed. London; New York: Routledge, 2013.: Routledge, 2021. http://dx.doi.org/10.1201/9780429397820-19.
Full textvon Zabeltitz, Christian. "Ventilation." In Integrated Greenhouse Systems for Mild Climates, 193–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14582-7_9.
Full textConference papers on the topic "Ventilation"
Abdelmaksoud, Waleed A., and Essam E. Khalil. "Personal Ventilation and Displacement Ventilation Assessment in Cubicle Workstations." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62774.
Full textChen, Fengmei, and Bingrui LI. "Anomaly diagnosis of ventilator in ventilation system." In International Conference on Mechanisms and Robotics (ICMAR 2022), edited by Zeguang Pei. SPIE, 2022. http://dx.doi.org/10.1117/12.2652507.
Full textSingru, Pravin, Bhargav Mistry, Rachna Shetty, and Satish Deopujari. "Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.
Full textHegeman, M. A., S. N. T. Hemmes, M. T. Kuipers, Lieuwe D. J. Bos, G. Jongsma, K. F. van der Sluijs, and M. J. Schultz. "Prolonged Mechanical Ventilation Aggravates Ventilator-Induced Lung Injury." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1707.
Full textMatilde, I. N. E., E. P. Oliveira, R. F. Palazzo, and C. S. V. Barbas. "Pressure Support Ventilation Versus Proportional Assist Ventilation Plus Ventilation Profiles a Bench Study." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5256.
Full textPark, Sunghoon, and Jae Hwa Cho. "Noninvasive ventilation for acute respiratory failure: pressure support ventilation versus pressure controlled ventilation." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa3698.
Full textTian, Maolin, Wenxi Tian, Guanghui Su, and Suizheng Qiu. "3D Flow Field Analysis for a Traditional II+ PWR Containment Under Normal Condition." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30634.
Full textNadeau, Mathieu, Philippe Micheau, Raymond Robert, Jonathan Vandamme, Julien Mousseau, Renaud Tissier, Olivier Avoine, et al. "Lumped Thermal Model of a Newborn Lamb and a Liquid Ventilator in Total Liquid Ventilation." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40108.
Full textWestenskow, D. R., J. X. Brunner, and J. Byrd. "A ventilator and ventilation supervisor for the NASA Space Station." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95026.
Full textFresnel, Emeline, Adrien Kerfourn, Jean-François Muir, Maxime Patout, and Antoine Cuvelier. "A dynamical model for patient-ventilator interactions during noninvasive ventilation." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2365.
Full textReports on the topic "Ventilation"
Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan. Demand controlled ventilation and classroom ventilation. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1127147.
Full textFisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan. Demand Controlled Ventilation and Classroom Ventilation. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1171485.
Full textV. Chipman. Ventilation Model. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/837038.
Full textH. Yang. Ventilation Model. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/828102.
Full textKerber, Steve. Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction. UL Firefighter Safety Research Institute, December 2014. http://dx.doi.org/10.54206/102376/gieq2593.
Full textKerber, Steve. Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes. UL Firefighter Safety Research Institute, June 2013. http://dx.doi.org/10.54206/102376/iwzc6477.
Full textV. Chipman and J. Case. Ventilation Model Report. US: Yucca Mountain Project, Las Vegas, Nevada, December 2002. http://dx.doi.org/10.2172/899287.
Full textMarella, J. R. Purge ventilation operability. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/122015.
Full textVance, Robert W. Emplacement Ventilation System. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/837087.
Full textV. Chipman. VENTILATION MODEL REPORT. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/859898.
Full text