Academic literature on the topic 'Venous thrombosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Venous thrombosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Venous thrombosis"
Sands, Jeffrey J., and Carol L. Miranda. "State-of-the-Art Review : Treatment of Hemodialysis Access Failure: A Role for Thrombolysis." Clinical and Applied Thrombosis/Hemostasis 2, no. 3 (July 1996): 164–68. http://dx.doi.org/10.1177/107602969600200304.
Full textPalazzo, Paola, Pierre Agius, Pierre Ingrand, Jonathan Ciron, Matthias Lamy, Aline Berthomet, Paul Cantagrel, and Jean-Philippe Neau. "Venous Thrombotic Recurrence After Cerebral Venous Thrombosis." Stroke 48, no. 2 (February 2017): 321–26. http://dx.doi.org/10.1161/strokeaha.116.015294.
Full textRana, K. G. S., A. Jhamb, Mukul Verma, and Harsh Rastogi. "Thrombolysis for Cerebral Venous Thrombosis." Apollo Medicine 4, no. 1 (March 2007): 69–71. http://dx.doi.org/10.1016/s0976-0016(11)60439-0.
Full textComerota, Anthony J. "Thrombolysis for deep venous thrombosis." Journal of Vascular Surgery 55, no. 2 (February 2012): 607–11. http://dx.doi.org/10.1016/j.jvs.2011.06.005.
Full textRenowden, Shelley. "Cerebral venous thrombosis: Local thrombolysis." Journal of the Royal Society of Medicine 93, no. 5 (May 2000): 241–43. http://dx.doi.org/10.1177/014107680009300507.
Full textPilger, E., M. Decrinis, A. Obernosterer, and G. Stark. "Thrombolysis in deep venous thrombosis." Vascular Medicine Review vmr-1, no. 2 (September 1990): 167–78. http://dx.doi.org/10.1177/1358836x9000100206.
Full textRana, K. G. S., A. Jhamb, Mukul Verma, and Harsh Rastogi. "Thrombolysis for Cerebral Venous Thrombosis." Apollo Medicine 4, no. 1 (March 2007): 69–71. http://dx.doi.org/10.1177/0976001620070114.
Full textHeidrich, Konau, and Hesse. "Asymptomatic venous thrombosis in cancer patients – a problem often overlooked. Results of a retrospective and prospective study." Vasa 38, no. 2 (May 1, 2009): 160–66. http://dx.doi.org/10.1024/0301-1526.38.2.160.
Full textMouton, Zehnder, Wagner, and Mouton. "Follow-up after deep venous thrombosis in azygos continuation." Vasa 34, no. 4 (November 1, 2005): 266–68. http://dx.doi.org/10.1024/0301-1526.34.4.266.
Full textStefano, Valerio De, and Ida Martinelli. "Rare thromboses of cerebral, splanchnic and upper-extremity veins." Thrombosis and Haemostasis 103, no. 06 (2010): 1136–44. http://dx.doi.org/10.1160/th09-12-0873.
Full textDissertations / Theses on the topic "Venous thrombosis"
Brown, John Gordon. "A study of deep venous thrombosis." Thesis, Queen's University Belfast, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303015.
Full textPayne, Holly. "Novel insights into the mechanisms of venous thrombosis." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8172/.
Full textLindmarker, Per. "Treatment of deep vein thrombosis and risk of recurrent venous thromboembolism /." Stockholm, 1998. http://diss.kib.ki.se/1998/91-628-3211-5/.
Full textRobins, Richard. "The role of vascular Gas6 in the pathophysiology of Venous Thrombosis." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114250.
Full textGas6 est une protéine vitamine-K dépendante, sécrétée qui contribue à l'agrégation des plaquettes. Les souris déficientes en Gas6 (Gas6-/-) sont protégées contre les thromboses artérielles et veineuses. La résistance à la thromboses des souris déficientes en Gas6 était attribuée à une réponse plaquettaire défectueuse. Cependant, la phénotype plaquettaire était observée uniquement avec le traitement des plaquettes avec une concentration faible de l'ADP (5.0µM). Cette observation indique la possibilité d'une contribution de Gas6 d'une source distincte des plaquettes. Nous faisons l'hypothèse que Gas6 dérivé d'une source vasculaire contribue à la formation d'une thrombus. Les souris Gas6-/- sont protégées contre la formation des thromboses dans la veine cave inférieure induite par 0.37 M FeCl3. En utilisant des greffes de moelle osseuse, nous avons généré des souris avec les déficits de Gas6 soit dans le compartiment vasculaire ou hématopoïétique. La formation des thromboses dans les souris chimériques était intermédiaire entre les deux groupes contrôles. L'épuisement des plaquettes dans les souris WT, suivi de la reconstitution avec des plaquettes Gas6-/- a confirmé les résultats obtenus par les greffes de moelle osseuse. En outre, l'induction du facteur tissulaire était atténuée dans les cellules vasculaires des souris Gas6-/-. Additionellement, in vitro, les cellules endothéliales étaient aussi hypo réactives en ce qui concerne l'induction du facteur tissulaire. Nos résultats suggèrent que Gas6 dérivé d'une source vasculaire contribue à la formation in vivo d'une thrombose, en partie dû a l'induction du facteur tissulaire. Nous avons commencé à examiner l'hypothèse à savoir si la protéine FoxO1 est impliquée dans l'induction de VCAM-1 parmi les cascades de signalisation de Gas6. Donc, en guise de conclusion nos résultats soutiennent l'idée que Gas6 vasculaire peut jouer un rôle physiopathologique dans la thrombose veineuse.
Dai, Guohao 1970. "Computational and biological studies of mechanical prophylaxis against deep venous thrombosis." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/28236.
Full textIncludes bibliographical references (p. 137-151).
Deep vein thrombosis (DVT) of the lower extremity and induced pulmonary embolism are common complications resulting from prolonged periods of bed-rest or immobilization of the limbs. One of the most effective methods of prophylaxis against DVT is external pneumatic compression (EPC). In spite of its wide acceptance as an effective means of prophylaxis, its mechanism remains poorly understood and optimal compression conditions have not been defined. Understanding the biological consequences of EPC is an important goal for optimizing the performance of compression device and providing guidance for clinical use. In the first part of this thesis, a computational model of the leg was developed to simulate hemodynamic conditions under EPC and the influence of different modes of compression were analyzed and compared. Then, a new in vitro cell culture system was developed that can be used to examine the effect of hemodynamic conditions during EPC on endothelial cell (EC) function. The biologic response was assessed through changes in cell morphology and the expression of various pro-thrombotic and anti-thrombotic factors related to EC.
(cont.) The results show that intermittent flow associated with EPC up-regulates EC fibrinolytic potential and vasomotor function. Using DNA microarray technology, the data of thrombo-regulatory factors indicates that EC gene expression shifts toward anti-thrombotic vs. pro-thrombotic under EPC. Finally, Nitric Oxide (NO), an important regulator of vasomotor and platelet functions was studied in detail under various cycles of EPC. The results show that NO production and eNOS mRNA respond differentially to modes of EPC. Further exploration using the system can potentially reveal the optimum combination of forces to better regulate thromboresistant effects desired for DVT prophylaxis.
by Guohao Dai.
Ph.D.
Wilson, Stanley Darrin. "An investigation of lower limb venous function, whole blood coagulation and deep venous thrombosis following proximal femoral fracture." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268218.
Full textHorner, Daniel. "Isolated distal deep vein thrombosis in symptomatic ambulatory patients : a prospective data analysis and therapeutic feasibility study." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/isolated-distal-deep-vein-thrombosis-in-symptomatic-ambulatory-patients-a-prospective-data-analysis-and-therapeutic-feasibility-study(02979c49-ec26-4099-b0f8-3da2acbf0672).html.
Full textPazzini, Carla. "Preparação e caracterização de nanoparticulas com heparina e sua avaliação em modelo animal de trombose venosa." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310166.
Full textDissertação (mestrado) - Universidade Estadual de Campinas. Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-15T09:49:31Z (GMT). No. of bitstreams: 1 Pazzini_Carla_M.pdf: 2143259 bytes, checksum: b3ff6eb2527b691a4021526983ef2aeb (MD5) Previous issue date: 2010
Resumo: A heparina é um anticoagulante amplamente empregado no tratamento e profilaxia da trombose venosa profunda (TVP). Algumas limitações do seu uso são o custo e a via de administração, endovenosa ou subcutânea, às vezes em doses repetidas em 24 horas. Assim, o desenvolvimento de um produto que possa ser administrado por via subcutânea em um menor número de aplicações ou por via oral, torna-se um importante desafio, e de grande aplicabilidade clínica. A utilização de um sistema de liberação sustentada de fármacos pode vir ao encontro desse objetivo, pois permite que o agente seja protegido e liberado gradativamente. Este projeto consistiu na preparação e caracterização de nanopartículas biodegradáveis de poli (e-caprolactona) (PCL) como carreador de heparina de baixo peso molecular, e avaliação de sua atividade anticoagulante e antitrombótica in vivo. As nanopartículas foram preparadas pelo método de dupla emulsão a/o/a e evaporação de solvente. A caracterização das nanopartículas foi realizada por microscopia eletrônica de varredura (MEV), observando-se nanopartículas esféricas e homogêneas. O diâmetro médio das nanopartículas foi de 269 ± 36 nm e o potencial zeta foi de -1,20 ± 1,93 mV, indicando que as mesmas apresentam carga negativa. A eficiência de encapsulação, analisada pelo método Azure II, foi de 80 ± 2,3%. A liberação da heparina in vitro, avaliada pelo método de Azure II, no período de 24 horas foi de 4 ± 1,8%. Após a adição da esterase houve um aumento para 10 ± 1,9% na liberação de heparina, provavelmente pela aceleração da degradação das partículas pela enzima. A liberação in vivo da heparina encapsulada, após aplicação subcutânea em ratos, foi avaliada pela atividade anti-Xa plasmática através do método colorimétrico, e os resultados foram comparados aos obtidos com heparina livre. A dose de heparina encapsulada teve que ser 5 vezes maior que a dose de heparina livre. A heparina encapsulada em nanopartículas apresentou uma liberação sustentada por até 12 horas, por um período significativamente mais prolongado (P<0,01), mas com menor atividade anti-Xa. Esses dados sugerem que as nanopartículas podem permitir que a heparina seja liberada de uma forma mais gradual, e mesmo em dose mais elevada, não parece estar associada a um risco de atividade acima da faixa terapêutica. Quando se comparou a atividade anti-Xa obtida pela injeção subcutânea de nanopartículas com heparina em doses diversas, 800 UI/Kg e 1000 UI/Kg, ficou demonstrado que o efeito e o tempo de ação dependem da dose aplicada. Para avaliação da ação antitrombótica foi padronizado o modelo de TVP por estase em ratos. As doses de nanopartículas empregadas para a avaliação da ação antitrombótica foram calculadas pela atividade anti-Xa semelhante à obtida com a heparina livre, de 0,3 a 0,7 UI/mL. A heparina livre ou encapsulada em nanopartículas foi aplicada em uma única dose, por via subcutânea. Os resultados mostraram que houve diminuição significativa do trombo formado com a utilização de heparina livre, em comparação ao grupo controle (P=0,004). Praticamente não houve a formação de trombose venosa em nenhum dos ratos que receberam a heparina encapsulada em nanopartículas, com uma diferença significativa tanto em relação ao grupo controle (P<0,001) como ao grupo com heparina livre (P<0,001). Em resumo, o método de dupla emulsão a/o/a mostrou-se um método eficiente para o encapsulamento de heparina, proporcionando a obtenção de nanopartículas esféricas e com alta eficiência de encapsulação. Pelos estudos in vivo, a heparina encapsulada não liofilizada mostrou uma liberação sustentada, por um período superior ao obtido com a heparina livre, e com excelente ação antitrombótica. Caso esses resultados se confirmem através da continuidade deste estudo, a utilização de heparina encapsulada em nanopartículas na prática clínica poderá ser uma realidade com grandes vantagens para o paciente.
Abstract: Heparin is an anticoagulant widely used in the treatment and prophylaxis of deep vein thrombosis (DVT). Some limitations of its use is the cost and route of administration, intravenous or subcutaneous, sometimes in repeated doses in 24 hours. Thus, the development of a product that can be administered subcutaneously in a smaller number of applications or orally becomes a major challenge, with interesting clinical applications. The use of a system for sustained release of drugs can come to meeting that goal, because it allows the agent to be protected and released gradually. This project consisted of the preparation and characterization of biodegradable nanoparticles of poly (e-caprolactone) (PCL) as a carrier of heparin of low molecular weight, and its evaluation of anticoagulant and antithrombotic activity in vivo. The nanoparticles were prepared by the method of double emulsion w/o/w and evaporation of solvent. The characterization of nanoparticles was performed by scanning electron microscopy (SEM), which showed homogeneous spherical nanoparticles. The average diameter of nanoparticles was 269±36 nm and zeta potential was -1.20±1.93 mV, indicating negative charge. The encapsulation efficiency, assayed by Azure II, was 80±2.3%. The release of heparin in vitro, at the 24-hour period was 4±1.8%. After the addition of esterase the release of heparin was increased to 10±1.9%, probably by accelerating the degradation of particles by the enzyme. The in vivo release of encapsulated heparin after subcutaneous administration in rats, was assessed by anti-Xa plasma activity and the results were compared with free heparin. The dose of heparin encapsulated had to be 5 times the dose of heparin free. Heparin-encapsulated nanoparticles showed a sustained release for up to 12 hours for a period significantly longer (P<0.01), but with lower anti-Xa activity. These data suggest that nanoparticles may allow heparin to be released in a more gradual, but with lower activity. When comparing the anti-Xa activity obtained by subcutaneous injection of nanoparticles with different doses of heparin, 800 IU/kg and 1000 IU/kg, demonstrated that the effect and duration of action depends on the dose applied. To evaluate the antithrombotic action of nanoparticles with heparin a model of DVT by stasis in rats was used. The doses of nanoparticles used for the evaluation of antithrombotic action were calculated by anti-Xa activity similar to that obtained with free heparin, 0.3 to 0.7 IU/mL. Heparin free or encapsulated in nanoparticles was applied in a single dose subcutaneously. The results showed a significant decrease of thrombus formed with the use of free heparin, compared with the control group (P=0.004). There were virtually no formation of venous thrombosis in any of the rats that received heparin encapsulated in nanoparticles, with a significant difference both in the control group (P<0.001) and the group with free heparin (P<0.001). In summary, the method of double emulsion w/o/w proved an efficient method for the encapsulation of heparin, providing spherical homogeneous nanoparticles with high encapsulation efficiency. For in vivo studies, heparin encapsulated showed a sustained release for a period greater than that of free heparin, and with excellent antithrombotic action. If these results are confirmed by the continuity of this study, the use of heparin encapsulated in nanoparticles in clinical practice can be of great benefits for the patient.
Mestrado
Medicina Experimental
Mestre em Fisiopatologia Médica
Andia, Kohnenkampf Marcelo. "Venous thrombosis : formation, evolution and resolution imaging using non-invasive MRI techniques." Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/venous-thrombosis-formation-evolution-and-resolution-imaging-using-noninvasive-mri-techniques(99e7c5ac-77eb-4d0e-aad7-c90aa4202c79).html.
Full textVossen, Carolina Y. "Genetic risk factors for venous thrombosis : key players or minor risk modifiers ? /." [S.l. : s.n], 2005. http://catalogue.bnf.fr/ark:/12148/cb402235083.
Full textBooks on the topic "Venous thrombosis"
Ogston, Derek. Venous thrombosis: Causation and prediction. Chichester: Wiley, 1987.
Find full textV, Caso, Agnelli Giancarlo, and Paciaroni M, eds. Handbook on cerebral venous thrombosis. Basel: Karger, 2008.
Find full text1932-, Dalen James E., ed. Venous thromboembolism. New York: Marcel Dekker, 2003.
Find full textMalone, P. Colm, and Paul S. Agutter. The Aetiology of Deep Venous Thrombosis. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6650-4.
Full textZ, Goldhaber Samuel, ed. Pulmonary embolism and deep venous thrombosis. Philadelphia: Saunders, 1985.
Find full textNational Institutes of Health (U.S.). Office of Medical Applications of Research., ed. Prevention of venous thrombosis and pulmonary embolism. [Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, Office of Medical Applications of Research], 1986.
Find full text1935-, Hirsh Jack, ed. Venous thrombosis and pulmonary embolism: Diagnostic methods. Edinburgh: Churchill Livingstone, 1987.
Find full textPrevention of venous thromboembolism. London: Med-Orion, 1994.
Find full textBergan, John J. Management of venous disorders. Georgetown, Tex., U.S.A: Landes Bioscience, 2000.
Find full textHirsh, Jack. Venous thromboembolism: Guide to management. Mississauga, Ont: Du Pont Pharmaceuticals, 1986.
Find full textBook chapters on the topic "Venous thrombosis"
Yale, Steven H., Halil Tekiner, Joseph J. Mazza, Eileen S. Yale, and Ryan C. Yale. "Venous Thrombosis: Cerebral Venous Thrombosis." In Cardiovascular Eponymic Signs, 385–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67596-7_17.
Full textLasjaunias, Pierre. "Venous Thrombosis." In Vascular Diseases in Neonates, Infants and Children, 419–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-10740-9_7.
Full textHughes, Graham, and Shirish Sangle. "Venous Thrombosis." In Hughes Syndrome: The Antiphospholipid Syndrome, 13–17. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-739-6_4.
Full textRoth, Elliot J. "Venous Thrombosis." In Encyclopedia of Clinical Neuropsychology, 3566. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_2212.
Full textRoth, Elliot. "Venous Thrombosis." In Encyclopedia of Clinical Neuropsychology, 1–2. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56782-2_2212-2.
Full textKnight, L. C., and A. H. Maurer. "Venous thrombosis." In Clinical Nuclear Medicine, 203–14. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-3356-0_16.
Full textHach, Wolfgang, and Viola Hach-Wunderle. "Venous Thrombosis." In Phlebography and Sonography of the Veins, 145–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60330-3_11.
Full textRoth, Elliot J. "Venous Thrombosis." In Encyclopedia of Clinical Neuropsychology, 2596. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_2212.
Full textLittig, Ingrid Aguiar, and Antônio José da Rocha. "Venous Thrombosis." In Critical Findings in Neuroradiology, 93–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27987-9_10.
Full textQinming, Zhang. "Thrombosis." In Totally Implantable Venous Access Devices, 173–81. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2373-4_23.
Full textConference papers on the topic "Venous thrombosis"
Bazil, M., J. Scaggiante, J. Mocco, and C. Kellner. "E-265 Thrombosis of two or more venous sinuses in cerebral venous thrombosis." In SNIS 19th Annual Meeting Abstracts. BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group Ltd., 2022. http://dx.doi.org/10.1136/neurintsurg-2022-snis.376.
Full textLowe, O. DG. "RHEOLOGY AND VENOUS THROMBOEMBOLISM." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643990.
Full textNeuhoff, A., L. Jennwein, I. Voigt, F. Louwen, and D. Brüggmann. "Maternal mortality in venous sinus thrombosis." In 62. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe – DGGG'18. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1671550.
Full textSaidani, Amal, Nesrine Kallel, Rym Khemekhem, Nadia Moussa, Rahma Gargouri, Wajdi Feki, and Samy Kammoun. "Cerebral venous thrombosis in Covid-19." In ERS International Congress 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/13993003.congress-2021.pa3889.
Full textTurple, A. G. G., M. N. Levin, J. Hirish, C. J. Carter, R. M. Jay, P. J. Powers, M. Andrew, H. N. Magnani, R. D. Hull, and M. Gent. "A DOUBLE BLIND RANDOMIZED TRIAL OF ORG 10172 LOW MOLECULAR WEIGHT HEPARINOID IN THE PREVENTION OF DEEP VEIN THROMBOSIS IN PATIENTS WITH THROMBOTIC STROKE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643239.
Full textLavenne-Pardonge, E., C. Col-De Beys, and M. Moriau. "INTEREST OF THE RATIO OF INCREASE OF (β-THROMBOGLOBULIN (Δ+/βTG) AND OF FIBRINOPEPTIDE A (Δ+ FPA) FOR DIAGNOSIS AND TREATMENT OF THR0MB0-EMB0LIC DISEASES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643050.
Full textLima, Iana Campinho Braga de Araújo, Lavínia Flávia Xavier de Souza, Clara Wilma Fernandes Rosendo, Letícia de Freitas Barradas, Emerson Kennedy Ribeiro de Andrade Filho, Pedro Vilar de Oliveira Villarim, Gianluca Gomes Siebra, Ródio Luis Brandão Câmara, and Moisés Felipe da Costa Fernandes. "Cerebral venous thrombosis simulating cerebral arterial thrombosis: Late complication of COVID-19?" In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.345.
Full textHach-Wunderle, V., R. Walter-Fincke, H. K. Beck, and I. Scharrer. "FAMILY STUDIES OF PATIENTS WITH RECURRENT VENOUS THROMBOSES AND INHERITED DISORDERS OF BLOOD COAGULATION OR FIBRINOLYSIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643045.
Full textPereira, J., M. Hewicker-Trautwein, M. Depka Prondzinski, and R. Mischke. "Central venous catheter associated thrombosis in dogs." In 27. Jahrestagung der FG „Innere Medizin und klinische Labordiagnostik“ der DVG (InnLab), 2./3. Februar 2019 in München – Teil 2. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1679119.
Full textPereira, JM, M. Hewicker-Trautwein, K. Rohn, M. von Depka Prondzinski, and R. Mischke. "Central venous catheter induced thrombosis in dogs." In 29. Jahrestagung der FG „Innere Medizin und klinische Labordiagnostik“ der DVG (InnLab) – Teil 2: Poster. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1723884.
Full textReports on the topic "Venous thrombosis"
Shi, Guoxin, and Wen Zhao. Risk factors for deep venous thrombosis in patients with stroke: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0045.
Full textAkbari, Ardalan. Luc’s Abscess: First Reported Case with Coexisting Intracranial Abscess and/or Venous Sinus Thrombosis. Science Repository OÜ, August 2018. http://dx.doi.org/10.31487/j.scr.2018.03.005.
Full textLI, Weihui LI, Feng Xu, Weijing Fan, Guobin Liu, Lei Xu, Xvhong Wang, Huimin Lu, and Yuanxiang LI. Xueshuantong injection in treating Deep Venous Thrombosis: a systematic review and experimental sequential analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2020. http://dx.doi.org/10.37766/inplasy2020.12.0117.
Full textXiong, Yuchen, Weiwei Wu, and Shanzi Yu. Different spine tumor pathology and risk of venous thrombosis : systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0121.
Full textHatzfeld, Jennifer, Maria Kohler, and Susan Dukes. FDG20100017H Incidence of Venous Thomboembolism 9VTE) and Effect of Thrombosis Prophylaxis Guidelines in Patients Transported Aeromedically. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada608673.
Full textA, Bengolea, Chamorro F, Ozon N, Catalano HN, and Izcovich A. Effectiveness and safety of utilizing imaging techniques to guide treatment in patients with venous thromboembolism. Epistemonikos Interactive Evidence Synthesis, January 2023. http://dx.doi.org/10.30846/ies.2b03926263.v1.
Full textA, Bengolea, Chamorro F, Ozon N, Catalano HN, and Izcovich A. Effectiveness and safety of utilizing imaging techniques to guide treatment in patients with venous thromboembolism. Epistemonikos Interactive Evidence Synthesis, April 2024. http://dx.doi.org/10.30846/ies.2b03926263.
Full textCheng, Fangqun, Biyun Ye, Ying Tang, Zhuo Xiao, Dan Liu, Ke Wang, Peiyu Cheng, and Jingping Zhang. Risk factors for deep vein thrombosis in patients with cerebral hemorrhage: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2022. http://dx.doi.org/10.37766/inplasy2022.3.0068.
Full textDu, Yuqing, Huimin Lu, Yaoqing Sun, Weian Yuan, Renyan Huang, Xuhong Wang, Guobin Liu, and Weijing Fan. Systematic review and meta-analysis of the efficacy and safety of Panax notoginseng saponins in the prevention of lower-extremity deep venous thrombosis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0032.
Full texthou, xianbing, dandan chen, tongfei cheng, dan wang, xiaojun dai, yao wang, bixian cui, et al. Bleeding risk of anticoagulant therapy in patients with advanced cancer in palliative care settings:a protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0064.
Full text