Journal articles on the topic 'Velocimetry of blood flows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Velocimetry of blood flows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bitsch, L., L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter. "Micro particle-image velocimetry of bead suspensions and blood flows." Experiments in Fluids 39, no. 3 (June 29, 2005): 507–13. http://dx.doi.org/10.1007/s00348-005-0967-7.
Full textKiel, J. W., G. L. Riedel, G. R. DiResta, and A. P. Shepherd. "Gastric mucosal blood flow measured by laser-Doppler velocimetry." American Journal of Physiology-Gastrointestinal and Liver Physiology 249, no. 4 (October 1, 1985): G539—G545. http://dx.doi.org/10.1152/ajpgi.1985.249.4.g539.
Full textRaghav, Vrishank, Chris Clifford, Prem Midha, Ikechukwu Okafor, Brian Thurow, and Ajit Yoganathan. "Three-dimensional extent of flow stagnation in transcatheter heart valves." Journal of The Royal Society Interface 16, no. 154 (May 2019): 20190063. http://dx.doi.org/10.1098/rsif.2019.0063.
Full textLee, Sang Joon, Han Wook Park, and Sung Yong Jung. "Usage of CO2microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows." Journal of Synchrotron Radiation 21, no. 5 (July 31, 2014): 1160–66. http://dx.doi.org/10.1107/s1600577514013423.
Full textStarodumov, Ilya, Sergey Sokolov, Ksenia Makhaeva, Pavel Mikushin, Olga Dinislamova, and Felix Blyakhman. "Obtaining Vortex Formation in Blood Flow by Particle Tracking: Echo-PV Methods and Computer Simulation." Inventions 8, no. 5 (October 9, 2023): 124. http://dx.doi.org/10.3390/inventions8050124.
Full textPark, Cheol Woo, Se Hyun Shin, Gyu Man Kim, Jin Hong Jang, and Yoon Hee Gu. "A Hemodynamic Study on a Marginal Cell Depletion Layer of Blood Flow Inside a Microchannel." Key Engineering Materials 326-328 (December 2006): 863–66. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.863.
Full textWeng, Yiming. "The influence of vortices on hemodynamics in blood vessels." Theoretical and Natural Science 6, no. 1 (August 3, 2023): 172–80. http://dx.doi.org/10.54254/2753-8818/6/20230216.
Full textKvietys, P. R., A. P. Shepherd, and D. N. Granger. "Laser-Doppler, H2 clearance, and microsphere estimates of mucosal blood flow." American Journal of Physiology-Gastrointestinal and Liver Physiology 249, no. 2 (August 1, 1985): G221—G227. http://dx.doi.org/10.1152/ajpgi.1985.249.2.g221.
Full textCoutinho, G., M. Rossi, A. Moita, and A. L. N. Moreira. "3D Particle Tracking Velocimetry Applied To Platelet-Size Particles In Red Blood Cells Suspensions Flows Through Squared Microchannels." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 20 (July 11, 2022): 1–12. http://dx.doi.org/10.55037/lxlaser.20th.44.
Full textJung, Sung Yong, Han Wook Park, Bo Heum Kim, and Sang Joon Lee. "Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes." Journal of Synchrotron Radiation 20, no. 3 (March 1, 2013): 498–503. http://dx.doi.org/10.1107/s0909049513001933.
Full textSanchez, Zyrina Alura C., Vignesha Vijayananda, Devin M. Virassammy, Liat Rosenfeld, and Anand K. Ramasubramanian. "The interaction of vortical flows with red cells in venous valve mimics." Biomicrofluidics 16, no. 2 (March 2022): 024103. http://dx.doi.org/10.1063/5.0078337.
Full textBorazjani, Iman, John Westerdale, Eileen M. McMahon, Prathish K. Rajaraman, Jeffrey J. Heys, and Marek Belohlavek. "Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound." Computational and Mathematical Methods in Medicine 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/395081.
Full textTajikawa, Tsutomu, Wataru Ishihara, Shimpei Kohri, and Kenkichi Ohba. "Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip." Journal of Sensors 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/426476.
Full textJones, C. J., M. J. Lever, Y. Ogasawara, K. H. Parker, K. Tsujioka, O. Hiramatsu, K. Mito, C. G. Caro, and F. Kajiya. "Blood velocity distributions within intact canine arterial bifurcations." American Journal of Physiology-Heart and Circulatory Physiology 262, no. 5 (May 1, 1992): H1592—H1599. http://dx.doi.org/10.1152/ajpheart.1992.262.5.h1592.
Full textYu, Paulo, and Vibhav Durgesh. "Modal Decomposition Techniques: Application in Coherent Structures for a Saccular Aneurysm Model." Fluids 7, no. 5 (May 9, 2022): 165. http://dx.doi.org/10.3390/fluids7050165.
Full textRodgers, G. P., A. N. Schechter, C. T. Noguchi, H. G. Klein, A. W. Nienhuis, and R. F. Bonner. "Microcirculatory adaptations in sickle cell anemia: reactive hyperemia response." American Journal of Physiology-Heart and Circulatory Physiology 258, no. 1 (January 1, 1990): H113—H120. http://dx.doi.org/10.1152/ajpheart.1990.258.1.h113.
Full textMolochnikov, Valeriy, Gennadiy Khubulava, Evgeniy Kalinin, Natalya Pashkova, and Ilya Nikiforov. "Experimental and numerical study of flow structure in a model of distal anastomosis of femoral artery." Russian journal of biomechanics. 27, no. 3 (September 30, 2023): 27–40. http://dx.doi.org/10.15593/rjbiomech/2023.3.03.
Full textFriedman, M. H. "Arterial Fluid Mechanics and Biological Response." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S103—S108. http://dx.doi.org/10.1115/1.3120788.
Full textFraser, Katharine H., Christian Poelma, Bin Zhou, Eleni Bazigou, Meng-Xing Tang, and Peter D. Weinberg. "Ultrasound imaging velocimetry with interleaved images for improved pulsatile arterial flow measurements: a new correction method, experimental and in vivo validation." Journal of The Royal Society Interface 14, no. 127 (February 2017): 20160761. http://dx.doi.org/10.1098/rsif.2016.0761.
Full textRavensbergen, J., J. K. B. Krijger, B. Hillen, and H. W. Hoogstraten. "Merging flows in an arterial confluence: the vertebro-basilar junction." Journal of Fluid Mechanics 304 (December 10, 1995): 119–41. http://dx.doi.org/10.1017/s0022112095004368.
Full textYousif, Majid Y., David W. Holdsworth, and Tamie L. Poepping. "A blood-mimicking fluid for particle image velocimetry with silicone vascular models." Experiments in Fluids 50, no. 3 (August 29, 2010): 769–74. http://dx.doi.org/10.1007/s00348-010-0958-1.
Full textBluestein, Danny, Edmond Rambod, and Morteza Gharib. "Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves." Journal of Biomechanical Engineering 122, no. 2 (November 3, 1999): 125–34. http://dx.doi.org/10.1115/1.429634.
Full textBarrere, Nicasio, Javier Brum, Alexandre L'her, Gustavo L. Sarasúa, and Cecilia Cabeza. "Vortex dynamics under pulsatile flow in axisymmetric constricted tubes." Papers in Physics 12 (June 16, 2020): 120002. http://dx.doi.org/10.4279/pip.120002.
Full textTiederman, W. G., M. J. Steinle, and W. M. Phillips. "Two-Component Laser Velocimeter Measurements Downstream of Heart Valve Prostheses in Pulsatile Flow." Journal of Biomechanical Engineering 108, no. 1 (February 1, 1986): 59–64. http://dx.doi.org/10.1115/1.3138581.
Full textSong, Zhiyong, Pengrui Zhu, Lianzhi Yang, Zhaohui Liu, Hua Li, and Weiyao Zhu. "Study on the radial sectional velocity distribution and wall shear stress associated with carotid artery stenosis." Physics of Fluids 34, no. 5 (May 2022): 051904. http://dx.doi.org/10.1063/5.0085796.
Full textKoelink, M. H., F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse. "Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows." Applied Optics 33, no. 24 (August 20, 1994): 5628. http://dx.doi.org/10.1364/ao.33.005628.
Full textFujinami, Kotaro, and Katsuaki Shirai. "Performance Evaluation of Cross-Correlation Based Photoacoustic Measurement of a Single Object with Sinusoidal Linear Motion." Applied Sciences 13, no. 24 (December 12, 2023): 13202. http://dx.doi.org/10.3390/app132413202.
Full textDiscetti, Stefano, and Filippo Coletti. "Volumetric velocimetry for fluid flows." Measurement Science and Technology 29, no. 4 (March 6, 2018): 042001. http://dx.doi.org/10.1088/1361-6501/aaa571.
Full textIlic, Jelena, Slavica Ristic, and Milesa Sreckovic. "Laser doppler velocimetry and confined flows." Thermal Science 21, suppl. 3 (2017): 825–36. http://dx.doi.org/10.2298/tsci160720278i.
Full textYang, Yao-Yu, and Shih-Chung Kang. "Crowd-based velocimetry for surface flows." Advanced Engineering Informatics 32 (April 2017): 275–86. http://dx.doi.org/10.1016/j.aei.2017.03.007.
Full textYu, Paulo, and Vibhav Durgesh. "Comparison of Flow Behavior in Saccular Aneurysm Models Using Proper Orthogonal Decomposition." Fluids 7, no. 4 (March 23, 2022): 123. http://dx.doi.org/10.3390/fluids7040123.
Full textDanehy, Paul M., Ross A. Burns, Daniel T. Reese, Jonathan E. Retter, and Sean P. Kearney. "FLEET Velocimetry for Aerodynamics." Annual Review of Fluid Mechanics 54, no. 1 (January 5, 2022): 525–53. http://dx.doi.org/10.1146/annurev-fluid-032321-025544.
Full textMaicke, Brian A., and Joseph Majdalani. "Particle Image Velocimetry in Confined Vortex Flows." Journal of Physics: Conference Series 548 (November 24, 2014): 012060. http://dx.doi.org/10.1088/1742-6596/548/1/012060.
Full textBrandner, Markus, and Gert Holler. "Optical velocimetry in cryogenic two-phase flows." Procedia Engineering 5 (2010): 1474–77. http://dx.doi.org/10.1016/j.proeng.2010.09.395.
Full textMaas, H. G., A. Gruen, and D. Papantoniou. "Particle tracking velocimetry in three-dimensional flows." Experiments in Fluids 15, no. 2 (July 1993): 133–46. http://dx.doi.org/10.1007/bf00190953.
Full textHessenkemper, H., and T. Ziegenhein. "Particle Shadow Velocimetry (PSV) in bubbly flows." International Journal of Multiphase Flow 106 (September 2018): 268–79. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2018.04.015.
Full textMalik, N. A., Th Dracos, and D. A. Papantoniou. "Particle tracking velocimetry in three-dimensional flows." Experiments in Fluids 15-15, no. 4-5 (September 1993): 279–94. http://dx.doi.org/10.1007/bf00223406.
Full textDracos, Th, and A. Gruen. "Videogrammetric Methods in Velocimetry." Applied Mechanics Reviews 51, no. 6 (June 1, 1998): 387–413. http://dx.doi.org/10.1115/1.3099011.
Full textThompson, B. E., O. Bouchery, and K. D. Lowney. "Refractive-Index-Matching Laser Velocimetry for Complex, Isothermal Flows." Journal of Fluids Engineering 120, no. 1 (March 1, 1998): 204–7. http://dx.doi.org/10.1115/1.2819650.
Full textWills, Angus O., Manuj Awasthi, Danielle J. Moreau, and Con J. Doolan. "Schlieren Image Velocimetry for Wall-Bounded Supersonic Flows." AIAA Journal 58, no. 9 (September 2020): 4174–77. http://dx.doi.org/10.2514/1.j059586.
Full textMaurice, Mark S. "Laser velocimetry seed particles within compressible, vortical flows." AIAA Journal 30, no. 2 (February 1992): 376–83. http://dx.doi.org/10.2514/3.10928.
Full textRoehle, I., and C. E. Willert. "Extension of Doppler global velocimetry to periodic flows." Measurement Science and Technology 12, no. 4 (March 19, 2001): 420–31. http://dx.doi.org/10.1088/0957-0233/12/4/306.
Full textWesterweel, Jerry, Gerrit E. Elsinga, and Ronald J. Adrian. "Particle Image Velocimetry for Complex and Turbulent Flows." Annual Review of Fluid Mechanics 45, no. 1 (January 3, 2013): 409–36. http://dx.doi.org/10.1146/annurev-fluid-120710-101204.
Full textPrasad, A. K., and R. J. Adrian. "Stereoscopic particle image velocimetry applied to liquid flows." Experiments in Fluids 15, no. 1 (June 1993): 49–60. http://dx.doi.org/10.1007/bf00195595.
Full textBergthorson, J. M., and P. E. Dimotakis. "Particle velocimetry in high-gradient/high-curvature flows." Experiments in Fluids 41, no. 2 (May 5, 2006): 255–63. http://dx.doi.org/10.1007/s00348-006-0137-6.
Full textRibarov, L. A., J. A. Wehrmeyer, R. W. Pitz, and R. A. Yetter. "Hydroxyl tagging velocimetry (HTV) in experimental air flows." Applied Physics B: Lasers and Optics 74, no. 2 (February 1, 2002): 175–83. http://dx.doi.org/10.1007/s003400100777.
Full textLee, Sang Joon, and Seok Kim. "Advanced particle-based velocimetry techniques for microscale flows." Microfluidics and Nanofluidics 6, no. 5 (January 29, 2009): 577–88. http://dx.doi.org/10.1007/s10404-009-0409-6.
Full textZiegenhein, T., and D. Lucas. "On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows." Flow Measurement and Instrumentation 48 (April 2016): 36–41. http://dx.doi.org/10.1016/j.flowmeasinst.2016.02.003.
Full textMatulka, A. M., Y. Zhang, and Y. D. Afanasyev. "Complex environmental beta-plane turbulence: laboratory experiments with altimetric imaging velocimetry." Nonlinear Processes in Geophysics Discussions 2, no. 6 (November 9, 2015): 1507–29. http://dx.doi.org/10.5194/npgd-2-1507-2015.
Full textOrtiz-Villafuerte, Javier, D. R. Todd, and Yassin A. Hassan. "VELOCITY MEASUREMENTS IN BUBBLY FLOWS WITH PARTICLE TRACKING VELOCIMETRY." Journal of Flow Visualization and Image Processing 8, no. 2-3 (2001): 10. http://dx.doi.org/10.1615/jflowvisimageproc.v8.i2-3.120.
Full text