Academic literature on the topic 'Vegetation changes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vegetation changes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vegetation changes"

1

He, Dong, Xianglin Huang, Qingjiu Tian, and Zhichao Zhang. "Changes in Vegetation Growth Dynamics and Relations with Climate in Inner Mongolia under More Strict Multiple Pre-Processing (2000–2018)." Sustainability 12, no. 6 (March 24, 2020): 2534. http://dx.doi.org/10.3390/su12062534.

Full text
Abstract:
Inner Mongolia Autonomous Region (IMAR) is related to China’s ecological security and the improvement of ecological environment; thus, the vegetation’s response to climate changes in IMAR has become an important part of current global change research. As existing achievements have certain deficiencies in data preprocessing, technical methods and research scales, we correct the incomplete data pre-processing and low verification accuracy; use grey relational analysis (GRA) to study the response of Enhanced Vegetation Index (EVI) in the growing season to climate factors on the pixel scale; explore the factors that affect the response speed and response degree from multiple perspectives, including vegetation type, longitude, latitude, elevation and local climate type; and solve the problems of excessive ignorance of details and severe distortion of response results due to using average values of the wide area or statistical data. The results show the following. 1. The vegetation status of IMAR in 2000-2018 was mainly improved. The change rates were 0.23/10° N and 0.25/10° E, respectively. 2. The response speed and response degree of forests to climatic factors are higher than that of grasslands. 3. The lag time of response for vegetation growth to precipitation, air temperature and relative humidity in IMAR is mainly within 2 months. The speed of vegetation‘s response to climate change in IMAR is mainly affected by four major factors: vegetation type, altitude gradient, local climate type and latitude. 4. Vegetation types and altitude gradients are the two most important factors affecting the degree of vegetation’s response to climate factors. It is worth noting that when the altitude rises to 2500 m, the dominant factor for the vegetation growth changes from precipitation to air temperature in terms of hydrothermal combination in the environment. Vegetation growth in areas with relatively high altitudes is more dependent on air temperature.
APA, Harvard, Vancouver, ISO, and other styles
2

Collinson, Margaret E. "Mass extinctions: Catastrophic vegetation changes." Nature 324, no. 6093 (November 1986): 112. http://dx.doi.org/10.1038/324112a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pancer-Koteja, Elżbieta, Jerzy Szwagrzyk, and Marcin Guzik. "Quantitative estimation of vegetation changes by comparing two vegetation maps." Plant Ecology 205, no. 1 (April 7, 2009): 139–54. http://dx.doi.org/10.1007/s11258-009-9604-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Richards, Daniel R., and Richard N. Belcher. "Global Changes in Urban Vegetation Cover." Remote Sensing 12, no. 1 (December 19, 2019): 23. http://dx.doi.org/10.3390/rs12010023.

Full text
Abstract:
Urban vegetation provides many ecosystem services that make cities more liveable for people. As the world continues to urbanise, the vegetation cover in urban areas is changing rapidly. Here we use Google Earth Engine to map vegetation cover in all urban areas larger than 15 km2 in 2000 and 2015, which covered 390,000 km2 and 490,000 km2 respectively. In 2015, urban vegetation covered a substantial area, equivalent to the size of Belarus. Proportional vegetation cover was highly variable, and declined in most urban areas between 2000 and 2015. Declines in proportional vegetated cover were particularly common in the Global South. Conversely, proportional vegetation cover increased in some urban areas in eastern North America and parts of Europe. Most urban areas that increased in vegetation cover also increased in size, suggesting that the observed net increases were driven by the capture of rural ecosystems through low-density suburban sprawl. Far fewer urban areas achieved increases in vegetation cover while remaining similar in size, although this trend occurred in some regions with shrinking populations or economies. Maintaining and expanding urban vegetation cover alongside future urbanisation will be critical for the well-being of the five billion people expected to live in urban areas by 2030.
APA, Harvard, Vancouver, ISO, and other styles
5

Nørnberg, P., L. Sloth, and K. E. Nielsen. "Rapid changes of sandy soils caused by vegetation changes." Canadian Journal of Soil Science 73, no. 4 (November 1, 1993): 459–68. http://dx.doi.org/10.4141/cjss93-047.

Full text
Abstract:
Development of Typic Haplorthods in a heathland area in Denmark responded over a short period of time (decades) to changes of vegetation. Part of the heath, Hjelm Hede, was left undisturbed and was invaded by trees, mainly oak and a few aspen and conifers. Another part of the heath was planted with Norway and Sitka spruce 60–70 yr ago. The soils under heath, oak and spruce were studied. Major differences were found, some visible in the field and others detectable in the laboratory. Under oak, relative to heath, horizon boundaries were less distinct, pH increased in the top horizons, organic carbon and C/N ratio decreased, and iron and aluminum contents in the upper B horizons decreased. Compared with the original heath podzol, the soil under spruce had a lower pH in the O, E and upper B horizons, higher organic carbon content and C/N ratio in the top horizons, increased cementation, and a placic horizon. However the pyrophosphate-extractable iron and aluminum content was significantly lower than in any of the other soils. The soil under oak showed "depodzolization" features, whereas the soil under spruce was increasingly podzolized, though the podzolization mechanism might be different from that under heath. Analyses of phenolic compounds in the soil water were consistent with these conclusions. The three main components of substituted benzoic acids were gallic acid, protocatechuic acid and coumaric acid, which are all strongly complexing agents believed to take part in the podzolization process. Generally, the highest concentrations were found under spruce and the lowest under oak.Key words: Vegetation-induced soil changes, Spodosols, phenolic compounds
APA, Harvard, Vancouver, ISO, and other styles
6

Whitlock, Cathy. "Postglacial Fire Frequency and its Relation to Long-Term Vegetational and Climatic Changes in Yellowstone Park." UW National Parks Service Research Station Annual Reports 16 (January 1, 1992): 212–18. http://dx.doi.org/10.13001/uwnpsrc.1992.3123.

Full text
Abstract:
The primary research objective has been to study the vegetational history of Yellowstone and its sensitivity to changes in climate and fire frequency. To establish a sequence of vegetational changes, a network of pollen records spanning the last 14,000 years has been studied from different types of vegetation within the Park. The relationship between modern pollen rain, modern vegetation and present­day climate in the northern Rocky Mountains has been the basis for interpreting past vegetation and climate from the fossil records. Changes in fire regime during the past 14,000 years have been inferred from sedimentary charcoal and other fire proxy in lake sediments. Calibration of the fire signal is based on a study that measures the input of charcoal into lakes following the 1988 fires in Yellowstone.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Weiming, Chunhai Li, Junwu Shu, and Wei Chen. "Changes of vegetation in southern China." Science China Earth Sciences 62, no. 8 (May 31, 2019): 1316–28. http://dx.doi.org/10.1007/s11430-018-9364-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, Mee-Hyun, Ah-Ryeon Yang, Eun-Hyuk Baek, Sarah M. Kang, Su-Jong Jeong, Jin Young Kim, and Baek-Min Kim. "Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions." Climate Dynamics 50, no. 9-10 (July 31, 2017): 3745–55. http://dx.doi.org/10.1007/s00382-017-3840-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Solon, Jerzy. "Changes in the vegetation landscape in the Pińczów environs (S Poland)." Phytocoenologia 21, no. 4 (April 19, 1993): 387–409. http://dx.doi.org/10.1127/phyto/21/1993/387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Fangfang, Zongxue Xu, and Lu Zhang. "Changes in streamflow regime following vegetation changes from paired catchments." Hydrological Processes 26, no. 10 (September 28, 2011): 1561–73. http://dx.doi.org/10.1002/hyp.8266.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Vegetation changes"

1

Abraitienė, Jolita. "Climate-induced changes of vegetation in broadleaved deciduous forests." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121024_111936-53102.

Full text
Abstract:
The aim of the study was to investigate the influence of meteorological factors on the phenological phases of the vegetation in broadleaved forests under varying climatic conditions. To attain the aim, the following objectives were set: 1. Characterize the changes of values of meteorological parameters (temperature, precipitation) in the studied period; 2. Determine solar radiation intensity under the canopies of trees, phenological phases of trees and bushes and their changes; 3. Determine the changes of projection coverage, height and phenological phases of herbaceous plants during the growing period; 4. Ascertain the relationship between meteorological factors and phenological phases of woody and herbaceous plants. Scientific novelty, theoretical and practical significance. Up till now in Lithuania phenological studies mostly of agricultural plants have been conducted. Phenological studies on woody and herbaceous plants in the forests of Lithuania are almost absent. Most of the studies were conducted with indicator species, such as hazel, coltsfoot, etc. During the study, for the first time in Lithuania a complex investigation of forest community was carried out and the influence of meteorological factors on the phenological phases of herbaceous and woody plants in Kamša botanical-zoological reserve was determined. The results of the study allow to better assess the influence of meteorological factors on seasonal development (phenology) of herbaceous plants, trees and... [to full text]
Darbo tikslas – ištirti meteorologinių veiksnių įtaką plačialapių lapuočių miškų augalijos fenologiniams tarpsniams skirtingų klimatinių sąlygų metais. Tyrimo uždaviniai: 1. charakterizuoti meteorologinių rodiklių (temperatūros, kritulių) reikšmių kaitą tiriamuoju laikotarpiu; 2. nustatyti apšvietimą po medžių lajomis, medžių ir krūmų lapojimo fenologinius tarpsnius ir jų pokyčius; 3. nustatyti žolinių augalų projekcinio padengimo, aukščio, fenologinių tarpsnių kaitą vegetacijos metu; 4. nustatyti ryšį tarp meteorologinių veiksnių ir sumedėjusių, žolinių augalų fenologinių tarpsnių. Darbo mokslinis naujumas, teorinė ir praktinė reikšmė. Lietuvoje iki šiol daugiausia atlikta fenologinių tyrimų su žemės ūkio augalais. Sumedėjusių augalų ir miško žolinių augalų detalių fenologinių tyrimų Lietuvoje beveik nėra. Daugiausia atlikta indikatorinių rūšių, kaip paprastasis lazdynas, paprastasis šalpusnis ir kt., tyrimų. Pirmą kartą Lietuvoje kompleksiškai tirta miško bendrija, nustatyta meteorologinių veiksnių įtaka sumedėjusių augalų lapojimo ir žolinių augalų fenologiniams tarpsniams Kamšos botaniniame-zoologiniame draustinyje. Darbo rezultatai leidžia geriau įvertinti meteorologinių veiksnių įtaką miško žolinės augalijos, medžių ir krūmų sezoniniam vystymuisi (fenologijai). Gautos žinios svarbios ne tik teoriniam išsamesniam atskirų rūšių biologijos pažinimui, bet ir praktiniams tikslams: dendrologijoje, fitopatologijoje ir t. t.
APA, Harvard, Vancouver, ISO, and other styles
2

Tanentzap, Andrew Joseph. "Global vegetation responses to deer : ecosystem changes and recovery." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sturgess, Peter William. "Post-felling vegetation changes on three afforested sand-dune systems." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leppälä, M. (Mirva). "Successional changes in vegetation and carbon dynamics during boreal mire development." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514294655.

Full text
Abstract:
Abstract Succession is a compositional change of species and other ecosystem characteristics over time. Mire development, i.e., long-term mire succession is basically driven by an increase in peat layer height, promoting changes in hydrology, vegetation and nutrient status of a particular mire. Due to this, ecosystem processes, such as production and loss of carbon due to decomposition (i.e. carbon gas functions), change with increasing successional mire stage. An adequate method for studying the changes in ecosystem C functions is to measure CO2 and CH4 fluxes between the ecosystem and atmosphere. Succession and carbon dynamics of boreal pristine mires have been much studied. However the link between these phenomena is largely unknown. Further, if and how the C gas functions of mires change during mire succession it is rather poorly understood. The main objective of this thesis was to study how ecosystem functions, measured as CO2 and CH4 exchange, change during mire development. The study also aims to explore the drivers of succession in mire development, i.e., mire succession. Successional mire C dynamics were studied along an eight-kilometer-long successional sequence of primary paludified mires located in the land uplift coast of the Bothnian Bay. Due to the short distance between sites, they all have been under the same climatic control for most of their development. The gradual replacement of plant species with different photosynthetic potential, phenology and assimilating green area resulted in lower-level and temporal variation of CO2 exchange patterns at the later successional stages. Similar to this, CH4 also had the lowest interannual variation in the later stages. In general, CH4 emissions increased with mire age even though this trend did not emerge during the rainy season. Further, this study showed that the wintertime C function pattern was related to the C pattern during the previous summer confirming the important effect of growing season patterns on wintertime C dynamics. In addition to the fundamental effect of vegetation as a driver of succession which was also confirmed in this study, the role of hydrological conditions appeared to be equally important. More constant hydrological conditions at later successional stages resulted in lower temporal variation in CH4 and CO2 fluxes. The present results suggest that the stability of ecosystem C gas functions increases during mire development due to increasing autogenic control
Tiivistelmä Sukkessio on ekosysteemin lajistossa ja sen muissa ominaisuuksissa ajan kuluessa tapahtuva muutos. Suon kehitystä eli pitkäaikaista suosukkessiota vie eteenpäin turpeen paksuuskasvu, joka saa aikaan muutoksia suoekosysteemin hydrologiassa, kasvillisuudessa ja ravinnetilassa. Tästä johtuen myös suoekosysteemin erilaiset prosessit, kuten tuotanto sekä hajoamisen kautta tapahtuva hiilen vapautuminen eli hiilikaasutoiminta muuttuu suon ikääntyessä. Ekosysteemin hiilikaasutoiminnassa tapahtuvia muutoksia voidaan tutkia muun muassa mittaamalla ekosysteemin ja ilmakehän välisiä hiilidioksidi- ja metaanivirtoja. Boreaalisten luonnontilaisten soiden sukkessiota ja hiilidynamiikkaa on tutkittu runsaasti, mutta niiden välistä yhteyttä ei sen sijaan juuri tunneta. Tämän vuoksi ei tiedetä kuinka soiden hiilikaasutoiminta mahdollisesti muuttuu suon kehityksen aikana eli suosukkession edetessä. Tämän tutkimuksen päätavoitteena oli tutkia kuinka hiilidioksidin ja metaanin vaihdolla mitattu ekosysteemitoiminta muuttuu suon kehityksen aikana. Tutkimus pyrki myös selvittämään suosukkessiota kontrolloivat tekijät. Eri-ikäisten soiden hiilikaasudynamiikkaa tutkittiin mittaamalla hiilikaasuja Perämeren maankohoamisrannikolla kahdeksan kilometrin pituisella sukkessiogradientilla, joka koostuu primaarisoistumisen kautta syntyneistä soista. Soiden lyhyestä keskinäisestä etäisyydestä johtuen ne ovat olleet saman ilmastollisen kontrollin alaisena suurimman osan kehityksestään. Vaiheittainen kasvilajien muutos sukkessiogradientilla yhdessä kasvilajien erilaisen yhteyttämispotentiaalin, fenologian ja yhteyttävän lehtipinta-alan kanssa johti hiilidioksidivaihdon alhaisempaan tasoon sekä pienempään ajalliseen vaihteluun vanhemmilla sukkessiovaiheilla. Myös metaanin vaihdolla oli alhaisimmat vuosien väliset vaihtelut vanhemmilla vaiheilla. Yleisesti ottaen metaanipäästöt kasvoivat suon iän myötä, vaikkakaan tätä trendiä ei havaittu sateisena kasvukautena. Lisäksi tutkimus osoitti, että talviaikaiset hiilivirrat (CO2, CH4) seurasivat kesäaikaisen hiilidynamiikan vaihtelua. Kasvillisuuden keskeinen rooli ekosysteemin sukkessiossa havaittiin myös tässä tutkimuksessa. Kasvillisuuden ohella merkittäväksi suosukkessiota sääteleväksi tekijäksi osoittautui hydrologisten olojen vaikutus. Tasaisemmat hydrologiset olot vanhemmilla sukkessiovaiheilla johtivat vähäisempään ajalliseen vaihteluun metaani- ja hiilidioksidivirroissa. Tutkimuksen tulokset viittaavat siihen, että ekosysteemin hiilidynamiikka stabilisoituu suon kehityksen aikana lisääntyvän autogeenisen kontrollin kautta
APA, Harvard, Vancouver, ISO, and other styles
5

Lisius, Grace L. "Vegetation Community Response to Hydrologic and Geomorphic Changes Following Dam Removal in a New England River." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106917.

Full text
Abstract:
Thesis advisor: Noah P. Snyder
Dam removal is typically used to restore fish passage, natural flow regimes, and sediment transport in streams. However, dam removal also impacts the riparian vegetation, a change that can have wider effects throughout the ecosystem. Quantifying vegetation change requires a multi-year record to document pre-removal communities and both the immediate and delayed responses. In this study, vegetation change was assessed at the Merrimack Village Dam on the Souhegan River in Merrimack, NH, which was removed in August 2008. The removal caused a ~3 meter drop in water level and rapid erosion of impounded sediment, with ~50% removed in the first three months. The vegetation was sampled using plots at specific intervals along 7 monumented transects that were perpendicular to the channel or adjacent wetland. Tree, shrub, and herbaceous communities were assessed using species percent areal coverage techniques in July 2007, 2009, 2014 and 2015. Change over time was quantified using Analysis of Similarity (ANOSIM) on the Bray-Curtis dissimilarity matrix. As expected, vegetation communities in control plots upstream of the impoundment did not show significant change during the study period. Tree and shrub communities adjacent to the impoundment also did not show significant change. All herbaceous communities adjacent to the impoundment changed significantly (p < 0.05). The herbaceous plots closest to the channel changed to bare sand in 2009 due to erosion in the former impoundment, but by 2014 the riparian fringe community seen in 2007 had re-established and expanded in this area, but at a lower elevation. Between 2007 and 2014, the wetland herbaceous community changed from aquatic species to a stable terrestrial community that persisted without significant change in 2015. From 2007 to 2014, the vegetation community on a mid-channel island of impoundment sand changed from a community with ~50% invasive reed canary grass to a ~98% community of invasive black swallowwort, a species not recorded at the site pre-removal. The vegetation response was greatest in areas with largest geomorphic and hydrologic change, such as along the channel margin where erosion and bank slumping created an unstable scarp or on the mid-channel island and off-channel wetland strongly impacted by the lowered water table. However, large unvegetated areas never persisted nor did the areal coverage of invasive species expand: two common concerns of dam removals
Thesis (BS) — Boston College, 2016
Submitted to: Boston College. College of Arts and Sciences
Discipline: Scholar of the College
Discipline: Earth and Environmental Sciences
APA, Harvard, Vancouver, ISO, and other styles
6

Gibbs, Holly K. "Quantification of Human-Induced Changes in Global Vegetation and Associated Climatic Parameters." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406738681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bradford, Jessica. "Examining Culex tarsalis (Diptera: Culicidae) population changes with satellite vegetation index data." Kansas State University, 2014. http://hdl.handle.net/2097/17139.

Full text
Abstract:
Master of Public Health
Department of Diagnostic Medicine/Pathobiology
Michael W. Sanderson
A zoonotic disease is any disease or infection that is naturally transmissible from vertebrate animals to humans. Over 200 zoonoses have been described (Zoonoses and the Human-Animal-Ecosystems Interface, 2013). Many zoonotic viruses are arboviruses, viruses transmitted by an infected, blood-sucking, arthropod vector (Hunt, 2010). There are several endemic arboviruses in the United States; some foreign arboviruses, such as Rift Valley fever (RVF) virus, are potential bioterrorism agents (Dar, 2013). Arboviruses, both endemic and foreign, threaten public health (Gubler, 2002) and therefore disease surveillance, vector control and public education are all vital steps in minimizing arboviral disease impact in the United States. Mosquito-borne disease threats, such as West Nile virus and Rift Valley fever, are constant concerns in the United States and globally. Current strategies to prevent and control mosquito-borne diseases utilize vector distribution, seasonal and daylight timing, and variation in population numbers. Climate factors, such as availability of still water for development of immature mosquitoes, shade, and rainfall, are known to influence population dynamics of mosquitoes. Using 1995-2011 mosquito population surveillance data from Fort Riley, Kansas, we compared population numbers of Culex tarsalis (Diptera: Culicidae), a vector of several arboviruses including West Nile virus and potentially Rift Valley fever, to a satellite-derived index of climate, the Normalized Difference Vegetation Index (NDVI) anomaly. No correlation between the population numbers and NDVI anomaly was observed, which contrasts with results from similar analyses in other locations. These findings suggest a need for continued investigation into mosquito population dynamics in additional ecological regions of the United States to better describe the heterogeneity of environment-population relationships within and among mosquito species.
APA, Harvard, Vancouver, ISO, and other styles
8

Winning, Geoffrey Bruce, and res cand@acu edu au. "Vegetation Changes in a Large Estuarine Wetland Subsequent to Construction of Floodgates: Hexham Swamp in the Lower Hunter Valley, New South Wales." Australian Catholic University. School of Arts and Sciences, 2006. http://dlibrary.acu.edu.au/digitaltheses/public/adt-acuvp107.11092006.

Full text
Abstract:
Floodgates were constructed in 1971 on the main creek draining Hexham Swamp, a large wetland on the floodplain of the lower Hunter River, New South Wales. Substantial changes in vegetation have occurred in Hexham Swamp subsequent to the construction of the floodgates. Previous areas of mangroves and saltmarsh have been reduced (180ha to 11ha, and 681ha to 58ha, respectively), and Phragmites australis has expanded (170ha to 1005ha). Much of the mangrove loss (ca. 130ha) was a result of clearing, and the remainder has gradually died off. The factors contributing to the dieback are likely to be a combination of drying of the soil, root competition and, at times, waterlogging. Field sampling as well as microcosm and reciprocal transplant experiments involving key species, Sarcocornia quinqueflora, Sporobolus virginicus, Paspalum vaginatum and Phragmites australis, suggest that a reduction in soil salinity has been an important factor in initiating successional change from saltmarsh to Phragmites reedswamp. The data also suggest that increased waterlogging has been an important factor in initiating vegetation change. This apparently paradoxical result (floodgates and associated drainage generally result in drying of wetlands) is likely to have resulted from occlusion of drainage lines (by sediment and reeds) and is, therefore, likely to be a condition that developed gradually. That is, the initial effect of the floodgates is expected to have been a drying of the swamp, followed over time by an increasing wetness. An examination of vegetation changes after removal of cattle from part of Hexham Swamp, suggests that grazing had little effect on species composition of vegetation or rate of expansion of Phragmites australis. However, grazing does affect vegetation structure (height and density), possibly favours some coloniser species (e.g. Sarcocornia quinqueflora) in particular environmental conditions, and possibly inhibits establishment of Phragmites australis.
APA, Harvard, Vancouver, ISO, and other styles
9

Twigger, S. N. "Late Holocene palaeoecology and environmental archaeology of six lowland lakes and bogs in North Shropshire." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bodin, Jeanne. "Observed changes in mountain vegetation of the Alps during the XXth century - Role of climate and land-use changes." Phd thesis, Université Henri Poincaré - Nancy I, 2010. http://tel.archives-ouvertes.fr/tel-00592144.

Full text
Abstract:
La végétation herbacée est un bon indicateur des conditions environnementales. Pour cette raison, elle a souvent été utilisée pour mettre en évidence les changements environnementaux causés par les actions humaines, tels qu'eutrophisation, dépôts atmosphériques acides, changements de l'usage des sols ou de la pression d'herbivorie. Depuis peu, on s'intéresse aux effets des changements climatiques sur les écosystèmes en général, et sur la végétation en particulier. Le choix des zones d'étude s'est naturellement porté sur la montagne, car le gradient thermique induit par le relief (-0,56°C pour 100 mètres d'altitude) y est mille fois plus élevé qu'en plaine le long du gradient latitudinal. D'autre part, les zones de montagne sont soumises à une urbanisation et une pression agricole moindre qu'en plaine, limitant ainsi les obstacles à la migration des espèces. Ces deux arguments font des régions de montagne une zone privilégiée pour l'étude de la réponse migratoire précoce de la végétation aux changements climatiques. Jusqu'ici, les études effectuées se sont focalisées pour la plupart sur la limite supérieure des espèces, ou sur de petites zones géographiques, ou bien encore sur des zones où il est difficile de dissocier les effets du réchauffement de ceux des changements d'usage des sols, qui se produisent eux aussi à grande échelle. Une partie de cette thèse est consacrée aux milieux forestiers montagnards, dans lesquels l'effet du pastoralisme est réduit. D'autre part, une méthode basée sur la modélisation des changements de la réponse de la végétation au gradient d'altitude est développée, permettant le rééchantillonnage sur placettes non-permanentes, et ainsi d'étendre l'utilisation de données anciennes à des séries de relevés non géolocalisés. En s'appuyant sur cette méthode, deux caractéristiques de la végétation ont été analysées : la position de l'optimum d'espèces prises individuellement d'une part (données de l'Inventaire Forestier National dans les montagnes méditerranéennes du sud-est de la France), et les changements de la valeur indicatrice des communautés végétales d'autre part (vallée de la Maurienne, France). Par ailleurs, on a étudié les déplacements à long terme de la limite inférieure des espèces dans la vallée de la Bernina (Suisse), pour tester si la réponse des espèces en limite inférieure, peu étudiée jusque là, est identique à celle en limite supérieure de leur distribution. Enfin, on a étudié l'évolution de la flore d'une zone très localisée, mais par ailleurs protégée des migrations d'espèces par une large barrière physique constituée par deux glaciers (Nunatak Isla Persa, Bernina, Suisse) permettant de s'affranchir totalement des effets potentiels d'autres perturbations anthropiques concomitantes. Dans ces différentes études, les intervalles de temps entre chaque inventaire ou échantillonnage varient de 14 ans à un siècle. Chacun des cas étudiés montre une remontée des espèces en altitude : remontée moyenne de +12,6 m/décennie des optimums de 175 espèces forestières dans les montagnes méditerranéennes, communautés des forêts de Maurienne évoluant vers une végétation plus thermophile à une altitude donnée équivalent à une remontée moyenne de +29.6m/décennie, retrait de la limite inférieure des espèces en Bernina de +5,6 m/décennie, arrivée d'espèce d'étages inférieurs sur le nunatak Isla Persa. Mais d'autres phénomènes expliquant la réponse observée de la végétation sont clairement mis en cause dans cette étude : fermeture et maturation du couvert forestier relativement plus importante à basse altitude dans les montagnes méditerranéennes, eutrophisation importante de la végétation en vallée de la Maurienne probablement due à l'augmentation du trafic routier, probable fragmentation de l'habitat ou dispersion par les randonneurs en Bernina. Ces perturbations anthropiques directes jouent à des échelles de temps et d'espace comparables à l'effet anthropique indirect du changement climatique. Il est donc primordial de les prendre en compte dans les changements de végétation observés, avant de conclure à un effet du réchauffement climatique seul.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Vegetation changes"

1

Vegetation changes on western rangelands. Denver, CO: Society for Range Management, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greller, Andrew M., Kazue Fujiwara, and Franco Pedrotti, eds. Geographical Changes in Vegetation and Plant Functional Types. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68738-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brewer, Michael J. Estimating natural vegetation from climatic data. Pittsgrove, N.J: C.W. Thornthwaite Associates, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Conard, Susan G. Abies concolor growth responses to vegetation changes following shrub removal, northern Sierra Nevada, California. Albany, Calif: U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shaw, Harley G. Wood plenty, grass good, water none: Vegetation changes in Arizona's Upper Verde River watershed from 1850 to 1997. [Fort Collins, CO]: United States Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Persson, Torbjörn S. Management of roadside verges: Vegetation changes and species diversity. Uppsala: Swedish University of Agricultural Sciences, Dept. of Ecology and Environmental Research, Section for Conservation Botany, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ager, Thomas A. How does climate change influence Alaska's vegetation?: Insights from the fossil record. [Washington, D.C.?]: U.S. Dept. of Interior, U.S. Geological Survey, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wardle, Kate. Monitoring vegetation changes at Treble Cone Ski Field, New Zealand. Wellington, N.Z: Dept. of Conservation, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Plant community history: Long-term changes in plant distribution and diversity. London: Chapman and Hall, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dempsey, Dale A. Using vegetation indices as a key to quantitative temporal changes in vegetative cover in Sudbury Ontario. Sudbury, Ont: Laurentian University, Department of Geography, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vegetation changes"

1

Vorobyeva, Irina B. "Changes in the Southern Siberian Forest-Steppes." In Plant and Vegetation, 425–43. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3886-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burrows, Colin J. "Changes in some tropical forests." In Processes of Vegetation Change, 330–58. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3058-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bornkamm, Reinhard. "Vegetation Changes in Herbaceous Communities." In The Population Structure of Vegetation, 89–109. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5500-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Falińska, Krystyna. "Recapitulation: Population Size and Population Changes." In Tasks for vegetation science, 149–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3266-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burrows, Colin J. "Changes in some temperate forests after disturbance." In Processes of Vegetation Change, 298–329. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3058-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van der Laan, Dick. "Changes in the flora and vegetation of the coastal dunes of Voorne (The Netherlands) in relation to environmental changes." In Ecology of coastal vegetation, 87–95. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5524-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Loidi, Javier. "Dynamism in Vegetation. Vegetation Changes on a Short Time Scale." In The Vegetation of the Iberian Peninsula, 81–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54784-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Purkis, Samuel, and Victor Klemas. "Monitoring changes in global vegetation cover." In Remote Sensing and Global Environmental Change, 63–90. West Sussex, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118687659.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carraro, Gabriele, Pippo Gianoni, Roberto Mossi, Frank Klötzli, and Gian-Reto Walther. "Observed Changes in Vegetation in Relation to Climate Warming." In Tasks for vegetation science, 195–205. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9686-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

del Arco Aguilar, Marcelino J., and Octavio Rodríguez Delgado. "Changes in the Natural Landscape Through Human Influence." In Vegetation of the Canary Islands, 321–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77255-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vegetation changes"

1

Huber, K. "Changes In Spectral Reflectance Of Crop Canopies Due To Drought Stress." In EARTH OBSERVATION FOR VEGETATION MONITORING AND WATER MANAGEMENT. AIP, 2006. http://dx.doi.org/10.1063/1.2349352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voarintsoa, Ny Riavo G. "STALAGMITE δ 13C CHANGES AND VEGETATION COVER CHANGE IN NORTHWESTERN MADAGASCAR." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Sha, Xianfeng Zhang, Quan Sun, and Qing Lu. "Characterization of vegetation dynamics in Shihezi, Xinjiang using MODIS data." In Second International Conference on Earth Observation for Global Changes, edited by Xianfeng Zhang, Jonathan Li, Guoxiang Liu, and Xiaojun Yang. SPIE, 2009. http://dx.doi.org/10.1117/12.836289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Shao-Jun, Jing-Hong Zhang, Guang-Hui Tian, and Da-Xin Cai. "Detection Fractional Vegetation Cover Changes Using MODIS Data." In 2008 Congress on Image and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/cisp.2008.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cipar, John, Thomas Cooley, and Ronald Lockwood. "Measurements of Seasonal Changes in Vegetation Reflectance Spectra." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Safa, Mahdi, Alexandra Sokolova, Lukas Moravits, Tyler Doiron, and Micah Murdock. "Photogrammetric Techniques for Monitoring Vegetation and Topographical Changes." In 34th International Symposium on Automation and Robotics in Construction. International Association for Automation and Robotics in Construction (IAARC), 2018. http://dx.doi.org/10.22260/isarc2018/0090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pospelov, I. N., and E. B. Pospelova. "Approaches to formation of northern regions species list for preparing new edition of Krasnoyarsky Region Red Book (plants)." In Problems of studying the vegetation cover of Siberia. TSU Press, 2020. http://dx.doi.org/10.17223/978-5-94621-927-3-2020-31.

Full text
Abstract:
Because of preparing new edition of “Krasnoyarsky Region Red book (plants and fungi)”, the change of approaches to formation of specially protected vascular plants list are proposed. The changes of principles for adding species to this list are proposed, as well as offers by including and excluding the species. In particular, conferring conservation status is necessary not only for species at whole, but for separate large populations. The special approaches is necessary for species, hard to definite in nature. Besides, it is necessary to supplement new edition by Appendix “The list of Krasnoyarsky Region plant species needing special attention by their condition in nature”.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhen Bian and Kebin Zhang. "Monitoring of vegetation cover changes based on CBERS images." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zoran, Maria A., Liviu Florin V. Zoran, and Adrian I. Dida. "Forest vegetation dynamics and its response to climate changes." In SPIE Remote Sensing, edited by Christopher M. U. Neale and Antonino Maltese. SPIE, 2016. http://dx.doi.org/10.1117/12.2241374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MAGGI, M., P. SOILLE, C. ESTREGUIL, and M. DESHAYES. "DETECTION OF VEGETATION CHANGES IN AN ALPINE PROTECTED AREA." In Proceedings of the Second International Workshop on the Multitemp 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702630_0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vegetation changes"

1

Anderson, T. W. Vegetation changes over 12 000 years. Natural Resources Canada/CMSS/Information Management, 1989. http://dx.doi.org/10.4095/127540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elseroad, Adrien, Nathan Emery, and undefined. Changes in vegetation at Lawrence Memorial Grasslands Preserve. The Nature Conservancy, February 2009. http://dx.doi.org/10.3411/col.07282305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conard, Susan G., and Steven R. Sparks. Abies concolor growth responses to vegetation changes following shrub removal, northern Sierra Nevada, California. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 1993. http://dx.doi.org/10.2737/psw-rp-218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaw, Harley G. Wood plenty, grass good, water none: Vegetation changes in Arizona's upper Verde River watershed from 1850 to 1997. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2006. http://dx.doi.org/10.2737/rmrs-gtr-177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anfang, Robert, and Gary Wege. Summary of Vegetation Changes on Dredged Material and Environmental Management Program Sites in the St. Paul District, Corps of Engineers. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada394594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zima, Y. V., and L. N. Zima. Influence of dangerous meteorological phenomena on the emergence of erosional forms of relief taking into account changes in the biodiversity of vegetation communities in Eastern Siberia. International Journal of Applied Exercise Physiology, 2019. http://dx.doi.org/10.18411/2322-3537-2019-8-31-512-519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Douglas, Thomas, and Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41222.

Full text
Abstract:
The seasonal snowpack plays a critical role in Arctic and boreal hydrologic and ecologic processes. Though snow depth can be different from one season to another there are repeated relationships between ecotype and snowpack depth. Alterations to the seasonal snowpack, which plays a critical role in regulating wintertime soil thermal conditions, have major ramifications for near-surface permafrost. Therefore, relationships between vegetation and snowpack depth are critical for identifying how present and projected future changes in winter season processes or land cover will affect permafrost. Vegetation and snow cover areal extent can be assessed rapidly over large spatial scales with remote sensing methods, however, measuring snow depth remotely has proven difficult. This makes snow depth–vegetation relationships a potential means of assessing snowpack characteristics. In this study, we combined airborne hyperspectral and LiDAR data with machine learning methods to characterize relationships between ecotype and the end of winter snowpack depth. Our results show hyperspectral measurements account for two thirds or more of the variance in the relationship between ecotype and snow depth. An ensemble analysis of model outputs using hyperspectral and LiDAR measurements yields the strongest relationships between ecotype and snow depth. Our results can be applied across the boreal biome to model the coupling effects between vegetation and snowpack depth.
APA, Harvard, Vancouver, ISO, and other styles
8

Dennis Hansen and Kent Ostler. Vegetation Change Analyses User's Manual. Test accounts, October 2002. http://dx.doi.org/10.2172/901988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

D. J. Hansen and W. K. Ostler. Vegetation Change Analysis User's Manual. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/801915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruiz, Pablo, Craig Perry, Alejando Garcia, Magali Guichardot, Michael Foguer, Joseph Ingram, Michelle Prats, Carlos Pulido, Robert Shamblin, and Kevin Whelan. The Everglades National Park and Big Cypress National Preserve vegetation mapping project: Interim report—Northwest Coastal Everglades (Region 4), Everglades National Park (revised with costs). National Park Service, November 2020. http://dx.doi.org/10.36967/nrr-2279586.

Full text
Abstract:
The Everglades National Park and Big Cypress National Preserve vegetation mapping project is part of the Comprehensive Everglades Restoration Plan (CERP). It is a cooperative effort between the South Florida Water Management District (SFWMD), the United States Army Corps of Engineers (USACE), and the National Park Service’s (NPS) Vegetation Mapping Inventory Program (VMI). The goal of this project is to produce a spatially and thematically accurate vegetation map of Everglades National Park and Big Cypress National Preserve prior to the completion of restoration efforts associated with CERP. This spatial product will serve as a record of baseline vegetation conditions for the purpose of: (1) documenting changes to the spatial extent, pattern, and proportion of plant communities within these two federally-managed units as they respond to hydrologic modifications resulting from the implementation of the CERP; and (2) providing vegetation and land-cover information to NPS park managers and scientists for use in park management, resource management, research, and monitoring. This mapping project covers an area of approximately 7,400 square kilometers (1.84 million acres [ac]) and consists of seven mapping regions: four regions in Everglades National Park, Regions 1–4, and three in Big Cypress National Preserve, Regions 5–7. The report focuses on the mapping effort associated with the Northwest Coastal Everglades (NWCE), Region 4 , in Everglades National Park. The NWCE encompasses a total area of 1,278 square kilometers (493.7 square miles [sq mi], or 315,955 ac) and is geographically located to the south of Big Cypress National Preserve, west of Shark River Slough (Region 1), and north of the Southwest Coastal Everglades (Region 3). Photo-interpretation was performed by superimposing a 50 × 50-meter (164 × 164-feet [ft] or 0.25 hectare [0.61 ac]) grid cell vector matrix over stereoscopic, 30 centimeters (11.8 inches) spatial resolution, color-infrared aerial imagery on a digital photogrammetric workstation. Photo-interpreters identified the dominant community in each cell by applying majority-rule algorithms, recognizing community-specific spectral signatures, and referencing an extensive ground-truth database. The dominant vegetation community within each grid cell was classified using a hierarchical classification system developed specifically for this project. Additionally, photo-interpreters categorized the absolute cover of cattail (Typha sp.) and any invasive species detected as either: Sparse (10–49%), Dominant (50–89%), or Monotypic (90–100%). A total of 178 thematic classes were used to map the NWCE. The most common vegetation classes are Mixed Mangrove Forest-Mixed and Transitional Bayhead Shrubland. These two communities accounted for about 10%, each, of the mapping area. Other notable classes include Short Sawgrass Marsh-Dense (8.1% of the map area), Mixed Graminoid Freshwater Marsh (4.7% of the map area), and Black Mangrove Forest (4.5% of the map area). The NWCE vegetation map has a thematic class accuracy of 88.4% with a lower 90th Percentile Confidence Interval of 84.5%.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography