Academic literature on the topic 'Vegetable oils'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vegetable oils.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vegetable oils"
Gunstone, Frank D. "Nine vegetable oils." Lipid Technology 22, no. 3 (March 2010): 72. http://dx.doi.org/10.1002/lite.201000007.
Full textAfonso, Inês S., Glauco Nobrega, Rui Lima, José R. Gomes, and João E. Ribeiro. "Conventional and Recent Advances of Vegetable Oils as Metalworking Fluids (MWFs): A Review." Lubricants 11, no. 4 (March 30, 2023): 160. http://dx.doi.org/10.3390/lubricants11040160.
Full textYang, Ruinan, Li Xue, Liangxiao Zhang, Xuefang Wang, Xin Qi, Jun Jiang, Li Yu, et al. "Phytosterol Contents of Edible Oils and Their Contributions to Estimated Phytosterol Intake in the Chinese Diet." Foods 8, no. 8 (August 9, 2019): 334. http://dx.doi.org/10.3390/foods8080334.
Full textZandomeneghi, Maurizio, Laura Carbonaro, and Chiara Caffarata. "Fluorescence of Vegetable Oils: Olive Oils." Journal of Agricultural and Food Chemistry 53, no. 3 (February 2005): 759–66. http://dx.doi.org/10.1021/jf048742p.
Full textCan, Nuray, and Serap Duraklı Velioğlu. "Mycotoxins in vegetable oils." Food and Health 9, no. 3 (2023): 262–81. http://dx.doi.org/10.3153/fh23024.
Full textKhotijah, L., Nurmiasih Nurmiasih, and D. Diapari. "Konsumsi Zat Makanan, Profil dan Metabolit Darah Induk Domba dengan Ransum Kaya Lemak Asal Minyak Nabati." Jurnal Ilmu Nutrisi dan Teknologi Pakan 18, no. 2 (August 31, 2020): 38–42. http://dx.doi.org/10.29244/jintp.18.2.38-42.
Full textIonescu, Mihail, and Zoran Petrovic. "Phenolation of vegetable oils." Journal of the Serbian Chemical Society 76, no. 4 (2011): 591–606. http://dx.doi.org/10.2298/jsc100820050i.
Full textMazza, G. (Joe). "Workshop on vegetable oils." LWT - Food Science and Technology 28, no. 3 (January 1995): 14. http://dx.doi.org/10.1016/s0023-6438(95)95962-9.
Full textIssariyakul, Titipong, and Ajay K. Dalai. "Biodiesel from vegetable oils." Renewable and Sustainable Energy Reviews 31 (March 2014): 446–71. http://dx.doi.org/10.1016/j.rser.2013.11.001.
Full textLeonard, E. Charles. "High-erucic vegetable oils." Industrial Crops and Products 1, no. 2-4 (December 1992): 119–23. http://dx.doi.org/10.1016/0926-6690(92)90009-k.
Full textDissertations / Theses on the topic "Vegetable oils"
Ramos, Boris. "Production of biodiesel from vegetable oils." Thesis, KTH, Skolan för kemivetenskap (CHE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145863.
Full textSacchetti, Annalisa <1994>. "Catalytic hydrogenation of vegetable oils derivatives." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10070/1/Sacchetti%20Annalisa_final%20upload%20.pdf.
Full textRoy, Dibakar. "Modification of vegetable oils as a potential base oil and a multifunctional lube oil additive." Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4365.
Full textGood, Joanne Elizabeth. "Replacement of dietary fish oil with vegetable oils : effects on fish health." Thesis, University of Stirling, 2004. http://hdl.handle.net/1893/2005.
Full textLligadas, Puig Gerard. "Biobased thermosets from vegetable oils. Synthesis, characterization and properties." Doctoral thesis, Universitat Rovira i Virgili, 2006. http://hdl.handle.net/10803/9007.
Full textGerard Lligadas Puig
El desenvolupament sostenible va esdevenir com una de les idees claus del segle 20. S'entén per desenvolupament sostenible aquell tipus de desenvolupament que és capaç de satisfer les necessitats actuals sense comprometre els recursos i possibilitats de les futures generacions. Per assolir un desenvolupament sostenible és necessari promoure un desenvolupament social i econòmic pendent en tot moment del medi ambient.
La conservació i la gestió dels residus és especialment important en aquest procés. La creixent demanda de productes derivats del petroli, juntament amb la disminució progressiva de les reserves de petroli són algunes de les moltes raons que han encoratjat la industria química a començar a utilitzar les fonts renovables com a matèria prima.
En aquest context, en els darrers anys l'atenció s'ha centrat en la utilització de recursos anualment renovables, com són els recursos agrícoles, en la producció d'una gran varietat de productes industrials. Un dels recursos renovables més interessants per a la indústria química són els olis vegetals degut a la seva elevada disponibilitat i el seu ampli ventall d'aplicacions. Els olis vegetals formen part de la família de compostos químics coneguts com lípids, i estan constituïts majoritàriament per molècules de triglicèrids. Els triglicèrids estan formats per tres molècules d'àcid gras unides a una molècula de glicerol mitjançant enllaços ester. Els àcids grassos que es troben en la majoria d'olis vegetals estan constituïts per cadenes alifàtiques insaturades de entre 14 i 22 àtoms de carboni.
La explotació industrial dels recursos naturals està actualment en el punt de mira de la comunitat científica. Concretament, el desenvolupament de materials polimèrics derivats de fonts renovables està rebent un interès creixent degut a la incertesa en el preu i les reserves de petroli. La substitució del petroli per productes derivats de fonts renovables és consistent amb el concepte de desenvolupament sostenible.
El propòsit del treball portat a terme en aquesta tesi doctoral va ser desenvolupar nous materials termoestables utilitzant olis vegetals com a productes de partida. En el capítol 1 es discuteix la contribució de la química en el desenvolupament sostenible i es descriuen les possibilitats dels olis vegetals com a productes de partida en la síntesi de materials polimèrics. El capítol 2 descriu la preparació de dos noves famílies de materials híbrids orgànics-inorgànics derivats d'olis vegetals. Es descriu síntesi i caracterització de polímers híbrids derivats d'àcids grassos que contenen dobles enllaços carboni-carboni terminals utilitzant la reacció d'hidrosililació com a reacció d'entrecreuament, i la preparació de polímers derivats d'oli de llinosa epoxidat nanoreforçats amb silsesquioxans polièdrics. En el capítol 3 es descriu la síntesi d'un nou compost fosforat derivat de fonts renovables. Aquest compost s'ha utilitzat com a compost retardant a la flama reactiu en la preparació de resines epoxi derivades de fonts renovables amb propietats de resistència a la flama. La incorporació de fòsfor en resines epoxi d'aquest tipus ha donat lloc a polímers amb bones propietats de resistència a la flama. Finalment, en el capítol 4 es descriu la preparació d'una nova família de polièter poliols derivats d'oleat de metil epoxidat com a font renovable. Aquests poliols s'han utilitzat en la síntesi de poliuretans amb aplicacions específiques: poliuretans que incorporen silici amb propietats de resistència a la flama, i poliuretans segmentats amb aplicacions en biomedicina.
Biobased Thermosets from Vegetable Oils. Synthesis, Characterization, and Properties
Gerard Lligadas Puig
Sustainable development, which became a key idea during the 20th century, may be regarded as the progressive and balanced achievement of sustained economic development, and improved social equity and environmental quality. Sustainable development comprises the three components of society, environment, and economy, and its goals can only be achieved if all three components can be satisfied simultaneously.
The conservation and management of resources is especially important to this process. The growing demand for petroleum-based products and the resulting negative impact on the environment, plus the scarcity of non-renewable resources, are some of the many factors that have encouraged the chemical industry to begin using renewable resources as raw materials.
This situation has led to considerable attention being focused recently on the use of annually renewable agricultural feedstock to produce a wide range of base chemicals and other industrial products. The renewable raw materials that are most important to the chemical industry are natural oils and fats because of their high availability and versatile applications. Vegetable oils constitute about 80% of the global oil and fat production, with 20% (and declining) being of animal origin. The use of these materials offers an alternative approach that is both sustainable and, with the right application, far more environmentally benign than fossil sources.
Vegetable oils and fats form part of a large family of chemical compounds known as lipids. Vegetable oils are predominantly made up of triglyceride molecules, which have the three-armed star structure. Triglycerides comprise of three fatty acids joined at a glycerol junction. Most of the common oils contain fatty acids that vary from 14 to 22 carbons in length, with 0 to 3 double bonds per fatty acid.
Research into the industrial exploitation of products derived from renewable resources is currently of immense international importance. In particular, the development of polymer materials from renewable resources is receiving considerable attention since the availability of crude oil will become severely restricted within the foreseeable future. The replacement of crude oil by renewable raw materials is also consistent with the aim of global sustainability.
The purpose of the study reported in this thesis was to develop new biobased thermosetting polymers from vegetable oils as renewable resources. To achieve this goal, the experimental work focused on exploiting the reactivity of unsaturated fatty compounds. Chapter 1 discusses the contribution of chemistry to sustainable development, and also presents an overview of recent developments in the chemistry of vegetable oil-based polymers. Chapter 2 describes the preparation of two new types of organic-inorganic hybrid materials from vegetable oils. Hybrids with promising properties for optical applications were prepared by the hydrosilylation of alkenyl-terminated fatty acid derivatives with several hydrosilylating agents, and the first example of the preparation of biobased polyhedral oligomeric silsesquioxanes-nanocomposites from vegetable oil derivatives is reported. Chapter 3 describes the synthesis of a new phosphorus-containing fatty acid derivative. This compound is used as a reactive flame-retardant in the preparation of flame-retardant epoxy resins from terminal epoxy fatty acid derivatives. The incorporation of phosphorous into biobased epoxy resins yields polymers with good flame-retardant properties. Finally, chapter 4 describes the preparation of a new family of epoxidized methyl oleate based polyether polyols. These polyols are used in the synthesis of polyurethanes, some with specific applications: silicon-containing polyurethanes with enhanced flame-retardant properties, and polyurethane networks with potential applications in biomedicine.
Fernandes, Vanda Filipa Silva. "Characterization of biodiesels produced from mixtures of vegetable oils." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/3141.
Full textNos últimos anos o biodiesel tem recebido uma atenção notável devido à sua capacidade de substituir os combustíveis fósseis. É considerado um amigo do ambiente, devido às suas imensas vantagens. Este biocombustível é obtido a partir de recursos renováveis, portanto é considerado biodegradável, CO2-neutro, nãotóxico e reduz significativamente as emissões gasosas com efeito de estufa. É composto por uma mistura de ésteres mono alquílicos obtidos a partir de óleos vegetais, tais como, o óleo de soja, óleo de jatropha, óleo de colza, óleo de palma, óleo de girassol ou a partir de outras fontes como a gordura animal (sebo, banha), restos de óleo e gorduras de cozinha. O processo mais comum para a sua produção é através de uma reacção de transesterificação, onde o óleo vegetal reage com um álcool de cadeia curta na presença de um catalisador. Devido às suas propriedades muito semelhantes ao diesel, são mutuamente miscíveis e assim podem ser misturados em qualquer proporção em ordem a melhorar as suas qualidades. O conhecimento das suas propriedades termofísicas como a densidade e viscosidade, que são afectadas pela temperatura, são muito importantes para a indústria automóvel. Contudo, o biodiesel apresenta algumas desvantagens como elevada densidade, viscosidade, ponto de turvação e escoamento/fluxação em comparação com diesel fuel. O seu comportamento a baixas temperaturas limita a sua aplicação em climas frios, sendo que este comportamento é influenciado pelas matérias-primas e álcool utilizado no processo de produção. Os biodieseis obtidos a partir de óleos com grande teor de ácidos gordos saturados induzem a um pior desempenho a baixas temperaturas, visto que são compostos sólidos a temperaturas mais baixas. Neste trabalho, misturas binárias e ternárias de biodiesel de soja, colza e palma, e diesel fuel foram preparadas e medidas as suas viscosidades dinâmicas e densidade em função da temperatura. Para prever as densidades e viscosidades a partir dos compostos puros são utilizadas regras de mistura. O comportamento a baixas temperaturas dos três biodieseis foi estudado. Onde a composição da fase líquida e sólida e a fracção de sólidos a temperaturas abaixo do ponto de turvação foram analisadas. Aplicou-se um modelo termodinâmico para descrever estes sistemas multifásicos e outros sistemas idênticos. Duas versões do modelo preditivo UNIQUAC, juntamente com uma abordagem que assume uma completa miscibilidade dos componentes na fase sólida, são avaliados em relação aos dados de equilíbrio de fases experimentais medidos. ABSTRACT: In recent years, biodiesel has received a notable attention due its ability to replace fossil fuels. It is considered an environmental friendly due their vast advantages. This biofuel is obtained from renewable resources, so it is considered biodegradable, CO2- neutral, non-toxic and significantly reduces the greenhouse gas emissions. It is composed by a mixture of mono alkyl esters obtained from vegetable oil, such as, soybean oil, jatropha oil, rapeseed oil, palm oil, sunflower oil or from other sources like animal fat (beef tallow, lard), waste cooking oil and grasses. The most common process for its production is by a transesterification reaction, where the vegetable oil reacts with a short chain alcohol in presence of a catalyst. Due to its properties very similar to diesel fuel, they are mutually miscible and so can be mixed in any proportion in order to improve its qualities. The knowledge of its thermophysical properties like density and viscosity, which are affected by temperature, is very import for automotive industries. However, biodiesel present some disadvantages like higher viscosity, density, cloud and pour point compared with diesel fuel. Its behaviour at low-temperature limiting its application in cold climate and these behaviour is influenced by raw materials and the alcohol used in production process. The biodiesel obtained from oils with a major level in saturated fatty acids esters induce a worse behaviour at low temperatures, since they are solid compounds at lower temperatures. In this work, binary and ternary blends of biodiesel of soybean, rapeseed and palm, and diesel fuel were prepared and its dynamic viscosities and densities were measured in function of temperature. Mixing rules are used for predicting the densities and viscosities from pure compounds. The low temperature behaviour of three biodiesel was studied. The liquid and solid phase compositions and solid fraction at temperatures below the cloud point were analyzed. A thermodynamic model was applied to describe these multiphase systems and other similar systems. Two versions of the predictive UNIQUAC model along with an approach that assuming complete immiscibility of the compounds in the solid phase are evaluated against the experimental phase equilibrium data measured.
Valverde, Marlen A. "Green plastics, rubbers, coatings, and biocomposites from vegetable oils." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389154.
Full textMyint, Lay L. "Process analysis and optimization of biodiesel production from vegetable oils." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1267.
Full textGamage, Padmasiri Kankanam. "Use of selected vegetable oils as plasticiser/stabiliser for PVC." Thesis, London Metropolitan University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507082.
Full textHu, Chaohe. "Versatile biobased particles of acrylate vegetable oils : Synthesis and applications." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST081.
Full textSince its beginning, in the early 1920's, polymeric industry relies heavily on fossil fuel resources. Approximately 4%-8% oil, gas and their derivatives are nowadays transformed into polymeric materials. Most of them are non-recyclable and non-degradable, hence leading to serious environmental issues, detrimental to wildlife and humans. In this context, there is a need for the development of alternative polymeric products, which, starting from renewable commodities, will share the same level of complexity than current ones derived from oil industry.Among the various bio-sourced raw products used to make polymeric materials, vegetable oils are promising for their low cost and intrinsic degradability, but also because their production is already optimized for the food industry. Acrylated epoxidized soybean oil (AESO) is one example of the vegetable oil derivatives that are used as e.g. plastifying additives for the formulation of PVC. Alone, AESO can be readily and rapidly polymerized to give a thermoset polymer. However, as a consequence of its high intrinsic viscosity, most of the research on AESO-based polymer so far is only focused on the bulk, coating or film properties of this material, leaving the possibility to fabricate high added value materials a blind spot.Herein, this work focuses on the fabrication and application of the AESO microparticles. We first present a simple approach through a vortex mixer to prepare the polydispersed AESO particles based on the emulsion photopolymerization. The synthesized AESO microparticles present a good degradability in the chemical and enzymatic conditions. Then, we develop a “one pot” microfluidic device with a flow-focusing structure for emulsification and the serpentine zone for UV-induced reticulation, which can be used to continuously product the monodispersed AESO particles with a tunable size. We also demonstrate the method base on the modified microfluidic chips to prepare the non-spherical particles, where a chip with Y-shape flow-focusing junction is used to prepare the crescent-shaped AESO particles and another chip with a double flow-focusing junction is utilized to synthesize the hole-shell structured AESO particles. In addition, AESO microcapsules are fabricated by the customized chip, and they are available to encapsulate the aqueous solutions or substances. Finally, we show the ability of AESO microparticles to carry the organic molecules into their crosslinked networks and use the similar methods to load the drugs (curcumin and ibuprofen). The release behavior of drugs in simulated body fluid can be observed, which may be act as a promising drug carrier for further pharmacy applications
Books on the topic "Vegetable oils"
S, Mkamilo G., ed. Vegetable oils. Wageningen: PROTA Foundation, 2007.
Find full textKrist, Sabine. Vegetable Fats and Oils. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30314-3.
Full textH, Benedict J., Treacy M. F. 1957-, Kinard David H. 1945-, Cotton Foundation (Memphis, Tenn.), and National Cottonseed Products Association, eds. Vegetable oils and agrichemicals. Memphis, Tenn., U.S.A: Cotton Foundation, 1994.
Find full textBarry, Rossell, ed. Vegetable oils and fats. Surrey: Leatherhead Food Research Association, 1999.
Find full textFranks, Jo. Vegetable oil greats. [S.l.]: Emereo Publishing, 2013.
Find full textGunstone, Frank D., ed. Vegetable Oils in Food Technology. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444339925.
Full textZ, Erhan Sevim, ed. Industrial uses of vegetable oils. Champaign, Ill: AOCS Press, 2005.
Find full textDineen, Jacqueline. Vegetables and oils. Brighton: Young Library, 1987.
Find full textDineen, Jacqueline. Vegetables and oils. Hillside, N.J: Enslow Publishers, 1988.
Find full textDimitrios, Boskou, and American Oil Chemists' Society, eds. Olive oil: Chemistry and technology. 2nd ed. Champaign, Ill: AOCS Press, 2006.
Find full textBook chapters on the topic "Vegetable oils"
Hertrampf, Joachim W., and Felicitas Piedad-Pascual. "Vegetable Oils." In Handbook on Ingredients for Aquaculture Feeds, 415–44. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4018-8_45.
Full textCamin, Federica, and Luana Bontempo. "Edible Vegetable Oils." In Food Forensics, 257–72. Boca Raton, FL : CRC Press, 2017. | “ A Science Publishers book ”.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151649-11.
Full textYuliani, Sri, and Bhesh Bhandari. "Vegetable Parts, Herbs, and Essential Oils." In Handbook of Vegetables and Vegetable Processing, 369–85. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9780470958346.ch18.
Full textYuliani, Sri, Bhesh Bhandari, and Fatima Sultana. "Vegetable Parts, Herbs, and Essential Oils." In Handbook of Vegetables and Vegetable Processing, 889–914. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119098935.ch38.
Full textFirestone, D., and R. J. Reina. "Authenticity of vegetable oils." In Food Authentication, 198–258. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1119-5_7.
Full textChandran, Janu, Nayana N, and P. Nisha. "Phenolics in Vegetable Oils." In Phenolic Compounds in Food, 407–14. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315120157-21.
Full textFarooq, Saba, and Zainab Ngaini. "Introduction to Vegetable Oils." In Vegetable Oil-Based Composites, 1–20. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9959-0_1.
Full textButterwick, Michael, and Edmund Neville-Rolfe. "Vegetable Oils and Oilseeds." In Agricultural Marketing and the EEC, 208–17. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003395812-12.
Full textKant, Rajni, and Keshav Kant. "Biodiesel from Vegetable Oils." In Renewable Fuels, 131–57. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003200123-4.
Full textKarim, Nur Azwani Ab, Noor Hidayu Othman, and Masni Mat Yusoff. "Vegetable Oil." In Recent Advances in Edible Fats and Oils Technology, 101–40. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5113-7_4.
Full textConference papers on the topic "Vegetable oils"
Saparin, Norliza, Syed Mohd Hadi Syed Hilmi, and Rahmat Ngteni. "Contaminants in Vegetable Oils." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.557.
Full textДельмухаметов, А. Б., and Ю. А. Ромашова. "VEGETABLE OILS IN FISH FEED." In DEVELOPMENT AND MODERN PROBLEMS OF AQUACULTURE. ООО "ДГТУ-Принт" Адресс полиграфического предприятия 344003 пл Гагарина, зд. 1, 2023. http://dx.doi.org/10.23947/aquaculture.2023.34-37.
Full textGrigoriev, A. YA, I. N. Kavaliova, J. Padgurskas, and R. Kreivaitis. "Tribotechnical Properties of Edible Vegetable Oils." In BALTTRIB 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/balttrib.2015.02.
Full textKaraosmanoglu, F., M. Tuter, A. Ozgulsun, and E. Gollu. "HEATING PROPERTIES OF USED VEGETABLE OILS." In Energy and the Environment, 1998. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-127-0.630.
Full textErhan, S. Z., A. Adhvaryu, and Z. Liu. "Chemical Modification of Vegetable Oils for Lubricant Basestocks." In ASME 2003 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ices2003-0595.
Full textPuscas, Cosmina L., Geza Bandur, Dorina Modra, and Remus Nutiu. "Considerations About Using Vegetable Oils in Lubricants." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63838.
Full textSharma, Brajendra, and Derek Vardon. "Biobased emulsions for lubrication applications." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/vyab9723.
Full textCavarzere, A., M. Morini, M. Pinelli, P. R. Spina, A. Vaccari, and M. Venturini. "Fuelling Micro Gas Turbines With Vegetable Oils: Part II — Experimental Analysis." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68239.
Full textGrushcow, J. "High Oleic Plant Oils With Hydroxy Fatty Acids for Emission Reduction." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63515.
Full textBabu, A. K., and G. Devaradjane. "Vegetable Oils as Fuel for Diesel Engines: An Overview." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39051.
Full textReports on the topic "Vegetable oils"
NELYUBINA, E., E. BOBKOVA, and I. GRIGORYANTS. STUDYING THE RANGE OF VEGETABLE OILS. Science and Innovation Center Publishing House, 2022. http://dx.doi.org/10.12731/2070-7568-2022-11-2-4-7-14.
Full textHenna, Phillip H. Novel Bioplastics and biocomposites from Vegetable Oils. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/939375.
Full textMailer, Rodney, and STEFAN GAFNER. Olive Oil Laboratory Guidance Document. ABC-AHP-NCNPR Botanical Adulterants Prevention Program, March 2021. http://dx.doi.org/10.59520/bapp.lgd/evfu8793.
Full textKalu, E. Eric, and Ken Shuang Chen. Final report on LDRD project : biodiesel production from vegetable oils using slit-channel reactors. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/928823.
Full textSmith, G. V., R. D. Gaston, Ruozhi Song, and Jianjun Cheng. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/32792.
Full textPolicy Support Activity, Myanmar Agriculture. Monitoring the agri-food system in Myanmar: Understanding the rapid price increase of vegetable oils. Washington, DC: International Food Policy Research Institute, 2022. http://dx.doi.org/10.2499/p15738coll2.135868.
Full textSmith, G. V., R. D. Gaston, R. Song, J. Cheng, Feng Shi, and K. L. Gholson. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/205592.
Full textSmith, G. V., R. D. Gaston, Ruozhi Song, Jianjun Cheng, Feng Shi, K. L. Gholson, and K. K. Ho. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/207069.
Full textSmith, G. V., R. D. Gaston, R. Song, J. Cheng, F. Shi, and Y. Wang. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/257330.
Full textSmith, G. V., R. D. Gaston, R. Song, J. Cheng, F. Shi, and Y. Wang. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/477628.
Full text