To see the other types of publications on this topic, follow the link: Vectorial optics.

Journal articles on the topic 'Vectorial optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vectorial optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Song, Qinghua, Xingsi Liu, Cheng-Wei Qiu, and Patrice Genevet. "Vectorial metasurface holography." Applied Physics Reviews 9, no. 1 (March 2022): 011311. http://dx.doi.org/10.1063/5.0078610.

Full text
Abstract:
Tailoring light properties using metasurfaces made of optically thin and subwavelength structure arrays has led to a variety of innovative optical components with intriguing functionalities. Transmitted/reflected light field distribution with exquisite nanoscale resolution achievable with metasurfaces has been utilized to encode holographic complex amplitude, leading to arbitrary holographic intensity profile in the plane of interest. Vectorial metasurface holography, which not only controls the intensity profile, but also modifies the polarization distributions of the light field, has recently attracted enormous attention due to their promising applications in photonics and optics. Here, we review the recent progresses of the vectorial metasurface holography, from the basic concept to the practical implementation. Moreover, vectorial metasurfaces can also be multiplexed with other degrees of freedom, such as wavelength and nonlinearity, enriching and broadening its applications in both civil and military field.
APA, Harvard, Vancouver, ISO, and other styles
2

Ortiz-Mora, Antonio, Pedro Rodríguez, Antonio Díaz-Soriano, David Martínez-Muñoz, and Antonio Dengra. "Method of Moments Optimization of Distributed Raman Amplification in Fibers with Randomly Variying Birefringence." Photonics 7, no. 4 (October 2, 2020): 86. http://dx.doi.org/10.3390/photonics7040086.

Full text
Abstract:
In this work, we develop a vectorial model, for optical communications, using distributed Raman amplification (DRA) applied to vectorial soliton pulses in monomode fiber optics. The main result, a dependent polarization effective Raman gain coefficient, is calculated considering the random birefringence character of the fiber and the relative mismatch between the continuous wave (CW) pump and the signal. The Method of Moments allows the determination of the optimal initial conditions to achieve a better performance in our system. With these starting values, the simulations carried out with the Split-Step Fourier Method (SSFM) elucidate the influence of the peak power and prechirping initial phase control on the vectorial soliton propagation.
APA, Harvard, Vancouver, ISO, and other styles
3

Clauberg, R., and P. von Allmen. "Vectorial beam-propagation method for integrated optics." Electronics Letters 27, no. 8 (1991): 654. http://dx.doi.org/10.1049/el:19910410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jabbour, Toufic G., and Stephen M. Kuebler. "Vectorial beam shaping." Optics Express 16, no. 10 (May 2, 2008): 7203. http://dx.doi.org/10.1364/oe.16.007203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Hai-Jun, Bing-Shi Yu, Zhi-Han Zhu, Wei Gao, Dong-Sheng Ding, Zhi-Yuan Zhou, Xiao-Peng Hu, Carmelo Rosales-Guzmán, Yijie Shen, and Bao-Sen Shi. "Conformal frequency conversion for arbitrary vectorial structured light." Optica 9, no. 2 (February 7, 2022): 187. http://dx.doi.org/10.1364/optica.444685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Yuanxing, Binguo Chen, Chao He, Honghui He, Jun Guo, Jian Wu, Daniel S. Elson, and Hui Ma. "Polarization Aberrations in High-Numerical-Aperture Lens Systems and Their Effects on Vectorial-Information Sensing." Remote Sensing 14, no. 8 (April 16, 2022): 1932. http://dx.doi.org/10.3390/rs14081932.

Full text
Abstract:
The importance of polarization aberrations has been recognized and studied in numerous optical systems and related applications. It is known that polarization aberrations are particularly crucial in certain photogrammetry and microscopy techniques that are related to vectorial information—such as polarization imaging, stimulated emission depletion microscopy, and structured illumination microscopy. Hence, a reduction in polarization aberrations would be beneficial to different types of optical imaging/sensing techniques with enhanced vectorial information. In this work, we first analyzed the intrinsic polarization aberrations induced by a high-NA lens theoretically and experimentally. The aberrations of depolarization, diattenuation, and linear retardance were studied in detail using the Mueller matrix polar-decomposition method. Based on an analysis of the results, we proposed strategies to compensate the polarization aberrations induced by high-NA lenses for hardware-based solutions. The preliminary imaging results obtained using a Mueller matrix polarimeter equipped with multiple coated aspheric lenses for polarization-aberration reduction confirmed that the conclusions and strategies proposed in this study had the potential to provide more precise polarization information of the targets for applications spanning across classical optics, remote sensing, biomedical imaging, photogrammetry, and vectorial optical-information extraction.
APA, Harvard, Vancouver, ISO, and other styles
7

Sánchez-Morcillo, V. J., I. Pérez-Arjona, F. Silva, G. J. de Valcárcel, and E. Roldán. "Vectorial Kerr-cavity solitons." Optics Letters 25, no. 13 (July 1, 2000): 957. http://dx.doi.org/10.1364/ol.25.000957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xun, Wang, Huang Kelin, Liu Zhirong, and Zhao Kangyi. "Nonparaxial Propagation of Vectorial Elliptical Gaussian Beams." International Journal of Optics 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/6427141.

Full text
Abstract:
Based on the vectorial Rayleigh-Sommerfeld diffraction integral formulae, analytical expressions for a vectorial elliptical Gaussian beam’s nonparaxial propagating in free space are derived and used to investigate target beam’s propagation properties. As a special case of nonparaxial propagation, the target beam’s paraxial propagation has also been examined. The relationship of vectorial elliptical Gaussian beam’s intensity distribution and nonparaxial effect with elliptic coefficientαand waist width related parameterfωhas been analyzed. Results show that no matter what value of elliptic coefficientαis, when parameterfωis large, nonparaxial conclusions of elliptical Gaussian beam should be adopted; while parameterfωis small, the paraxial approximation of elliptical Gaussian beam is effective. In addition, the peak intensity value of elliptical Gaussian beam decreases with increasing the propagation distance whether parameterfωis large or small, and the larger the elliptic coefficientαis, the faster the peak intensity value decreases. These characteristics of vectorial elliptical Gaussian beam might find applications in modern optics.
APA, Harvard, Vancouver, ISO, and other styles
9

Levy, Uri, Yaron Silberberg, and Nir Davidson. "Mathematics of vectorial Gaussian beams." Advances in Optics and Photonics 11, no. 4 (November 6, 2019): 828. http://dx.doi.org/10.1364/aop.11.000828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, J. M., and L. Gomelsky. "Vectorial beam propagation method." Journal of the Optical Society of America A 9, no. 9 (September 1, 1992): 1574. http://dx.doi.org/10.1364/josaa.9.001574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shi, Rui, Norik Janunts, Christian Hellmann, and Frank Wyrowski. "Vectorial physical-optics modeling of Fourier microscopy systems in nanooptics." Journal of the Optical Society of America A 37, no. 7 (June 25, 2020): 1193. http://dx.doi.org/10.1364/josaa.392598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Peng, Yi Zhang, Sheng Liu, Chaojie Ma, Lei Han, Huachao Cheng, and Jianlin Zhao. "Generation of perfect vectorial vortex beams." Optics Letters 41, no. 10 (May 5, 2016): 2205. http://dx.doi.org/10.1364/ol.41.002205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Luis, Alfredo. "Coherence for vectorial waves and majorization." Optics Letters 41, no. 22 (November 4, 2016): 5190. http://dx.doi.org/10.1364/ol.41.005190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bosyk, G. M., G. Bellomo, and A. Luis. "Resource-theoretic approach to vectorial coherence." Optics Letters 43, no. 7 (March 20, 2018): 1463. http://dx.doi.org/10.1364/ol.43.001463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, W. L., and S. F. Yu. "Vectorial polariton solitons in semiconductor microcavities." Optics Express 18, no. 20 (September 22, 2010): 21219. http://dx.doi.org/10.1364/oe.18.021219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Tao, Jiubin Tan, Jian Liu, and Hongting Wang. "Vectorial design of super-oscillatory lens." Optics Express 21, no. 13 (June 17, 2013): 15090. http://dx.doi.org/10.1364/oe.21.015090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gao, Jian, Shaokui Yan, Yi Zhou, Gaofeng Liang, Zhihai Zhang, Zhongquan Wen, and Gang Chen. "Polarization-conversion microscopy for imaging the vectorial polarization distribution in focused light." Optica 8, no. 7 (June 30, 2021): 984. http://dx.doi.org/10.1364/optica.422836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kotlyar, Victor V., Alexey A. Kovalev, and Victor A. Soifer. "Vectorial rotating vortex Hankel laser beams." Journal of Optics 18, no. 9 (August 8, 2016): 095602. http://dx.doi.org/10.1088/2040-8978/18/9/095602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mishra, Shalabh, Surya Kumar Gautam, Dinesh N. Naik, Ziyang Chen, Jixiong Pu, and Rakesh Kumar Singh. "Tailoring and analysis of vectorial coherence." Journal of Optics 20, no. 12 (November 22, 2018): 125605. http://dx.doi.org/10.1088/2040-8986/aaef2a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Duan, Kailiang, and Baida Lü. "Partially coherent vectorial nonparaxial beams." Journal of the Optical Society of America A 21, no. 10 (October 1, 2004): 1924. http://dx.doi.org/10.1364/josaa.21.001924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Andreas, Birk, Giovanni Mana, and Carlo Palmisano. "Vectorial ray-based diffraction integral." Journal of the Optical Society of America A 32, no. 8 (July 2, 2015): 1403. http://dx.doi.org/10.1364/josaa.32.001403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhong, Yi, and Herbert Gross. "Vectorial aberrations of biconic surfaces." Journal of the Optical Society of America A 35, no. 8 (July 20, 2018): 1385. http://dx.doi.org/10.1364/josaa.35.001385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Esmann, Martin, Simon Fabian Becker, Julia Witt, Jinxin Zhan, Abbas Chimeh, Anke Korte, Jinhui Zhong, Ralf Vogelgesang, Gunther Wittstock, and Christoph Lienau. "Vectorial near-field coupling." Nature Nanotechnology 14, no. 7 (May 13, 2019): 698–704. http://dx.doi.org/10.1038/s41565-019-0441-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hayata, Kazuya, and Masanori Koshiba. "Full vectorial analysis of nonlinear-optical waveguides." Journal of the Optical Society of America B 5, no. 12 (December 1, 1988): 2494. http://dx.doi.org/10.1364/josab.5.002494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Baoxian, Zhaozhong Chen, Hao Sun, Jianpei Xia, and Jianping Ding. "Vectorial optical vortex filtering for edge enhancement." Journal of Optics 18, no. 3 (February 29, 2016): 035703. http://dx.doi.org/10.1088/2040-8978/18/3/035703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fuscaldo, Walter, Alessio Benedetti, Davide Comite, Paolo Burghignoli, Paolo Baccarelli, and Alessandro Galli. "Microwave synthesis of Bessel, Bessel–Gauss, and Gaussian beams: a fully vectorial electromagnetic approach." International Journal of Microwave and Wireless Technologies 13, no. 6 (February 17, 2021): 509–16. http://dx.doi.org/10.1017/s1759078720001798.

Full text
Abstract:
AbstractBessel, Bessel-Gauss, and Gaussian beams have widely been investigated in optics in the paraxial approximation, under the frame of a scalar wave theory. Such approximations can hardly be applied in the microwave/millimeter-wave range, where the vectorial nature of the electromagnetic fields cannot be neglected, and experimental realizations for some of these beams appeared only recently. In this work, we discuss the generation of Bessel, Bessel-Gauss, and Gaussian beams through a fully vectorial electromagnetic approach. The field derivation of all these beams is first illustrated and numerical evaluations are then reported to compare their different propagation and diffractive behaviors. Finally, an innovative approach for realizing such solutions with planar microwave devices exploiting leaky waves is demonstrated through accurate numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
27

Fang, Liang, and Jian Wang. "Full-Vectorial Mode Coupling in Optical Fibers." IEEE Journal of Quantum Electronics 54, no. 2 (April 2018): 1–7. http://dx.doi.org/10.1109/jqe.2018.2810326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fibich, G., and B. Ilan. "Deterministic vectorial effects lead to multiple filamentation." Optics Letters 26, no. 11 (June 1, 2001): 840. http://dx.doi.org/10.1364/ol.26.000840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Shuhe, Jinhua Zhou, Min-Cheng Zhong, and Lei Gong. "Nonparaxial structured vectorial abruptly autofocusing beam: erratum." Optics Letters 44, no. 18 (September 13, 2019): 4617. http://dx.doi.org/10.1364/ol.44.004617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhou, Renjie, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan. "Vectorial fiber laser using intracavity axial birefringence." Optics Express 18, no. 10 (May 10, 2010): 10839. http://dx.doi.org/10.1364/oe.18.010839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Du, Xuan, Serge Vincent, and Tao Lu. "Full-vectorial whispering-gallery-mode cavity analysis." Optics Express 21, no. 19 (September 11, 2013): 22012. http://dx.doi.org/10.1364/oe.21.022012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ilan Haham, Gil, Alexander Levin, Pavel Sidorenko, Gavriel Lerner, and Oren Cohen. "V-FROG—single-scan vectorial FROG." Journal of Physics: Photonics 3, no. 3 (June 24, 2021): 034017. http://dx.doi.org/10.1088/2515-7647/ac0541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hu Juntao, 胡俊涛, 马海祥 Ma Haixiang, 李新忠 Li Xinzhong, 唐苗苗 Tang Miaomiao, 李贺贺 Li Hehe, 台玉萍 Tai Yuping, and 王静鸽 Wang Jingge. "Characteristics of Concentric Vectorial Perfect Vortex Mode." Acta Optica Sinica 39, no. 1 (2019): 0126015. http://dx.doi.org/10.3788/aos201939.0126015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kim, Jeongmin, Yuan Wang, and Xiang Zhang. "Calculation of vectorial diffraction in optical systems." Journal of the Optical Society of America A 35, no. 4 (March 12, 2018): 526. http://dx.doi.org/10.1364/josaa.35.000526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Luis, Alfredo. "Coherence and visibility for vectorial light." Journal of the Optical Society of America A 27, no. 8 (July 6, 2010): 1764. http://dx.doi.org/10.1364/josaa.27.001764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Martı́nez-Herrero, Rosario, Pedro M. Mejı́as, Salvador Bosch, and Arturo Carnicer. "Vectorial structure of nonparaxial electromagnetic beams." Journal of the Optical Society of America A 18, no. 7 (July 1, 2001): 1678. http://dx.doi.org/10.1364/josaa.18.001678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Andreas, Birk, Giovanni Mana, and Carlo Palmisano. "Vectorial ray-based diffraction integral: erratum." Journal of the Optical Society of America A 33, no. 4 (March 11, 2016): 559. http://dx.doi.org/10.1364/josaa.33.000559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gotovski, P., P. Šlevas, S. Orlov, O. Ulčinas, V. Jukna, and A. Urbas. "Investigation of the Pancharatnam–Berry phase element for the generation of the top-hat beam." Journal of Optics 24, no. 3 (February 9, 2022): 035607. http://dx.doi.org/10.1088/2040-8986/ac4317.

Full text
Abstract:
Abstract Within optics, the Pancharatnam–Berry phase enables the design and creation of various flat special optical elements such as top-hat converters. We present a study on engineering efficient vectorial top-hat converters inscribed in glass by high-power femtosecond laser pulses. We phase-encode a top-hat converter and demonstrate how its quality is influenced by various parameters. We investigate theoretically the generation of the top-hat beam under imperfect conditions such as the mismatch of the incident beam width or the misalignment of the center of the converter. Experimental verification of the concept is also presented.
APA, Harvard, Vancouver, ISO, and other styles
39

Auslender, Mark, and Shlomo Hava. "Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures." Optics Letters 21, no. 21 (November 1, 1996): 1765. http://dx.doi.org/10.1364/ol.21.001765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tudor, Tiberiu. "Vectorial Pauli algebraic approach in polarization optics. I. Device and state operators." Optik 121, no. 13 (July 2010): 1226–35. http://dx.doi.org/10.1016/j.ijleo.2009.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Li, Fei Lin, Xiaodong Qiu, and Lixiang Chen. "Full vectorial feature of second-harmonic generation with full Poincaré beams." Chinese Optics Letters 17, no. 9 (2019): 091901. http://dx.doi.org/10.3788/col201917.091901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Carpeggiani, P., M. Reduzzi, A. Comby, H. Ahmadi, S. Kühn, F. Calegari, M. Nisoli, et al. "Vectorial optical field reconstruction by attosecond spatial interferometry." Nature Photonics 11, no. 6 (May 29, 2017): 383–89. http://dx.doi.org/10.1038/nphoton.2017.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Serrels, K. A., E. Ramsay, R. J. Warburton, and D. T. Reid. "Nanoscale optical microscopy in the vectorial focusing regime." Nature Photonics 2, no. 5 (March 9, 2008): 311–14. http://dx.doi.org/10.1038/nphoton.2008.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mei, Zhangrong, and Daomu Zhao. "Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams." Optics Express 15, no. 19 (2007): 11942. http://dx.doi.org/10.1364/oe.15.011942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Grosjean, T., and D. Courjon. "Photopolymers as vectorial sensors of the electric field." Optics Express 14, no. 6 (2006): 2203. http://dx.doi.org/10.1364/oe.14.002203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Niv, Avi, Gabriel Biener, Vladimir Kleiner, and Erez Hasman. "Manipulation of the Pancharatnam phase in vectorial vortices." Optics Express 14, no. 10 (2006): 4208. http://dx.doi.org/10.1364/oe.14.004208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wu, Zhen, Xinke Wang, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, Yue Yu, and Yan Zhang. "Vectorial diffraction properties of THz vortex Bessel beams." Optics Express 26, no. 2 (January 16, 2018): 1506. http://dx.doi.org/10.1364/oe.26.001506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Niv, Avi, Gabriel Biener, Vladimir Kleiner, and Erez Hasman. "Polychromatic vectorial vortex formed by geometric phase elements." Optics Letters 32, no. 7 (March 5, 2007): 847. http://dx.doi.org/10.1364/ol.32.000847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Luis, Alfredo. "Maximum visibility in interferometers illuminated by vectorial waves." Optics Letters 32, no. 15 (July 23, 2007): 2191. http://dx.doi.org/10.1364/ol.32.002191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Deng, Dongmei, and Qi Guo. "Analytical vectorial structure of radially polarized light beams." Optics Letters 32, no. 18 (September 11, 2007): 2711. http://dx.doi.org/10.1364/ol.32.002711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography