To see the other types of publications on this topic, follow the link: Vector-borne diseases.

Dissertations / Theses on the topic 'Vector-borne diseases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Vector-borne diseases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

El, Moustaid Fadoua. "Modeling Temperature Effects on Vector-Borne Disease Dynamics." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102579.

Full text
Abstract:
Vector-borne diseases (VBDs) cause significant harm to humans, plants, and animals worldwide. For instance, VBDs are very difficult to manage, as they are governed by complex interactions. VBD transmission depends on the pathogen itself, vector-host movement, and environmental conditions. Mosquito-borne diseases are a perfect example of how all these factors contribute to changes in VBD dynamics. Although vectors are highly sensitive to climate, modeling studies tend to ignore climate effects. Here, I am interested in the arthropod small vectors that are sensitive to climate factors such as temperature, precipitation, and drought. In particular, I am looking at the effect of temperature on vector traits for two VBDs, namely, dengue, caused by a virus that infects humans and bluetongue disease, caused by a virus that infects ruminants. First, I collect data on mosquito traits' response to temperature changes, this includes adult traits as well as juvenile traits. Next, I use these traits to model mosquito density, and then I incorporate the density into our mathematical models to investigate the effect it has on the basic reproductive ratio R0, a measure of how contagious the disease is. I use R0 to determine disease risk. For dengue, my results show that using mosquito life stage traits response to temperature improves our vector density approximation and disease risk estimates. For bluetongue, I use midge traits response to temperature to show that the suitable temperature for bluetongue risk is between 21.5 �C and 30.7 �C. These results can inform future control and prevention strategies.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
2

Xue, Ling. "Modeling and analysis of vector-borne diseases on complex networks." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16788.

Full text
Abstract:
Doctor of Philosophy
Department of Electrical and Computer Engineering
Caterina Scoglio
Vector-borne diseases not only cause devastating economic losses, they also significantly impact human health in terms of morbidity and mortality. From an economical and humane point of view, mitigation and control of vector-borne diseases are essential. Studying dynamics of vector-borne disease transmission is a challenging task because vector-borne diseases show complex dynamics impacted by a wide range of ecological factors. Understanding these factors is important for the development of mitigation and control strategies. Mathematical models have been commonly used to translate assumptions concerning biological (medical, demographical, behavioral, immunological) aspects into mathematics, linking biological processes of transmission and dynamics of infection at population level. Mathematical analysis translates results back into biology. Classical deterministic epidemic models do not consider spatial variation, assuming space is homogeneous. Spatial spread of vector-borne diseases observed many times highlights the necessity of incorporating spatial dynamics into mathematical models. Heterogeneous demography, geography, and ecology in various regions may result in different epidemiological characteristics. Network approach is commonly used to study spatial evolution of communicable diseases transmitted among connected populations. In this dissertation, the spread of vector-borne diseases in time and space, is studied to understand factors that contribute to disease evolution. Network-based models have been developed to capture different features of disease transmission in various environments. Network nodes represent geographical locations, and the weights represent the level of contact between regional pairings. Two competent vector populations, Aedes mosquitoes and Culex mosquitoes, and two host populations, cattle and humans were considered. The deterministic model was applied to the 2010 Rift Valley fever outbreak in three provinces of South Africa. Trends and timing of the outbreak in animals and humans were reproduced. The deterministic model with stochastic parameters was applied to hypothetical Rift Valley fever outbreak on a large network in Texas, the United States. The role of starting location and size of initial infection in Rift Valley fever virus spread were studied under various scenarios on a large-scale network. The reproduction number, defined as the number of secondary infections produced by one infected individual in a completely susceptible population, is typically considered an epidemic threshold of determining whether a disease can persist in a population. Extinction thresholds for corresponding Continuous-time Markov chain model is used to predict whether a disease can perish in a stochastic setting. The network level reproduction number for diseases vertically and horizontally transmitted among multiple species on heterogeneous networks was derived to predict whether a disease can invade the whole system in a deterministic setting. The complexity of computing the reproduction number is reduced because the expression of the reproduction number is the spectral radius of a matrix whose size is smaller than the original next generation matrix. The expression of the reproduction number may have a wide range of applications to many vector-borne diseases. Reproduction numbers can vary from below one to above one or from above one to below one by changing movement rates in different scenarios. The observations provide guidelines on executing movement bans in case of an epidemic. To compute the extinction threshold, corresponding Markov chain process is approximated near disease free equilibrium. The extinction threshold for Continuous-time Markov chain model was analytically connected to the reproduction number under some assumptions. Numerical simulation results agree with analytical results without assumptions, proposing a mathematical problem of proving the existence of the relationships in general. The distance of the extinction threshold were shown to be closer to one than the reproduction number. Consistent trends of probability of extinction varying with disease parameters observed through numerical simulations provide novel insights into disease mitigation, control, and elimination.
APA, Harvard, Vancouver, ISO, and other styles
3

McOdimba, Francis Awuor. "Epidemiology of vector-borne diseases in cattle from SE Uganda." Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/30498.

Full text
Abstract:
Institutions involved in vector-borne diseases research, epidemiological studies as well as vaccine development require reliable and sensitive assays to support the development of vaccine products and new drugs for treatment. These diagnostic assays also aid in identifying disease control target populations, and to monitor infection during trials for assessing the efficacy of preventive or curative drug. Molecular techniques such as the polymerase chain reaction (PCR) amplification have been used in detecting parasites of several species, sub-species and types and are favoured over microscopic examination of blood or the immunological methods because of their superior sensitivity and higher throughput. Two of the most commonly used diagnostic methods, microscopy and molecular techniques for pathogen detection and species characterization, were evaluated for their sensitivity and specificity and subsequently used in screening cattle for parasites in the blood of cattle kept under traditional mixed farming management system. Molecular methods revealed higher VBD prevalence in the cattle from the villages of Tororo and Busia districts of SE Uganda. The prevalence of trypanosome species pathogenic to livestock was found to be higher than previously documented in this area. Based on the data obtained by PCR amplification the effect of prophylactic drug intervention against trypanosomiasis was assessed over a period of six months. While isometamidium chloride treatment of cattle appeared to control trypanosomiasis in areas with low prevalence, the drug had no effect in controlling the disease in high prevalence areas. It would therefore be necessary to combine the use of drug intervention with other methods such as vector control, to reduce the prevalence, in order to realize effective control of trypanosomiasis.
APA, Harvard, Vancouver, ISO, and other styles
4

Shearer, Freya. "Improving geospatial models of risk for vector-borne, zoonotic diseases." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:cfe8ffa9-453b-4e10-9009-e387a39db6de.

Full text
Abstract:
Public health surveillance data are often incomplete, particularly where resources are lacking, but geospatial models can help to fill the gaps by providing estimates where data are sparse. By combining information on locations where diseases have been recorded with geographic data on environmental and socioeconomic covariates known to affect disease transmission using machine-learning models (such as boosted regression trees), niche modelling can generate fine-resolution, evidence-based risk maps for a variety of diseases of public health importance. This thesis investigates the geographical distribution of two vector-borne, zoonotic diseases of public health importance: Plasmodium knowlesi malaria and yellow fever (YF). A number of new methodological approaches to niche modelling are developed for: mapping diseases whose distributions are impacted by multiple host and vector species, ameliorating spatial bias in disease reporting rates, and accounting for human vaccination coverage. Chapter 2 investigates spatial variation in risk of human P. knowlesi infection across Southeast Asia. The infection risk model for P. knowlesi malaria is based on improvements to a standard niche modelling approach, and incorporates a novel joint distribution model to leverage data from a number of host species. Chapter 3 estimates YF vaccination coverage through time across all age cohorts in every district/municipality of countries at risk of YF, globally. These estimates are used to estimate the additional vaccination coverage needed to prevent further YF outbreaks, and they provide information needed to account for population immunity when estimating YF infection risk. Chapter 4 describes the development of a novel Poisson point process niche model, which is then used to predict YF infection risk in humans and demonstrates how vaccination coverage can be efficiently accounted for in disease niche models. The disease risk maps of P. knowlesi malaria and YF produced through this thesis will act as resources to improve the targeting, implementation and evaluation of disease prevention, surveillance and control strategies. Methods developed to account for vaccination coverage, reporting rate biases, and complex transmission systems will be applicable to risk mapping for a range of vector-borne, zoonotic diseases of public health importance.
APA, Harvard, Vancouver, ISO, and other styles
5

PEPA, A. DELLA. "VECTOR-BORNE DISEASES IN COLONY STRAY CATS OF MILAN CITY." Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/219128.

Full text
Abstract:
LEISHMANIA INFANTUM INFECTION IN STRAY CATS IN A NON-ENDEMIC AREA IN NORTHERN ITALY E. Spada, DVM, PhD, Researcher 1, A. Della Pepa, DVM 1, A. Migliazzo, DVM, PhD 2, G. Bagnagatti De Giorgi, DVM 1, R. Perego, DVM, PhD 1, D. Proverbio, DVM, PhD, Professor 1 1Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Universita degli Studi di Milano, Milan, Italy 2Centro di Referenza Nazionale per le Leishmaniosi,Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy Tipologia: Ricerca Originale Area di interesse: Medicina interna Purpose of the work. To assess the prevalence of leishmaniosis in a large representative sample of stray cats from this non-endemic area, and to analyze the results according to clinical, laboratory and infectious data 2. MOLECULAR STUDY ON VECTOR-BORNE INFECTIONS IN URBAN STRAY COLONY CAT IN NORTHENRN ITALY Eva Spada§, DVM, PhD, Researcher Daniela Proverbio§, DVM, PhD, Professor Alessandra Della Pepa§, DVM Paola Galluzzo*, Biologist Roberta Perego§, DVM, PhD Giada Bagnagatti De Giorgi§, DVM Abstract Feline vector-borne diseases are caused by a wide range of pathogens, which are transmitted by arthropods. Many of these infections have zoonotic implications and feral cats may potentially act as sentinels of human and pet health. The present study investigated the prevalence of vector-borne infections in feral colony cats in the city of Milan in northern Italy. Blood samples from 260 feral cats were evaluated, with conventional PCR, for the presence of DNA associated with hemoplasmas (Mycoplasma haemofelis and Mycoplasma haemominutum), Rickettsia spp., Anaplasma phagocytophilum, Ehrlichia spp. and Babesia microti. Odd ratios (OR) were calculated to identify risk factors for infection with vector-borne pathogens. Positive PCR was found in 156 out of 260 subjects (60%), with a prevalence of 33.1% for hemoplasmas, 31.9% for Rickettsia spp., 17.7% for A. phagocytophilum , 6.7% for Ehrlichia spp. (out of 30 samples), and 1.2% for B. microti spp (out of 168 samples). Statistical analysis revealed a correlation between infections with Rickettsia spp. and hemoplasmas (OR=1.95, P=0.02). Additionally, Rickettsia spp. infection was associated with ocular infection (OR=2.21, P=0.02). We conclude that vector-borne infections, including zoonotic diseases, are present in feral cats of Milan. Thus, domestic cats exposed to the outdoors should be routinely monitored and treated for ectoparasites to minimize disease onset and potential transmission of zoonotic agents to humans. Moreover, as these vector-borne infections are transmitted through blood, feline blood donors from this area should be screened by PCR.
APA, Harvard, Vancouver, ISO, and other styles
6

Twiddy, Sally Susanna. "The molecular epidemiology and evolution of dengue virus." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shukullari, Enstela [Verfasser]. "Parasites and Vector-borne Diseases in Client-owned Dogs in Albania / Enstela Shukullari." München : Verlag Dr. Hut, 2016. http://d-nb.info/1135988994/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morin, Cory William. "Climate and Environmental Influences on the Ecology of Vectors and Vector-borne Diseases." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/241951.

Full text
Abstract:
Recently researchers have recognized the potential effects of climate variability and climate change on infectious disease ecology. Mosquito-borne diseases are of considerable concern due to their reliance on temperature to regulate vector reproduction, survival, and vector and agent development. Precipitation is also influential because it helps maintain habitat for immature mosquitoes. The interactions between climate, vector, and agent are complex, however, and thus assessing the overall impact of climate on disease occurrence is difficult. Discerning the influence of climate on mosquito-borne diseases requires an interdisciplinary synthesis of knowledge about the relationships between components of the disease system and analysis techniques that account for the individual and interacting roles that each element contributes to the ecology of the disease. In this dissertation, climate and climate change influences on dengue fever and West Nile virus are identified through process based modeling to simulate changes in vector and viral transmission dynamics. Analysis of the literature pertaining to climate influences on dengue virus ecology reveals that climate variables often interact interdependently to influence dengue virus transmission. Statistical techniques correlating or modeling climate-dengue relationships are often inconsistent and location specific. Process based modeling has been employed to better simulate the intricacies and non-linear dynamics involved, but most models focus only on vector populations. Therefore, models should incorporate viral development and transmission components to better simulate dengue virus ecology. A model of West Nile virus vector dynamics across the southern United States reveals that impacts from climate change are very location and context-specific. While temperatures generally increase the season length of vector activity, changes in precipitation and evapotranspiration dynamics often lead to lower summer mosquito populations and limited population development in water-stressed areas. A simulation of dengue fever cases in San Juan County, Puerto Rico with a coupled vector-epidemiological model showed strong agreement when compared with reported case data (Willmott's d = 0.90 and r2 = 0.71). The model indicates that certain climate variables became disease limiting during specific times of the year. Temperature limits virus transmission during the winter by slowing viral development while lower precipitation limits spring transmission by suppressing vector populations.
APA, Harvard, Vancouver, ISO, and other styles
9

Federico, Stefano. "Towards innovative tools against vector-borne diseases: focusing on Plasmodium and Leishmania spp." Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1194525.

Full text
Abstract:
Up to date, the World Health Organization (WHO) recognizes twenty conditions belonging to neglected tropical diseases (NTDs) caused by parasites, viruses, bacteria, and snake envenoming that affect some of the World’s poorest areas, predominantly in Africa, Asia, and the Americas. NTDs, that affect more than a billion people worldwide, are referred to as “neglected” as they receive inadequate attention, e.g., in terms of research funding, when compared to other diseases. Of the twenty NTDs recognized by the WHO, twelve are caused by parasites. Based on data provided by the 2019 Global Burden of Disease Study (GBD), over 20 million disability adjusted life years (DALYs) are caused by NTDs and approximately 750,000 people died because of NTDs and malaria. Taken together, these data lead malaria and NTDs to be the 15th leading cause of death worldwide. Regarding malaria, based on our previous study on bridged bicyclic 2,3-dioxabicyclo[3,3,1]dioxanes as antimalarial agents, in this work we aimed at improving the potency and the pharmacokinetic profiles of the latter by developing two new classes of bridged bicyclic endoperoxides. The introduction of protonable chains at R1 led to a marked increase in potency with respect to previous derivatives; additionally, the introduction of until-now unexplored triazine-based R1 substituents paved the way for the rational design of novel optimized antimalarial agents. Both classes of endoperoxides showed good inhibitory potency toward P. falciparum, and these results were also rationalized by in silico analysis of the interaction between the peroxide bridge and Fe(II)-heme. Furthermore, taking inspiration from the anticancer properties of ART-derived dimers, three new sets of endoperoxide-based dimers were designed and synthesized. The study design aimed at unveiling the main feature required for the explication of the antitumor activity. Preliminary biological investigation performed in human leukemia HL-60 cell line highlighted compounds 66d and 66g as the most promising derivatives of the series. In conclusion, 24 new chemical entities were synthesized and subjected to biological investigation. As per NTDs, we have identified 25 new chemical entities active against Leishmania (and possibly other trypanosomatids) trypanothione reductase, derived from the hit compound 138a. The potent and selective TR inhibitor 138a, identified by screening of GSK LeishBox, acts by selectively bind the TS2 binding pocket of TR (with respect to hGR). Further structural information were obtained by crystallography studies, which led to the resolution of the co-crystal structure of 138a in complex with TbTR, thus confirming the mechanism of inhibition. The intensive SAR analysis led to the identification of the most important features of the parent compound. The most promising derivatives, in terms of IC50 values against LiTR, were also evaluated in phenotypic assays against axenic amastigote and microphage-infecting promastigote life cycle stages of L. infantum. Moreover, the toxicity profile for some of the best compound was assessed in 3T3 and HepG2 cell lines to get preliminary information about the selectivity of the latter versus human hosts. Further biological studies are ongoing to validate the therapeutic potential of this new class of TR inhibitors in an in vivo murine model of Leishmania infection.
APA, Harvard, Vancouver, ISO, and other styles
10

Alonso, Wladimir Jimenez. "Vector host choice and the environmental context of mosquito-borne virus transmission." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:bc3632b8-321a-4751-8797-80b40098ec27.

Full text
Abstract:
The present thesis explored ethological and geographical approaches for the investigation of vector-borne parasites. In the first part, the role of associative learning on vector preferences for hosts was investigated through a comprehensive series of behavioural experiments using the vector of dengue and yellow fever diseases, the mosquito Aedes aegypti. To this end, the possibility that the mosquitoes were able to associate unconditional stimuli with particular odours and visual patterns to which they were responsive was explored, but no evidence supporting the hypothesis that associative learning abilities are present in adults of this species was found. A critical review of the literature on learning in mosquitoes conducted afterward allowed the reinterpretation of findings in the field, narrowing the scope of evidence suggesting the existence of these cognitive abilities in some species. In the second part of the thesis, the distribution and evolution of mosquito-borne viruses was investigated with the use of geo-coded environmental data and spatial statistics. Initially, the eco-climates associated with the distribution of Japanese encephalitis virus were described and modelled, allowing the production of a worldwide predictive map defining the probability of each region to develop this disease in the future. Predominating amongst those areas shown to be under high risk were the equatorial regions of South America and Africa. The methodology used to infer such patterns – non-linear discriminant analysis – was subsequently explored with a number of simulations. Overall, differences in the choice of parameters required for the analysis were shown to lead to differences in the final outputs produced, basically in those cases where the environmental range for which predictions are generated is not rigorously limited. Finally, eco-climate surrogates for the evolution of the Japanese encephalitis serocomplex were investigated, but the current environmental distances between the viruses did not seem to be associated with the events leading to their speciation.
APA, Harvard, Vancouver, ISO, and other styles
11

Veronesi, Eva. "Temperature and strain-related variation in the infection and dissemination of bluetongue virus in Culicoides." Thesis, Royal Veterinary College (University of London), 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rückert, Claudia. "Alphavirus and flavivirus infection of Ixodes tick cell lines : an insight into tick antiviral immunity." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/10063.

Full text
Abstract:
Arthropod-borne viruses, arboviruses, have the ability to replicate in both vertebrates and invertebrates and are transmitted to susceptible vertebrate hosts by vectors such as mosquitoes and ticks. Ticks are important vectors of many highly pathogenic arboviruses, including the flavivirus tick-borne encephalitis virus (TBEV) and the nairovirus Crimean-Congo haemorrhagic fever virus. In contrast, alphaviruses are principally mosquito-borne and have been isolated only rarely from ticks; ticks have not been implicated as their vectors. Nevertheless, the alphavirus Semliki Forest virus (SFV) replicates in cell lines derived from many different tick species, including those of the genus Ixodes, which includes vectors of TBEV and its lesspathogenic relative Langat virus (LGTV). In vertebrate cells, arboviruses generally cause cytopathic effects; however, arbovirus infection of arthropod cells usually results in a persistent low-level infection without cell death. While little is known about antiviral immunity in tick cells, the immune system of other arbovirus vectors such as mosquitoes has been studied extensively over the last decade. In insects, pathways such as RNA interference (RNAi), JAK/STAT, Toll, Imd and melanisation have been implicated in controlling arbovirus infection, with RNAi being considered the most important antiviral mechanism. In tick cells, RNAi has been shown to have an antiviral effect, but current knowledge of other immunity pathways is limited and none have been implicated in the antiviral response. In the present study, SFV and LGTV replication in selected Ixodes spp. tick cell lines was characterised and the Ixodes scapularis-derived cell line IDE8 was identified as a suitable cell line for this project. Potential antiviral innate immunity pathways were investigated; putative components of the tick JAK/STAT, Toll and Imd pathways were identified by BLAST search using available sequences from well-studied arthropods including the fruit fly Drosophila melanogaster. Using gene silencing, an attempt was made to determine whether these pathways play a role in controlling SFV and LGTV infection in tick cell lines. Selected genes were silenced in IDE8 cells using long target-specific dsRNA and cells were subsequently infected with either SFV or LGTV. Effects of gene silencing on virus replication were assessed by quantitative real time PCR (qPCR) or luciferase reporter assay. Effects on infectious virus production were measured by plaque assay. Replication of the orbivirus St Croix River virus (SCRV), which chronically infects IDE8 cells, was also quantified by qPCR after silencing of selected genes. Interestingly, SFV or LGTV infection of IDE8 cells resulted in a significant increase in SCRV replication, possibly as a result of interference with antiviral pathways by SFV and LGTV or possibly due to diversion of cellular responses from sole control of SCRV. No evidence for an antiviral role for the JAK/STAT or Toll pathways was found in IDE8 cells. However, an antiviral effect was observed for protein orthologues putatively involved in the RNAi response. Argonaute proteins play an important role in translation inhibition and target degradation mediated by RNAi, and silencing of selected Argonaute proteins resulted in a significant increase in SFV and SCRV replication. The carboxypeptidase CG4572 is essential for an efficient antiviral response in D. melanogaster, and supposedly involved in the systemic RNAi response. A putative tick orthologue of CG4572 was identified and this appeared to be involved in the antiviral response in IDE8 tick cells. When expression of CG4572 was silenced and cells subsequently infected with SFV or LGTV, replication of both viruses was significantly increased. In addition, it was shown that three mosquito orthologues of CG4572 also had an antiviral role against SFV in Aedes mosquito cells. In conclusion, of the tick cell lines investigated, IDE8 provided a suitable model system for investigating tick cell responses against arboviruses and new insight into the nature of the tick cell antiviral response was gained.
APA, Harvard, Vancouver, ISO, and other styles
13

Keller, Judith Ina. "Protein Mass Spectrometry Aids In Chagas Vector Blood Meal Identification And Offers An Innovative Approach To Battling Vector-Borne Diseases." ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/994.

Full text
Abstract:
Vector borne-diseases make up a significant portion of morbidity and mortality worldwide, being responsible for around 700,000 deaths annually according to the World Health Organization. Neglected, tropical diseases such as Chagas disease have a significant impact on people in Latin America, affecting millions, and especially those residing in rural areas. Chagas disease is the number one cause for heart disease in Latin America, and is caused by the Trypanosoma cruzi parasite, carried by Triatominae insect vectors. The intricate life cycle of the parasite, ecology and behavior of the vector, and lack of disease treatment options, make Chagas disease challenging to control. Prevention measures are highly sought after, and implementation science approaches such as Ecohealth management engage affected communities in disease prevention. Knowing what insect vectors are feeding on sheds light on vector ecology and behavior, aiding in vector management which is pivotal in disease prevention. While DNA-based methods have traditionally been used to study vector blood meals, they come with limitations and challenges, such as the need for fresh, high abundance blood meals. Therefore, the goal of this research was to evaluate Chagas vector blood meal sources using an innovative protein mass spectrometry-based approach. We demonstrate first the ability to utilize liquid chromatography tandem mass spectrometry (LC-MS/MS) to correctly identify hemoglobin protein peptides from mouse blood and subsequently identify Chagas vector blood meal sources from field-collected insect vectors where blood meal identification is compared with traditional DNA-based methods as a control. An experimental feeding study allowed us to then demonstrate the longevity of hemoglobin protein peptides for blood meal detection, showing LC-MS/MS-based blood meal identification outperforms DNA-based polymerase chain reaction (PCR) at least 4 weeks post-feeding and 12 weeks post-molting. This allowed us to test the limits of our innovative detection method experimentally and comparatively. Finally, we evaluated blood meals in field-caught insect vectors collected as part of a large collaborative Ecohealth project in Central America. LC-MS/MS identified two times as many blood meals in insect vectors, including those that did not have blood meals detected with DNA-based PCR. As single vectors often feed on multiple sources, we also validated our ability to decipher multiple blood meals from an individual vector and showed the ability to quantify a blood meal using synthetic AQUA (Absolute QUAntification) peptides, a first step in using quantification data for identifying blood meals not currently in our underlying database. Furthermore, we show that lower resolution mass spectrometers are able to identify blood meals from taxa correctly, an important and strong attribute of our LC-MS/MS-based method, opening the door to using proteomics in countries where Chagas disease is endemic and resources are limited. Even though expertise and resources of research labs differ in locations across the globe, herein is described how LC-MS/MS is a valuable additional tool for fighting neglected tropical diseases. Ultimately, hemoglobin-based LC-MS/MS vector blood meal identification is a complementary technique to available molecular methods and can confidently identify Chagas vector blood meal sources to aid in understanding vector biology and ecology, and aid in developing appropriate Ecohealth vector control measures.
APA, Harvard, Vancouver, ISO, and other styles
14

Ouma, David Omondi. "Bionomics of vector-borne diseases in sites adjacent to lakes Victoria and Baringo in Kenya." Thesis, University of the Western Cape, 2016. http://hdl.handle.net/11394/5338.

Full text
Abstract:
Philosophiae Doctor - PhD
Bionomics of vector-borne pathogens (VBPs) is a complex phenomenon that involves understanding the ecology of arthropod borne pathogens and vertebrate hosts potentially involved in their transmission cycles. Investigations into the bionomics of viral and bacterial VBPs circulating in Baringo and Homa Bay Counties of Kenya were carried out. Specifically, vertebrate hosts represented in mosquito bloodmeals, presence of arboviruses in blood fed mosquitoes and patients presenting with acute undiagnosed febrile illnesses in rural health facilities, and tick borne pathogens (TBPs) diversity in ticks of animals were identified. Mosquitoes were trapped by BG sentinel and CDC light traps, while ticks were sampled directly from domestic animals and tortoises close to human habitation along the shores and adjacent islands of Lakes Victoria and Baringo in Kenya. Blood and sera were also sampled from patients presenting with acute febrile illnesses visiting four rural health facilities in Homa Bay County. Mosquitoes and ticks were sorted and identified to species using standard morphological taxonomic keys. All the biological samples (blood-fed mosquitoes, ticks and blood/sera) were processed using molecular and culture procedures for detection of VBPs (arboviruses, Ehrlichia, Anaplasma, Rickettsia and protozoa). Among 445 blood-fed Aedeomyia, Aedes, Anopheles, Culex, Mansonia, and Mimomyia mosquitoes, 33 bloodmeal hosts were identified including humans, eight domestic animal species, six peridomestic animal species and 18 wildlife species. Further detection of Sindbis and Bunyamwera viruses was done on blood-fed mosquito homogenates by Vero cell culture and RTPCR in Culex, Aedeomyia, Anopheles and Mansonia mosquitoes from Baringo that had fed on humans and livestock. In TBPs assay, 585 tick pools were analysed consisting of 4,126 ticks collected in both study areas. More ticks were sampled in Baringo (80.5%), compared to Homa Bay (19.5%). In Baringo, agents of ehrlichiosis were detected from Amblyomma and Rhipicephalus ticks including Ehrlichia ruminantium (12.3%), Ehrichia canis (10.5%) and Paracoccus sp. (4.4%). Agents of anaplasmosis included Anaplasma ovis (7.2%), Anaplasma platys (4.4%) and Anaplasma bovis (4.0%), all from Hyalomma, Amblyomma and Rhipicephalus ticks, as well as agents of rickettsiosis, including Rickettsia africae, Rickettsia aeschlimannii, Rickettsia rhipicephali, Rickettsia montanensis and a Rickettsia sp. that was not conclusively characterized. Babesia caballi, Theileria sp. and Hepatozoon fitzsimonsi were also detected from both Rhipicephalus ticks and Amblyomma ticks. In Homa Bay, Ehrichia ruminantium (17.5%) and Ehrichia canis (9.3%) were isolated from Amblyomma latum and Rhipicephalus pulchellus, as well as Anaplasma platys (14.4%) and Anaplasma ovis (14.4%) from Amblyomma and Rhipicephalus species. In determination of the occurrence of arboviruses among patients presenting with acute febrile illnesses, acute Bunyamwera 3 (0.9%) and Sindbis 2 (0.6%) infections were detected by RT-PCR and cell culture and Sindbis seroprevalence was determined by plaque assay. Though a significant proportion of these patients tested positive for low Plasmodium parasitemia, none were co-infected with Plasmodium parasites and arboviruses. This study highlights the presence and relative importance of zoonotic VBPs in both study areas.
APA, Harvard, Vancouver, ISO, and other styles
15

Rock, Kat. "How much do we care about biting insects? : modelling the dynamics of vector-borne diseases." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/63017/.

Full text
Abstract:
Mathematical models of disease can aid understanding of, and provide a framework for, the study of disease spread and control. Vector-borne diseases are not only amongst the most significant diseases but also require tailored mathematics to model the specific biological interactions important in their spread. A key model in vector-borne epidemiology is the Ross-Macdonald ODE model. Simplification of this model using the quasi-equilibrium assumption (QEA) allowed stability and bifurcation analysis to be performed. The QEA was then used to examine the effect of avian malaria upon the Hawaiian honeycreeper, including ecological factors such as predation and climate change. In contrast, amendments to the Ross-Macdonald model can incorporate higher levels of biological detail, specifically age and bite structure in the vector population. This was facilitated via a PDE model which led to the better understanding of biological mechanisms upon disease transmission and control. Disease-free analytic solutions of the PDE were derived, however the complexity introduced by disease necessitated the use of numerical analysis in order to solve the system. This novel PDE model enabled the study of human African trypanosomiasis. Effects of starvation and teneral susceptibility of tsetse were introduced in a way which is not possible using ODE models. This provides a new framework capable of investigating the impact of these on the control of disease.
APA, Harvard, Vancouver, ISO, and other styles
16

Vu, Hai Vinh. "Salivary antigenic proteins from Ixodidae and Anopheles : a novel tool for vector-borne diseases monitoring." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM5052/document.

Full text
Abstract:
Les MVs sont un problème majeur de santé publique. L'émergence des MVs nécessite de nouveaux outils pour la surveillance de ces maladies. Ce projet s’intéresse aux deux familles de vecteurs: Ixodidae (R. sanguineus, D. reticulatus et I. ricinus) et Anophèles (An. gambiae s.l. et An. funestus). Une revue synthétise les données actuelles des MTTs et leur vectors, avant de présenter des méthodes de surveillance de ces maladies. La partie expérimentale s'est concentré sur l'élaboration de méthodes pour la sélection des utiles protéines salivaires pour l'évaluation du contact hôte-vecteur. Pour Ixodidae, la stratégie antigénique utilisée a permis d’identifier des protéines salivaires antigéniques communes et spécifiques d’espèce de ces tiques. Ces protéines pourraient servir pour l’évaluation de l’exposition de l’hôte aux Ixodidae. Pour Anophèles, la stratégie candidate utilisée a révélé une protéine salivaire antigénique d’Anopheles (f-5’nuc) pouvant être marqueur prometteur distinguant l'exposition aux Anophèles au niveau de l'espèce. Pour conforter ces résultats, l’établissement d’une relation entre la cinétique des réponses d'anticorps de l’hôte contre ces candidats salivaires, la faune Culicidienne et la variation de densité des populations de moustiques est en cours. Ce projet a souligné que tous les deux vectors peuvent induire une réponse immunitaire chez leur hôte contre des protéines salivaires antigéniques injectées. Il a permis également d’identifier des protéines salivaires permettant la discrimination de l'exposition d'hôte aux vecteurs au niveau du genre ou de l’espèce, offrant de nouvelles stratégies pour la surveillance des MVs
Vector-borne diseases (VBD) are a major health problem worldwide. The emergence of VBD requires novel monitoring tools. The present project focused on two vector families: Ixodidae (R. sanguineus, D. reticulatus and I. ricinus) and Anopheles (An. gambiae s.l. and An. funestus). A review updates the repartition of TBD, their vectors in Europe, prior to present the different tools for monitoring of TBD transmission. The experimental part focused on establishing methods for selection of useful vector salivary proteins for host-vector contact assessment. Concerning Ixodidae, the studied antigenic strategy successfully identified the shared and discriminant tick salivary antigenic proteins. These identified proteins could be an useful tool to measure host exposition to Ixodidae bites. Concerning Anopheles, the studied candidate strategy revealed an salivary antigenic protein ( f-5’nuc) that could be a promising antigenic marker to distinguish malaria vector exposure at the species level. To comfort these results, the relationship between the kinetic host antibody response against anopheline salivary candidates and the Anopheles fauna population and density variations is under progress. The present work underlined that both two studied vector families following blood meal can elicit a host antibody response against injected vector salivary antigenic proteins. This project proposed for the first time some vector salivary proteins allowing discriminating host exposure to vector bites from genus to species level, opening new strategies for VBD monitoring at the individual and population levels
APA, Harvard, Vancouver, ISO, and other styles
17

Shukullari, Enstela [Verfasser], and Kurt [Akademischer Betreuer] Pfister. "Parasites and vector-borne diseases in client-owned dogs in Albania / Enstela Shukullari. Betreuer: Kurt Pfister." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1096162628/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Boreham, Peter F. L. "Pathophysiological, chemotherapeutic and epidemiological studies of some parasitic infections, with special reference to vector-borne diseases." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/46968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Knutsson, Sofie. "Towards Mosquitocides for Prevention of Vector-Borne Infectious Diseases : discovery and Development of Acetylcholinesterase 1 Inhibitors." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-119924.

Full text
Abstract:
Diseases such as malaria and dengue impose great economic burdens and are a serious threat to public health, with young children being among the worst affected. These diseases are transmitted by mosquitoes, also called disease vectors, which are able to transmit both parasitic and viral infections. One of the most important strategies in the battle against mosquito-borne diseases is vector control by insecticides and the goal is to prevent people from being bitten by mosquitoes. Today’s vector control methods are seriously threatened by the development and spread of insecticide-resistant mosquitos warranting the search for new insecticides. This thesis has investigated the possibilities of vector control using non-covalent inhibitors targeting acetylcholinesterase (AChE); an essential enzyme present in mosquitoes as well as in humans and other mammals. A key requirement for such compounds to be considered safe and suitable for development into new public health insecticides is selectivity towards the mosquito enzyme AChE1. The work presented here is focused on AChE1 from the disease transmitting mosquitoes Anopheles gambiae (AgAChE1) and Aedes aegypti (AaAChE1), and their human (hAChE) and mouse (mAChE) counterparts. By taking a medicinal chemistry approach and utilizing high throughput screening (HTS), new chemical starting points have been identified. Analysis of the combined results of three different HTS campaigns targeting AgAChE1, AaAChE1, and hAChE allowed the identification of several mosquito-selective inhibitors and a number of compound classes were selected for further development. These compounds are non-covalent inhibitors of AChE1 and thereby work via a different mechanism compared to current anti-cholinergic insecticides, whose activity is the result of a covalent modification of the enzyme. The potency and selectivity of two compound classes have been explored in depth using a combination of different tools including design, organic synthesis, biochemical assays, protein X-ray crystallography and homology modeling. Several potent inhibitors with promising selectivity for the mosquito enzymes have been identified and the insecticidal activity of one new compound has been confirmed by in vivo experiments on mosquitoes. The results presented here contribute to the field of public health insecticide discovery by demonstrating the potential of selectively targeting mosquito AChE1 using non-covalent inhibitors. Further, the presented compounds can be used as tools to study mechanisms important in insecticide development, such as exoskeleton penetration and other ADME processes in mosquitoes.
APA, Harvard, Vancouver, ISO, and other styles
20

Gitonga, Robert Muraguri. "Epidemiological and financial impact of vector-borne diseases on productivity of smallholder cattle in the coastal lowlands of Kenya." Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Faverjon, Céline. "Risk based surveillance for vector-borne diseases in horses : combining multiple sources of evidence to improve decision making." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22604/document.

Full text
Abstract:
Les maladies émergentes à transmission vectorielle sont une préoccupation croissante et particulièrement lorsqu’elles affectent les chevaux, une population spécifiquement à risque vis-à-vis de la propagation de maladies. En effet, les chevaux voyagent fréquemment et, malgré l’impact sanitaire et économique des maladies équines, les règlementations sanitaires et les principes de biosécurité et de traçabilité censés assurer la sécurité des mouvements d'équidés ne sont pas toujours en place. Notre travail propose d'améliorer la surveillance des maladies à transmission vectorielle chez les chevaux en utilisant différentes méthodes pour estimer la probabilité d'émergence d'une maladie. Tout d'abord, nous avons développé un modèle quantitatif et spatio-temporel combinant différentes probabilités pour estimer les risques d'introduction de la peste équine et de l’encéphalose équine. Ces combinaisons permettent d’obtenir une image plus détaillée du risque posé par ces agents pathogènes. Nous avons ensuite évalué des systèmes de surveillance syndromique par deux approches méthodologiques: l'approche classique avec un seuil d'alarme basé sur un multiple de l'erreur standard de prédiction, et l'approche bayésienne basée sur le rapport de vraisemblance. Nous avons travaillé ici principalement sur la détection précoce du virus West Nile en utilisant les symptômes nerveux des chevaux. Les deux approches ont fourni des résultats prometteurs, mais l’approche bayésienne était particulièrement intéressante pour obtenir un résultat quantitatif et pour combiner différentes informations épidémiologiques. Pour finir, l'approche bayésienne a été utilisée pour combiner quantitativement différentes sources d'estimation du risque : surveillance syndromique multivariée, et combinaison de la surveillance syndromique avec les résultats d’analyses de risques. Ces combinaisons ont données des résultats prometteurs. Ce travail, basé sur des estimations de risque, contribue à améliorer la surveillance des maladies à transmission vectorielle chez les chevaux et facilite la prise de décision. Les principales perspectives de ce travail sont d'améliorer la collecte et le partage de données, de mettre en oeuvre une évaluation complète des performances des systèmes de surveillance multivariés, et de favoriser l'adoption de ce genre d’approche par les décideurs en utilisant une interface conviviale et en mettant en place un transfert de connaissance
Emerging vector-borne diseases are a growing concern, especially for horse populations, which are at particular risk for disease spread. In general, horses travel widely and frequently and, despite the health and economic impacts of equine diseases, effective health regulations and biosecurity systems to ensure safe equine movements are not always in place. The present work proposes to improve the surveillance of vector-borne diseases in horses through the use of different approaches that assess the probability of occurrence of a newly introduced epidemic. First, we developed a spatiotemporal quantitative model which combined various probabilities in order to estimate the risk of introduction of African horse sickness and equine encephalosis. Such combinations of risk provided more a detailed picture of the true risk posed by these pathogens. Second, we assessed syndromic surveillance systems using two approaches: a classical approach with the alarm threshold based on the standard error of prediction, and a Bayesian approach based on a likelihood ratio. We focused particularly on the early detection of West Nile virus using reports of nervous symptoms in horses. Both approaches provided interesting results but Bayes’ rule was especially useful as it provided a quantitative output and was able to combine different epidemiological information. Finally, a Bayesian approach was also used to quantitatively combine various sources of risk estimation in a multivariate syndromic surveillance system, as well as a combination of quantitative risk assessment with syndromic surveillance (applied to West Nile virus and equine encephalosis, respectively). Combining evidence provided promising results. This work, based on risk estimations, strengthens the surveillance of VBDs in horses and can support public health decision making. It also, however, highlights the need to improve data collection and data sharing, to implement full performance assessments of complex surveillance systems, and to use effective communication and training to promote the adoption of these approaches
APA, Harvard, Vancouver, ISO, and other styles
22

Hahn, Nina. "Investigations into the vector competency of arthropods for two Ehrlichias: Ehrlichia risticii and Cowdria rumantium." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39407.

Full text
Abstract:
Three studies relating to the vector competency of several species of ticks and Simulium spp. (blackflies) for Ehrlichia risticii, causative agent of Potomac horse fever (PHF) and Amblyomma variegatum for Cowdria ruminantium, causative agent of heartwater, are described. Dermacentor variabilis, Rhipicephalus sanguineus, Amblyomma americanum and Ixodes scapularis ticks were investigated for their ability to acquire and transmit PHF. Larval and nymphal ticks were exposed to E. risticii by feeding on mice inoculated with the organism. Molted exposed ticks were then allowed to feed on susceptible ponies or mice and were examined by light and electron microscopy. No evidence of transmission, either clinically or by seroconversion in mice or ponies was observed. Blackflies (Simulium spp.) were trapped in an area endemic for PHF and inoculated into mice in an attempt to demonstrate I. risticii. No evidence of seroconversion by mice to E. risticii was observed. Two laboratory colonies of Amblyomma variegatum ticks were investigated for their ability to acquire and transmit C. ruminantium and was febrile. Nymphs from both laboratory groups were simultaneously fed on a goat that had been infected with C. ruminantium and was febrile. Engorged nymphs from both groups were replete from feeding on three consecutive days. Nymphs from both groups were then incubated under identical conditions until molting.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
23

Bharati, Minu. "Insecticide susceptibility status and biochemical mechanisms involved in resistance development of major Dengue vector from sub Himalayan West Bengal, India." Thesis, University of North Bengal, 2019. http://ir.nbu.ac.in/handle/123456789/4040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fischer, Dominik Verfasser], and Carl [Akademischer Betreuer] [Beierkuhnlein. "Applying regional climate change projections for spatio-temporal risk analyses of vector-borne diseases / Dominik Fischer. Betreuer: Carl Beierkuhnlein." Bayreuth : Universitätsbibliothek Bayreuth, 2012. http://d-nb.info/1020016558/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cheng, Yanchao [Verfasser], and Carl [Akademischer Betreuer] Beierkuhnlein. "Assessing spatio-temporal risks of vector-borne diseases : an interdisciplinary view integrating ecological and epidemiological models / Yanchao Cheng ; Betreuer: Carl Beierkuhnlein." Bayreuth : Universität Bayreuth, 2021. http://d-nb.info/1233353381/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ocana, Mayorga Sofia Beatriz. "Vector-Borne Diseases Transmission in Ecuador: Implication of Vertebrate Hosts as Food Source of Triatomines in Chagas Disease, and the Diversity of Anopheles Mosquites in Malaria." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1579196385136684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Orantes, Lucia Consuelo. "Assessing Community Dynamics and Colonization Patterns of Tritatoma dimidiata and Other Biotic Factors Associated with Chagas Disease Prevalence in Central America." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/769.

Full text
Abstract:
Chagas disease is caused by the parasite Trypanosoma cruzi and transmitted by multiple triatomine vectors across the Americas. In Central America, the predominant vector is Triatoma dimidiata, a highly adaptable and genetically diverse Hemiptera. In this research, we used a novel reduced-representation DNA sequencing approach to discover community dynamics among multiple biotic factors associated with Chagas disease in Central America, and assess the infestation patterns of T. dimidiata after seasonal and chemical disturbances in Jutiapa, Guatemala. For our first study, we used a hierarchical sampling design to obtain multi-species DNA data found in the abdomens of 32 T. dimidiata specimens from Central America. We aimed to understand (1) the prevalence of T. cruzi infection, (2) the population genetics of the vector and parasite, (3) the blood meal history of the vector, and (4) gut microbial diversity. Our results indicated the presence of nine infected vectors harboring two distinct DTUs: TcI and possibly TcIV. We found significant clusters among T. dimidiata populations in countrywide and within-country levels associated with sylvatic ecotopes and diverse domestic genotypes. There was significantly higher bacteria species richness in infected T. dimidiata abdomens than those that were not infected, with further analysis suggesting that gut bacteria diversity relates to both T. cruzi infection and the local environment. We identified vertebrate blood meals from five T. dimidiata abdomens including chicken, dog, duck and human; however, additional detection methods are necessary to confidently identify blood meal sources. In our second study, we analyzed the GBS genotypes of 440 T. dimidiata specimens collected in two towns of Jutiapa, Guatemala. Our aim was to assess (1) the domestic population patterns that aid the recovery of T. dimidiata after an insecticide treatment in El Carrizal and (2) the seasonal changes that regulate the dispersal of the vector in the untreated communities of El Chaperno. Results showed that the insecticide application was effective at reducing the population abundance immediately after the application in El Carrizal; nevertheless, 18-month post-treatment the town-wide infestation and genetic diversity were recovering. Within-house relatedness among specimens recovered 18 months post-treatment, suggesting that the insecticide treatment failed to fully eliminate domiciliated colonies. In contrast, lack of change in abundance or genetic diversity in El Chaperno implied absence of dispersers from sources beyond the town periphery, while evidence of a decrease of relatedness among individuals implied dispersal among houses. After the insecticide treatment in El Carrizal, population reduction led to lack of genetic spatial autocorrelation; nevertheless, rapid dispersal into neighboring houses lead to autocorrelation 18 months after the insecticide treatment. This pattern was also observed in El Chaperno, where an increase in spatial autocorrelation during seasonal dispersal suggests spillover to close-by households. The creation of a novel genomics pipeline allowed us to understand community and dispersal patterns of T. dimidiata and other biotic factors important for the prevalence and transmission of Chagas disease at local and regional levels. Future studies should include complementary approaches for taxa verification (e.g. bacteria 16S barcoding, PCR-base detection), as well as expand the scope of local population analyses to peridomestic and sylvatic genotypes that could suggest a broader range of vector sources and region-wide patterns of temporal and spatial dispersion.
APA, Harvard, Vancouver, ISO, and other styles
28

Obenauer, Julie. "The Increasing Risk of Vector-Borne Diseases: Mapping the Effects of Climate Change and Human Population Density on Future Aedes aegypti Habitats." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3199.

Full text
Abstract:
The Aedes aegypti mosquito is the vector for four infectious diseases of global concern – Yellow Fever, Dengue, Chikungunya, and Zikavirus. Previous attempts to model the expansion of the vector habitat due to global climate change have rarely included characteristics related to the human populations on which this mosquito is dependent. The purpose of this research was to determine whether the inclusion of human population density improves model performance while creating risk maps that can be used to determine where humans are most likely to be exposed to the vector in the future. The resulting model demonstrated that the inclusion of human population density improves the predictive power for A. aegypti and should be considered during model development. Maps produced by the model were also suitable for identifying regions where human populations are most likely to experience increased risk. Finally, two areas at risk of expansion were highlighted as a case study in pairing risk mapping with evidence-based intervention strategies to identify sites that would benefit from mosquito-control efforts. In this case, a low-cost program of insecticide-treated covers for water storage containers would likely work well in both Minas Gerais, Brazil and Northwestern Province, Zambia to mitigate mosquito risk. This research demonstrates that human population characteristic not only improve model fit but also increase the extent to which risk maps are actionable by aiding in targeting interventions.
APA, Harvard, Vancouver, ISO, and other styles
29

Rivas, Morales Stefano <1985&gt. "Economics of vector-borne diseases prevention: The case of the Tiger Mosquito control and Chikungunya and Dengue prevention plan in the Emilia-Romagna region (Northern Italy)." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7683/1/Rivas_Morales_Stefano_Tesi.pdf.

Full text
Abstract:
Aedes albopictus is considered one of the most invasive mosquito species in the world. It has proved capacity for local transmission of Chikungunya and Dengue within Europe. This research evaluated public costs related to the implementation of the plan for Ae. albopictus control and Chikungunya and Dengue prevention set up in Emilia-Romagna region (Northern Italy), where a Chikungunya epidemic outbreak occurred in 2007, with 217 confirmed cases. The management plan started in 2008 by involving more than 280 municipalities and 4.3 million inhabitants within the region, and its activities mainly target the ecological conditions for the multiplication of infestation hotspots in urban areas, to reduce the probability of rapid and uncontrolled disease spreading in case of outbreaks. The study accessed to data on the expenditures supported by all the public institutions involved in the implementation of the management plan. During the 8 year’s life of the management plan, the public authorities of the region spent at least € 37.7 million for the Ae. albopictus control, although the yearly expenditure declined since the € 7.6 million of 2008 to the € 3.1 million of 2015. The assessment of this expenditure revealed a high level of variability of its costs in the various municipalities included in the plan, not easily explainable only by the territorial and environmental differences among the urban areas. The cost for the treatment of a single road drain varied in a range from ≈ € 0.04 to ≈ € 6.1 among the municipalities in the years of existence of the plan. The research also attempted a first evaluation of the expenditures incurred by households to protect themselves from mosquito bites. During the pilot phase of a dedicated project, 57 interviews were realized to a random sample, and the mean expenditure € 18.25 per household.
APA, Harvard, Vancouver, ISO, and other styles
30

Rivas, Morales Stefano <1985&gt. "Economics of vector-borne diseases prevention: The case of the Tiger Mosquito control and Chikungunya and Dengue prevention plan in the Emilia-Romagna region (Northern Italy)." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7683/.

Full text
Abstract:
Aedes albopictus is considered one of the most invasive mosquito species in the world. It has proved capacity for local transmission of Chikungunya and Dengue within Europe. This research evaluated public costs related to the implementation of the plan for Ae. albopictus control and Chikungunya and Dengue prevention set up in Emilia-Romagna region (Northern Italy), where a Chikungunya epidemic outbreak occurred in 2007, with 217 confirmed cases. The management plan started in 2008 by involving more than 280 municipalities and 4.3 million inhabitants within the region, and its activities mainly target the ecological conditions for the multiplication of infestation hotspots in urban areas, to reduce the probability of rapid and uncontrolled disease spreading in case of outbreaks. The study accessed to data on the expenditures supported by all the public institutions involved in the implementation of the management plan. During the 8 year’s life of the management plan, the public authorities of the region spent at least € 37.7 million for the Ae. albopictus control, although the yearly expenditure declined since the € 7.6 million of 2008 to the € 3.1 million of 2015. The assessment of this expenditure revealed a high level of variability of its costs in the various municipalities included in the plan, not easily explainable only by the territorial and environmental differences among the urban areas. The cost for the treatment of a single road drain varied in a range from ≈ € 0.04 to ≈ € 6.1 among the municipalities in the years of existence of the plan. The research also attempted a first evaluation of the expenditures incurred by households to protect themselves from mosquito bites. During the pilot phase of a dedicated project, 57 interviews were realized to a random sample, and the mean expenditure € 18.25 per household.
APA, Harvard, Vancouver, ISO, and other styles
31

Islam, Mohammad Zahirul. "Climate Change and Dengue Fever: Vulnerability and Potential Adaptation Responses in Urban Settings of Bangladesh." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367144.

Full text
Abstract:
The geographical location and geo-morphological conditions of Bangladesh have made the country highly vulnerable to climate change. Climate change impacts, including those on health, threaten to become a significant economic burden on the country, and hinder its development in the medium to long term. Floods, tropical cyclones, storm surge and droughts significantly impact on health directly and indirectly. Of these health impacts, vector-borne diseases, and in particular, dengue fever, pose a serious public health risk due to a lack of effective treatment or proven vaccine. Dengue infection can cause a spectrum of illness ranging from mild, undifferentiated fever to high fever, severe headache, retro-orbital pain, arthralgia and rash, and could lead to a deadly complication: dengue haemorrhagic fever (DHF). In Bangladesh, there are guidelines for clinical management for dengue fever; however, a gap exists in prevention strategy in the national policy related to climate change adaptation. There is an urgent need to develop a risk management plan for managing vector-borne diseases focussing on dengue fever as a priority for the public health sector. This study aims to examine the climate factors impacting on Bangladesh’s vulnerability to dengue fever, including identifying the vulnerable populations and vulnerable areas within the city. It also explores views and understanding of relevant stakeholders and communities regarding climate change and dengue fever and current dengue fever management issues, in order to develop climate change adaptation strategies for the prevention and management of dengue fever.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
32

Mugisha, Anthony. "Socio-economic and gender aspects of control of vector-borne diseases : a study of intra-household dynamics and decision-making in the pastoralist system of southwestern Uganda." Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Westwood, Mary Lynn. "Infection Prevalence in a Novel Ixodes scapularis Population in Northern Wisconsin." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503765696276339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lugo, Brunilda. "Correlation Analysis of Climatic Variables, Migration and Dengue Cases in Southeast Florida." ScholarWorks, 2015. http://scholarworks.waldenu.edu/dissertations/1698.

Full text
Abstract:
Dengue fever is a debilitating, viral, mosquito-borne disease occurring in tropical and subtropical areas in the world. The majority of dengue cases in the United States were acquired in endemic areas by travelers or immigrants. However, in recent years, autochthonous (locally acquired) dengue cases have been diagnosed in Florida. The purpose of this study was to find an association between potential risk factors and the expansion of dengue fever in the United States. Guided by the eco-bio-social framework, which offers a broad assessment of risk factors for the illness, a retrospective design was used with archival data to correlate changes in climatic variables and imported dengue cases with autochthonous dengue cases in Southeast Florida from 1980 to 2013. A Spearman correlation indicated weak correlations between temperature and autochthonous dengue cases (rs = .999, p = 000) and imported dengue cases with autochthonous dengue cases (rs = .162, p = 000). A negative binomial multivariate regression was used to analyze the expansion of dengue to each monthly unit of temperature, rainfall, and imported dengue cases over 34 years. The results indicated that temperature (IRR = 2.198; 95% CI [1.903, 2.538]) and precipitation (IRR = .991; 95% CI [.988, .994]) were predictors for the geographic expansion of dengue fever in Southeast Florida. The positive social changes include the use of the results to develop an understanding of how climatic variables and migration may influence the expansion of dengue fever to nonendemic regions. The results can be used by public health authorities to address risk factors and to formulate evidence-based decisions in regard to prevention and education concerning dengue fever.
APA, Harvard, Vancouver, ISO, and other styles
35

Garjito, Triwibowo Ambar. "Dynamique des principales maladies transmises par les moustiques en Indonésie." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT037.

Full text
Abstract:
Cette thèse porte sur l’étude de la dynamique des principales maladies transmissibles par les moustiques en Indonésie. Un grand nombre et une large diversité d’échantillons ont été analysés en mettant l’accent sur une recherche opérationnelle et appliquée. Cette étude donne un aperçu de la dynamique actuelle et du risque de transmission des principales maladies transmises par les moustiques en Indonésie, en particulier l’encéphalite japonaise, le paludisme et la dengue. La diversité des espèces d’Anopheles a été également étudiée afin d’identifier et mettre en œuvre des stratégies de lutte anti-vectorielle ciblées et plus efficaces contre le paludisme. Cette étude des Anopheles a permis de trouver une nouvelle espèce sur l’Ile de Java avec un rôle potentiel de vecteur du paludisme. L’évaluation des méthodes de collecte des moustiques et des indices Stegomyia pour la surveillance vectorielle de la dengue ont également été étudiées en soutien à la mise en œuvre d’un programme de surveillance et de lutte contre la dengue en Indonésie
This thesis summarized the study of the dynamic of the main mosquito-borne diseases in Indonesia. A large number and diversity of samples were analyzed with an emphasis on operational and implementation research. This study provide an overview of the current dynamics and risk of transmission of the main mosquito-borne diseases in Indonesia, particularly japanese encephalitis, malaria, and dengue. Study of Anopheles species diversity is also conducted for identifying and implementing targeted and more effective malaria vector-control strategies. This Anopheles study has revealed that a better knowledge on this new species is necessary to better define its geographic distribution and role as malaria vector. The assessment of mosquito collection methods and stegomyia indices for dengue vector surveillance were also studied to support the implementation of dengue surveillance and control program in Indonesia
APA, Harvard, Vancouver, ISO, and other styles
36

Harrison, Eleanor Margaret. "Epidemiology and evolution of vector borne disease." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619145.

Full text
Abstract:
In recent years the incidence of many vector borne-diseases has increased worldwide. We investigate the epidemiology and evolution of vector-borne disease, focussing on the neglected tropical disease leishmaniasis to determine suitable strategies for control and prevention. We develop a compartmental mathematical model for leishmaniasis, and examine the dependence of disease spread on model parameters. We perform an elasticity analysis to establish the relative impact of disease parameters and pathways on infection spread and prevalence. We then use optimal control theory to determine optimal vaccination and spraying strategies for leishmaniasis, and assess the dependence of control on disease relapse. We investigate the evolution of virulence in vector-borne disease using adaptive dynamics and both non-spatial and metapopulation models for disease spread. Using our metapopulation model we also determine the impact of land-use change such as urbanisation and deforestation on disease spread and prevalence. We find that in the absence of evolution, control techniques which directly reduce the rate of vector transmission lead to the greatest reduction in potential disease spread. Although the spraying of insecticide can reduce the basic reproductive number $R_{0}$, we find that vaccination is more effective. Disease relapse is the driving force behind infection at endemic equilibrium and greatly increases the level of control required to prevent a disease epidemic. When a trade-off is in place between transmission and virulence we find that control techniques which reduce the duration of transmission lead to the fixation of pathogen strains with heightened virulence. Control techniques such as spraying can therefore be counterproductive, as increasing virulence increases human infection prevalence. This holds true when virulence is in either the host or vector and suggests that virulence within the vector should not be ignored. Urbanisation and deforestation can also lead to increases in both transmission and virulence, as reducing the distance between urban settlements and the vector natural habitat alters disease incidence.
APA, Harvard, Vancouver, ISO, and other styles
37

Ladj-Minost, Audrey. "Répulsifs d’arthropodes à durée d’action prolongée : étude pharmacotechnique, devenir in situ et efficacité." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10165/document.

Full text
Abstract:
Les répulsifs sont des molécules naturelles ou synthétiques dont le but estd’empêcher l’approche des arthropodes afin de prévenir la transmission demaladies vectorisées. Un exemple type est celui de la transmission de Leishmaniainfantum responsable de la Leishmaniose canine, qui est contractée après la piqûre d’un chienpar un phlébotome. Divers répulsifs d’arthropodes sont commercialisés pour une applicationtopique, ils ont tous une durée d’action courte, imposant des applications répétées deformulations basiques de type solution.La formulation de molécules actives à propriétés répulsives incorporées dans des systèmesnanoparticulaires et présentant une action prolongée dans le temps a été retenue. Lesnanoparticules sont des vecteurs colloïdaux intéressants dans le domaine de la technologiepharmaceutique vu leur capacité à former des complexes avec des molécules hydrophobes,telles que la plupart des molécules répulsives (DEET, Picaridin®, IR3535®…). Le ciblage, laprotection contre la dégradation et le contrôle de la libération sont les avantages principauxapportés par les nanoparticules contenant une matière active.Les caractéristiques physico-chimiques des nanoparticules (taille et potentiel zêta) permettantleur stockage dans les couches supérieures de la peau et une accroche le long des fibrespileuses ont été déterminées. Ainsi des nanoparticules cationiques de 200 nm de diamètre ontété formulées. Cette formulation originale inspirée du procédé de nanoprécipitation a permisl’obtention en une seule étape de suspensions concentrées en matière active (concentrationsupérieure à 10%) et sans ajout d’agents stabilisants. Une corrélation entre les profils delibération et l’efficacité sur insecte modèle (la drosophile) a été vérifiée. De ce fait, lepourcentage en polymère régule la libération de la molécule active encapsulée. Une efficacitérépulsive de formulations nanoparticulaires supérieure à 15 jours a été validéeexpérimentalement. La transposition d’échelle du procédé de nanoprécipitation permetd’envisager un développement industriel pour la formulation d’un répulsif d’arthropodeinnovant à longue durée d’action
The repellents are natural or synthetic molecules whose aim is to prevent theapproach of arthropods to avoid transmission of vector-borne diseases. A typicalexample is the transmission of Leishmania infantum responsible for canineLeishmaniasis, which is contracted after a sandfly bite on a dog. The arthropod repellentsmarketed for topical application have all a short action duration, requiring repeatedapplications of basic formulations (solution).The formulation of active molecules having repellent properties, incorporated intonanoparticle systems and having a prolonged action in time was selected. Nanoparticles arecolloidal carriers interesting in the pharmaceutical technology field due to their ability to formcomplexes with hydrophobic molecules, such as repellent molecules (DEET, Picaridin®,IR3535®...). Targeting, protection against degradation and control of the release are the mainadvantages provided by the nanoparticles containing an active ingredient.The nanoparticle physicochemical characteristics (size and zeta potential) permitting theirstorage in the upper dog skin layers and a along the hairs were determined. For that reasoncationic nanoparticles of 200 nm in diameter were formulated. This original formulationinspired from the nanoprecipitation process has allowed us to obtain one single stepconcentrated suspensions (above 10% of active molecules in the final product) and withoutstabilizer addition. A correlation between the release profiles and the effectiveness of modelinsect (Drosophila) has been verified. Therefore the percentage of polymer regulates therelease of encapsulated active molecules. Repellent efficacy of nanoparticulate formulationgreater than 15 days has been validated experimentally. The scale transposition of thenanoprecipitation process makes conceivable an industrial development for the formulation ofan innovative arthropod repellent having a long lasting effect
APA, Harvard, Vancouver, ISO, and other styles
38

Vézilier, Julien. "Résistance aux insecticides et transmission de la malaria chez le moustique Culex pipiens." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20038.

Full text
Abstract:
L'évolution de la résistance aux insecticides chez les moustiques responsables de la transmission de maladies infectieuses compromet notre capacité à contrôler ces populations de vecteurs et pose de graves problèmes de santé publique. Mais les nombreuses modifications physiologiques associées au phénomène de résistance aux insecticides pourraient altérer l'épidémiologie de ces maladies de manière plus indirecte en modifiant la capacité vectorielle des moustiques. Afin d'étudier cette question nous avons mis en place un nouveau système expérimental composé du parasite aviaire Plasmodium relictum SGS1 et de son vecteur naturel le moustique Culex pipiens. Nous avons étudié l'effet de différents allèles de résistance aux insecticides (représentant deux mécanismes principaux i.e. la résistance métabolique ou la modification de la cible) sur une série de traits d'histoire de vie du parasite et du moustique. L'impact de ces différents allèles a été étudié d'une part, dans les conditions contrôlées de leur expression dans un même fond génétique (en utilisant plusieurs souches de moustiques isogéniques), et d'autre part, dans les conditions plus réalistes de leur expression dans un fond génétique hétérogène (utilisation de moustiques échantillonnés sur le terrain). Nous montrons que la résistance aux insecticides a des effets pleïotropes sur l'immunocompétence et les traits d'histoire de vie des moustiques. Son effet sur le développement de Plasmodium semble en revanche limité. Nous discutons d'une part, de la nécessité de poursuivre une approche multifactorielle (impliquant la physiologie, l'immunité et le comportement des moustiques) afin de mieux comprendre l'impact de la résistance aux insecticides sur la transmission de Plasmodium, et d'autre part des perspectives intéressantes qu'offrent ce nouveau système expérimental pour l'étude de l'écologie évolutive des maladies à vecteurs
The evolution of insecticide resistance in mosquitoes threatens our ability to control many-vector-transmitted diseases, thereby raising serious public health issues. Insecticide resistance entails numerous physiological changes in mosquitoes. This thesis investigates whether these physiological changes alter the quality of mosquitoes as vectors of malaria. To address this issue, we developed a new experimental system consisting in the avian malaria parasite Plasmodium relictum SGS1 and its natural vector, the mosquito Culex pipiens. We investigated the impact of two insecticide resistance mechanisms (target site resistance and metabolic resistance) on several mosquito and parasite life history traits relevant for malaria transmission. The effect of different insecticide resistant genes was investigated using both isogenic laboratory mosquito strains (i.e. against a homogeneous genetic background) and sympatric field caught mosquitoes (i.e. under the more realistic, albeit noisier, conditions of a heterogeneous genetic background). We show that insecticide resistance has a pleiotropic effect on several mosquito traits (immunocompetence, longevity, fecundity), whereas it has only a limited effect on Plasmodium development. We discuss, on the one hand, the need to pursue such a multi-factorial approach (combining the mosquito physiology, immunity and behavior) to better understand the impact of insecticide resistance on malaria transmission and, on the other hand, the promising perspectives offered by this new experimental system for studying the evolutionary-ecology of infectious diseases
APA, Harvard, Vancouver, ISO, and other styles
39

Bi, Yan. "Impact of socio-ecological variability on the transmission of malaria in Yunnan Province, China." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/64151/1/Yan_Bi_Thesis.pdf.

Full text
Abstract:
This thesis is a population-based epidemiological study to explore the spatial and temporal pattern of malaria, and to assess the relationship between socio-ecological factors and malaria in Yunnan, China. Geospatial and temporal approaches were applied; the high risk areas of the disease were identified; and socio-ecological drivers of malaria were assessed. These findings will provide important evidence for the control and prevention of malaria in China and other countries with a similar situation of endemic malaria.
APA, Harvard, Vancouver, ISO, and other styles
40

Obenauer, Julie, Megan Quinn, Ying Li, and Andrew Joyner. "Including Human Population Characteristics in Ecological Niche Models for Aedes aegypti when Modeling Projected Disease Risk due to Climate Change." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/13.

Full text
Abstract:
The Aedes aegypti mosquito is responsible for transmission of four vector-borne diseases that cause considerable global morbidity and mortality. Projections of the future effects of global climate change indicate that expansion of this species due to changing habitats is possible. Furthermore, since A. aegypti is highly dependent on human populations for feeding and egg-laying sites, changing human population characteristics are likely to alter the risk of exposure for humans based on geographic location. This study aims to create future potential risk maps for human exposure to A. aegypti using human population density as a predictor. Using current population density data and future growth trajectories, high-resolution human population density forecasts were created for 2050, then included as variables in ecological niche models developed using Maxent. Species occurrence data and high resolution climate data for current and future conditions (best and worst case scenarios) were included in the model, as well. Model fit indices and variable contributions indicated that the inclusion of human population density improves model accuracy for A. aegypti. Risk maps created by these models showed that areas currently adjacent to large cities within endemic regions, such as central Africa and western Brazil, are likely to see the greatest increase in risk to human populations. This corroborates current projections on increasing urbanization in the future and suggests that these models can be used to target interventions in high risk areas.
APA, Harvard, Vancouver, ISO, and other styles
41

Berthuel, Marie. "Microstructuration de surface et protection par encapsulation : applications aux biocapteurs." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALV002.

Full text
Abstract:
Cette thèse explore deux voies d’amélioration des performances d'un biocapteur électrochimique d'affinité pour la détection des anticorps anti-NS1 de la dengue.La première volonté est l'amélioration de la limite de détection et de la sensibilité des biocapteurs par microstructuration du transducteur. Une modélisation basée sur les éléments finis a permis de définir la gamme optimale des paramètres géométriques des microplots. Après construction, les électrodes recouvertes de microplots ont été caractérisées par voltampérométrie cyclique et par microscopie électronique à balayage. A l'issue de l'optimisation, des biocapteurs à glucose ont été construits afin de démontrer l'accroissement des performances d’un biocapteur ampérométrique. Enfin, dans le but de valider l'intérêt des microplots pour un biocapteur d'affinité, un modèle d'immunocapteur impédance métrique sans marquage permettant la quantification de l'anticorps de la sous-unité B de la toxine du choléra est étudié avant de procéder à la réalisation d'un immunocapteur d'intérêt pour l'anticorps de la dengue. Ils sont réalisés sur deux types d'électrodes : les électrodes recouvertes de microplots et des électrodes interdigitées.La seconde volonté est l'amélioration de la longévité du stockage des biocapteurs à flux latéral par microencapsulation des biomolécules marquées, nécessaires à la détection par compétition. Pour cela, des microcapsules de polymère, fabriquées à faible coût, sont développées. Le bleu de méthylène et l'enzyme glucose oxydase ont été encapsulées sous forme sèche. Leur relargage a été suivi par spectrophotométrie UV-Visible et/ou par électrochimie après cassure des microcapsules par action mécanique et/ou par ultrasons
This thesis explores two ways to enhance the performance of an electrochemical affinity biosensor for the detection of dengue anti-NS1 antibodies.The first goal was to improve the limit of detection and sensitivity of biosensors using microstructuration of the transducer. Based on finite element modelling, an optimal range of the microcone geometric parameters was defined. After construction, the microcone-covered electrodes were characterised using cyclic voltammetry and scanning electron microscopy. At the end of the optimisation process, glucose biosensors were fabricated to demonstrate the increased performance gains of an amperometric biosensing platform. Finally, in order to validate the interest of the microcones for an affinity biosensor, a label-free impedimetric immunosensor allowing the quantification of the cholera toxin B-subunit was studied as a model before performing an immunosensor of interest for dengue antibodies. The immunosensors were made on two types of electrodes: microcone-coated electrodes and interdigitated electrodes.A second goal was to improve the shelf-life of lateral-flow biosensors by microencapsulating labelled biomolecules, mandatory for competitive detection. For this purpose, low-cost polymer microcapsules have been developed. Methylene blue and an enzyme, glucose oxidase, were encapsulated in a dry state. Their release was followed by UV-visible spectroscopy and/or electrochemistry after breaking the microcapsules by mechanical action and/or with ultrasonic agitation
APA, Harvard, Vancouver, ISO, and other styles
42

Rigot, Thibaud. "The space-time distribution of Palearctic Culicoides spp. vectors of Bluetongue disease in Europe." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209835.

Full text
Abstract:
Abstract :Bluetongue (BT) is a vector-borne infectious disease primarily transmitted to even- toed ungulates by the bite of several Culicoides species. The global distribution of BT can be attributed to the ubiquity of its vectors and its rapid spread, likely to the enhancement of human activities (intensification of animal production, trans- port, changing habitat). During the last decades, BT established in Southern Europe and more recently emerged in Northern Europe, causing the death of millions of domestic ruminants. On the same time, a Belgian research project has been set up to develop remote-sensing tools to study the EPidemiology and Space-TIme dynamicS of infectious diseases (EPISTIS). In that general framework, this thesis aimed to study the space-time distribution of the main Culicoides vectors occurring in Italy and Belgium, at two different scales. Firstly, we aimed to clarify the role of several eco-climatic factors on the regional-scale distribution of C. imicola in time, based on weekly samplings achieved throughout Italy from 2001 to 2006 and to develop an easy-to-use and reproducible tool, which could be widely validated on the basis of former vector sampling and freely accessible remote-sensing data. Secondly, we aimed to investigate how Culicoides species were distributed in the fine-scale habitat encountered throughout the agro-ecological landscapes of Belgium, while recent studies have suggested that the landscapes configuration could explain the spatial distribution of BT. In the first part, we showed that an autoregressive model where the observed monthly growth rate is predicted by monthly temperature, allowed predicting >70% of the seasonal variability in C. imicola trap catches. The model predicted the seasonality, the altitudinal gradient, and the low populations’ activity taking place during the winter. Incorporating eco-climatic indices such as the Normalized Difference Vegetation Index into the model did not enhance its predictive power. In the second part, we quantified how Culicoides populations are spatially structured in the neighbourhood of farms, and demonstrated the unexpectedly high level of population found in forest. We also showed how four classes of land use could influence the relative abundances of Culicoides species in the agro-ecological landscapes of Belgium. Although in summer, BT vectors were abundant in each of the four classes investigated, their relative abundances varied strongly as a function of sex, species and environmental conditions, and we quantified these variations. Finally, we also presented a new method to quantify the interference between Onderstepoort light traps, and used it to measure their range of attraction for several of the most common BT vectors species in Northern Europe. The model developed on C. imicola in Italy provided enthusiastic perspectives regarding the regional-scale analyses of its distribution in time, although further improvements are nevertheless required in order to assess the broad scale ecology of BT vectors throughout Europe. Mapping the abundances of C. imicola in Sardinia high- lighted an important lack of reliability attributable to the many land use classes that are currently not sampled in the vector surveillance achieved across Europe. Together with the novelties presented in the second part and the recent findings establishing that BT could circulate among wild hosts in both epidemiological systems (i.e. in Southern and Northern Europe), we call for increasing epidemiological and entomo- logical studies at the interface between farms and the surrounding natural habitats. Last, depicting in time the landscape-scale findings for Northern Europe highlighted how dramatic could be the role played by intensive farming practices to maintain BT within the agro-ecological landscapes studied and to facilitate its circulation between them. Quantifying the amplitude of the risk of disease transmission linked to these practices would require a further complex modeling approach accounting simultaneously for the diel activity of hosts, mainly resulting from the farming activities, the diel activities of different vector species and the landscapes configuration found in contrasted agro-ecological systems.

Résumé :La fièvre catarrhale ovine (FCO), encore appelée maladie de la langue bleue, est une maladie infectieuse des ruminants transmise par la piqûre d’un vecteur de type moucheron appartenant au genre Culicoides (Diptera :Ceratopogonidae). L’ubiquité de ses vecteurs peut expliquer son succès d’installation à l’échelle globale. Par ailleurs, sa rapide expansion a été grandement facilitée par l’importante activité anthropique (élevage, transport, modification de l’habitat) et peut-être même par les changements climatiques globaux. La FCO a été récemment qualifiée de maladie infectieuse émergente en Europe du fait de (i) son récent établissement dans la région, bien au delà de son aire de répartition traditionnelle, (ii) de sa forte capacité de dispersion affectant chaque jour un nombre plus important d’hôtes et enfin (iii) de sa forte virulence. Après avoir détaillé les caractéristiques majeures des deux principaux foyers de FCO rencontrés en Europe depuis 1998, la présente thèse s’est plus particulièrement intéressée à l’étude de la distribution spatio-temporelle de ses principaux vecteurs dans le sud (partie 1) puis dans le nord (partie 2) de l’Europe, à différentes échelles. Dans la première partie, un modèle discret, spatialement et temporellement explicite, a été développé afin de mesurer l’influence de différents facteurs éco-climatiques sur la distribution de Culicoides imicola, principal vecteur de la FCO dans le Bassin Méditerranéen. Les profils mensuels de distribution rencontrés en Sardaigne durant 6 années consécutives ont ainsi pu être reconstitués, principalement sur base de la température. Une cartographie de l’abondance de C. imicola sur le territoire a permis de mettre à jour le manque d’information sur sa distribution en dehors des exploitations agricoles. Dans la deuxième partie du travail, nous nous sommes penchés sur la distribution spatiale des Culicoides tels qu’on peut les rencontrer au sein de différents paysages agro-écologiques de Belgique. Nous avons ainsi pu décrire la structure adoptée par les populations de Culicoides au voisinage des fermes ainsi que quantifier l’importante population présente dans les forêts avoisinantes. Nous avons par ailleurs montré l’influence de différentes catégories d’utilisation du sol sur l’abondance et la composition en espèces. Enfin, nous avons présenté une méthode permettant de quantifier l’interférence entre des pièges lumineux utilisés dans un même paysage pour échantillonner les populations, et l’avons utilisé afin de mesurer leur rayon d’attractivité sur les espèces vectrices les plus communément rencontrées dans le nord de l’Europe. En guise de conclusion générale et conjointement aux récentes découvertes de cas de FCO au sein de la faune sauvage européenne, nous appelons à réaliser un plus grand nombre d’études éco-épidémiologiques à l’interface entre exploitations agricoles et zones (semi-) naturelles avoisinantes. En outres, les résultats présentés dans la seconde partie ont été mis en relation avec le mode de fonctionnement journalier de nos exploitations agricoles. Nous avons ainsi pu déduire le rôle dramatique joué par les pratiques agricoles intensives dans le maintien du virus de la FCO au sein de nos paysages agro-écologiques, ainsi que dans sa circulation d’un paysage à l’autre. Un cadre de modélisation complexe permettant une analyse simultanée de l’activité nycthémérale des hôtes de la FCO et de ses vecteurs Culicoides en fonction de la configuration des paysages agro-écologiques est néanmoins requis afin de quantifier l’amplitude du risque de transmission de la FCO lié aux pratiques agricoles intensives.
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
43

Teurlai, Magali. "Modélisation multi-échelle de la dynamique spatiale de la Dengue : application à la Nouvelle-Calédonie et à la région Pacifique." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20167/document.

Full text
Abstract:
Depuis les années 1970, les pays du Pacifique sont de plus en plus fréquemment touchés par des maladies vectorielles telles que la Dengue, le Chikungunya ou le Zika. Le contrôle de ces maladies nécessite la connaissance de leur distribution spatio-temporelle au sein de la population ainsi que la compréhension des facteurs et mécanismes, souvent multiples, régissant cette distribution. Dans cette thèse, nous nous intéressons à la modélisation spatio-temporelle des déterminants de la dynamique spatiale de la dengue à l'échelle régionale du Pacifique, l'échelle territoriale de la Nouvelle-Calédonie, et l'échelle d'une ville, Nouméa, capitale de la Nouvelle-Calédonie.Dans le Pacifique, la dengue survient sous la forme de vagues épidémiques successives dues à l'introduction et à la diffusion régionale d'un nouveau sérotype tous les cinq à sept ans. En Nouvelle-Calédonie, la dengue présente une dynamique épidémique saisonnière, le sérotype dominant étant celui circulant dans la région. L'émergence d'une épidémie nécessite des conditions climatiques précises, et un indicateur annuel prédictif du risque d'émergence est maintenant utilisé de manière opérationnelle par les autorités de santé. Sur le plan spatial, au cours d'une épidémie, en moyenne, la circulation du virus est plus intense dans les zones où la température moyenne ainsi que les densités locales de population sont élevées. Que ce soit sur le territoire entier ou dans la ville de Nouméa, lors de la ré-émergence d'un même sérotype, la diffusion spatiale du virus paraît limitée par l'immunité de population créée par les épidémies précédentes. Cette thèse permet de mettre en évidence la nature complexe et multi-factorielle des maladies vectorielles, et de souligner l'intérêt d'analyses multi-échelles pour l'étude de leur épidémiologie. Au-delà des résultats obtenus sur la dengue dans la région Pacifique, notre volonté était de développer un cadre méthodologique pour l'analyse spatio-temporelle des données de surveillance épidémiologique applicable à d'autres contextes géographiques ou épidémiologiques
Since the 1970's, the frequency of vector-borne diseases such as Dengue, Chikungunya or Zika has significantly increased in the Pacific region. Understanding the factors and mechanisms underlying the spatio-temporal distribution of these diseases provides useful information regarding their control and prevention. In this thesis, we identified dengue spatio-temporal patterns and used modeling tools to identify the factors associated to an increased epidemiological risk at a regional scale (Pacific), a territorial scale (New-Caledonia), and a city scale (Noumea, the capital of New-Caledonia).Every five to seven years, dengue spreads over the entire Pacific as large epidemics caused by the introduction and regional diffusion of one of the four dengue virus serotypes. In New Caledonia, dengue has a seasonal epidemic pattern. The emergence of an epidemic requires specific climatic conditions. The identification of these conditions led to the implementation of an operational early warning system to predict dengue annual epidemic risk. Spatially, at the territorial scale, during epidemic years, high levels of viral circulation are found in areas with higher mean temperature and higher local population densities. Whether at the territorial scale or at the city scale, the spatial diffusion of the virus during epidemics caused by the re-emergence of the same serotype seems limited by the population immunity created by past epidemics. This thesis highlights the complexity and the multi-factorial aspect of vector-borne diseases, and discusses the usefulness of a multi-scale approach in modelling their epidemiology. Besides enhancing our understanding of dengue epidemiology over the Pacific area, we also developed a methodological framework that can be used in other geographical or epidemiological settings for the spatio-temporal analysis and modeling of epidemiological surveillance data
APA, Harvard, Vancouver, ISO, and other styles
44

Rasgon, Jason Laurence. "Wolbachia infection dynamics and applied vector-borne disease control in mosquitoes /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moschini, Pamela M. "Mathematical models for vector-borne disease: effects of periodic environmental variations." Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1389/1/PhDThesis_Moschini.pdf.

Full text
Abstract:
Firstly, I proposed a very simple SIS/SIR model for a general vector-borne disease transmission considering constant population sizes over the season, where contact between the host and the vector responsible of the transmission is assumed to occur only during the summer of each year. I discussed two different types of threshold for pathogen persistence that I explicitly computed: a "short-term threshold" and a "long-term threshold". Later, I took into account the seasonality of the populations involved in the transmission. For a single season, the model consists of system of non linear differential equations considering the various stages of the infection transmission between the vector and the host population. Assuming the overwintering in the mosquito populations, I simulated the model for several years. Finally, I studied the spatial spread of a vector-borne disease throught an impusive reaction-diffusion model and I showed some simulations.
APA, Harvard, Vancouver, ISO, and other styles
46

Fontaine, Albin. "Diversité et Immunogénicité des protéines salivaires de Culicidae." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX20661/document.

Full text
Abstract:
Eviter la piqûre de moustiques vecteurs en utilisant des mesures antivectorielles reste le meilleur moyen de se protéger des maladies vectorielles. La salive de moustique peut induire une réponse anticorps (Acs) spécifique chez l’hôte qui pourrait être utilisé pour définir l'efficacité de ces mesures de protection antivectorielle. L’objectif de notre projet était d’évaluer la possibilité d’utiliser cette réponse Acs anti-salive de moustiques pour mesurer l’exposition à des espèces spécifiques de moustiques ainsi que d’identifier des marqueurs d’exposition. Nous nous sommes tout d’abord assurés de l’absence de différences intraspécifiques entre différentes colonies de moustiques, une condition indispensable pour pouvoir observer des différences au niveau de l’espèce. Par ailleurs, nous avons mis au point un protocole pour préserver les échantillons salivaires dans des conditions de terrains non optimales. A partir de ces expérimentations préliminaires, nous avons évalué la diversité du répertoire protéique salivaire de quatre espèces d’Anopheles par des différentes approches, et montré une spécificité de genre et d’espèce aussi bien au niveau protéique qu’antigénique. Enfin, nous avons montré une évolution spatio-temporelle de l’intensité de la réponse Acs anti-salive ainsi que sa spécificité de genre et d’espèce, chez des individus exposés à différents niveaux à Ae. caspius. Ces résultats souligne la possibilité de caractériser des antigènes salivaires spécifiques de genre et d’espèces qui peuvent avoir un intérêt pour mesurer le contact hôte/vecteur au niveau individuel, le risque de transmission de maladies vectorielles ou l’efficacité des mesures antivectorielles
The primary mean to protect individuals from arthropod-borne diseases is the prevention of bites from infected arthropods which could be achieved by vector control strategies. Mosquito saliva could induce a specific antibody response in exposed individuals that could be used to assess the effectiveness of anti-vector measures. The aim of this study is to assess the possibility to use anti-mosquito saliva antibody responses in order to evaluate the exposure to specific species of vectors and to identify salivary protein candidates that can be used as immunological markers of exposure. We first verify the lack of intraspecific differences among several mosquito colonies which is essential to further observe potential differences at the species level. Moreover, a convenient storage method was developed to preserve salivary samples in non optimal condition on the field. Based on these preliminary results, we evaluated the salivary gland protein repertory diversity among four Anopheles species using complementary approaches and we shown a genus and species specificity at the protein and antigen level. At least, a spatio-temporal evolution of anti-saliva antibody responses was shown according to the Aedes caspius density using sera of differentially exposed individuals. The specificity of this response was also reported at the genus and species level. All together, these results suggest the feasibility to characterize genus and species specific salivary antigens which could be used as immunological markers of exposure to evaluate host/vector contacts, the risk of vector-borne disease transmission or the effectiveness of anti-vector strategies
APA, Harvard, Vancouver, ISO, and other styles
47

Faucher, Benoit. "Epidémiologie des protozooses autochtones en PACA : de l'optimisation du diagnostic à l'éco-épidémiologie." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM5091/document.

Full text
Abstract:
La présence de Leishmania infantum et Toxoplasma gondii en Provence Alpes Côte d’Azur (PACA) est connue depuis plus d’un siècle. Depuis, leur distribution évolue, l'environnement change, les populations touchées se déplacent, et de nouveaux outils techniques et statistiques permettent de mieux les saisir. Une réactualisation de nos connaissances paraissait donc nécessaire. Nous avons d’abord mené une revue de la littérature sur les leishmanioses viscérales. Ensuite, nous avons montré que la leishmaniose muqueuse à L. infantum est marquée par un probable sous-diagnostic, un caractère peu invasif localement et un risque de viscéralisation significatif. Puis une étude éco-épidémiologique a montré que les deux foyers de leishmaniose en PACA impliquaient des biotopes différents, avec une transmission en zone urbanisée dans le foyer marseillais. Enfin, une étude entomologique a confirmé cette transmission urbaine.Nous avons ensuite étudié la toxoplasmose congénitale. D’abord, nous avons essayé d'améliorer les performances techniques du dépistage en montrant l’intérêt pour le diagnostic moléculaire anténatal d’une extraction optimisée de l’ADN parasitaire sur liquide amniotique en utilisant NucliSENS easyMAG plutôt qu’une extraction manuelle utilisant QIAamp DNA minikit. Nous avons également montré l’apport pour le diagnostic néonatal de la toxoplasmose congénitale des IgM ciblant des antigènes de haut poids moléculaire lors de la comparaison des sera des mères et des enfants par Western Blot. Enfin, nous avons rapporté l’évolution sur 16 ans de 127 patients traités pour toxoplasmose congénitale et montré que 19% des enfants présentaient une choriorétinite au cours du suivi
The epidemiology of Leishmania infantum and Toxoplasma gondii in the Mediterranean basin has been studied for more than a century. Yet, our understanding of these diseases must be updated because ongoing environmental modifications impact their distribution, because affected population change, and because new technical and statistical tools have become available. We first reviewed scientific literature about visceral leishmaniasis. Then, we conducted a clinical study about autochtonous mucosal leishmaniasis due to L. infantum: we showed that this disease was characterized by underrecognition, low local invasiveness, and risk of visceral spreading. Afterwards, an eco-epidemiological study showed that foci of leishmanisis involved different biotopes in South-Eastern France: we specifically highlighted a urban transmission in the Marseille focus. Finally, an entomological survey confirmed this urban transmission and addressed cocirculation with phleboviruses.Then, we studied congenital toxoplasmosis. We contributed to improve technical performances of current screening strategy: we first showed that an optimized extraction of Toxoplasma DNA from amniotic fluid using NucliSENS easyMAG proved superior to manual extraction using QIAamp DNA minikit. Then, we found that comparison of mother and child antibodies that target high-molecular-mass Toxoplasma gondii antigens by immunoblotting improves neonatal diagnosis. Finally, we reported the 16-year long evolution of 127 children congenitally infected with T. gondii and showed that despite early treatment 19% of children finally developed chorioretinitis
APA, Harvard, Vancouver, ISO, and other styles
48

Peery, Ashley Nicole. "Chromosomal Evolution of Malaria Vectors." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/71698.

Full text
Abstract:
International malaria control initiatives such as the Roll Back Malaria Initiative (RBM) and the Medicines for Malaria Venture (MMV) mobilize resources and spur research aimed at vector control as well as the treatment and eventual eradication of the disease. These efforts have managed to reduce incidence of malaria by an estimated 37% worldwide since 2000. However, despite the promising success of control efforts such as these, the World Health Organization reports a staggering 438,000 deaths from malaria in 2015. The continuing high death toll of malaria as well as emerging insecticide and antimalarial drug resistance suggests that while encouraging, success in reducing malaria incidence may be tenuous. Current vector control strategies are often complicated by ecological and behavioral heterogeneity of vector mosquito populations. As an additional obstruction, mosquito genomes are highly plastic as evidenced by the wealth or chromosomal inversions that have occurred in this genus. Chromosomal inversions have been correlated with differences in adaptation to aridity, insecticide resistance, and differences in resting behavior. However, a good understanding of the molecular mechanisms for inversion generation is still lacking. One possible contributor to inversion formation in Anopheles mosquitoes includes repetitive DNA such as transposable elements (TEs), tandem repeats (TRs) and inverted repeats (IRs). This dissertation provides physical maps for two important malaria vectors, An. stephensi and An. albimanus (Ch.2 and Ch. 3) and then applies those maps to the identification of inversion breakpoints in malaria mosquitoes. Repeat content of each chromosomal arm and the molecular characterization of lineage specific breakpoints is also investigated (Ch. 2 and Ch.4). Our study reveals differences in patterns of chromosomal evolution of Anopheles mosquitoes vs. Drosophila. First, mosquito chromosomes tend to shuffle as intact elements via whole arm translocations and do not under fissions or fusions as seen in fruitflies. Second, the mosquito sex chromosome is changing at a much higher rate relative to the autosomes in malaria mosquitoes than in fruit flies. Third, our molecular characterization of inversion breakpoints indicates that TEs and TRs may participate in inversion genesis in an arm specific manner.
Ph. D.
Malaria is a complex and devastating disease vectored by the bite of a female Anopheles mosquito. This disease claimed an estimated 438,000 lives in 2015. The mobilization of funding and resources as part of global malaria eradication initiatives have reduced the global incidence of malaria by 37% in the last 15 years. Deaths from malaria are also 60% lower vs. the year 2000. These promising gains are threatened by the ability of Anopheles mosquitoes to adapt in the face of malaria control efforts. Anopheles mosquito chromosomes are known to be highly plastic, as evidenced by numerous chromosomal inversions. Recent years have seen increases in insecticide resistance, and behavioral change in mosquito populations that allow them to avoid insecticides and remain prolific vectors of disease. This ability of mosquito vectors to adapt threatens to unravel recent progress towards a malaria free world. The projects presented in this dissertation explore mechanisms of chromosomal evolution, specifically the potential role of repetitive DNA in the generation of chromosomal inversions. The exploration of chromosomal inversions was facilitated by the creation of physical maps for Anopheles species. Prominent malaria vectors An. stephensi andAn. albimanus were physically mapped in Chapter 2 and Chapter 3 respectively. In chapter 1 and chapter 3 physical maps are utilized for the identification of chromosomal inversion breakpoints using 2 species (Ch. 2) and many species (Ch. 4). Repeat content was quantified along each chromosomal arm (Ch 2,4) and in inversion breakpoint regions (Ch 3). This dissertation presents physical maps for two important malaria species that have been applied to the study of chromosomal evolution and will also serve as community tools for further study of malaria mosquitoes. Our work on chromosomal evolution has revealed the Anopheles chromosomes tend to undergo translocations as intact elements and do not under fissions and fusions as seen in fruitflies. We also find that the malaria mosquito sex chromosome changes much more rapidly relative to the autosomes than in fruitflies. Additionally, repetitive DNA including transposable elements (TEs) and tandem repeats (TRs) may be encouraging chromosomal inversions but with differing roles on different chromosomal arms.
APA, Harvard, Vancouver, ISO, and other styles
49

Merchant, Farid. "Simulating the Spread of Malaria: A Cellular Automaton Based Mathematical Model & A Prototype Software Implementation." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31313.

Full text
Abstract:
Every year three million deaths are attributed to malaria, of which one-third are of children. Malaria is a vector-borne disease, where a mosquito acts as the vector that transmits the disease. In the last few years, computer simulation based models have been used effectively to study the vector population dynamics and control strategies of vector-borne diseases. Typically, these models use ordinary differential equations to simulate the spread of malaria. Although these models provide a powerful mechanism to study the spread of malaria, they have several shortcomings. The research in this thesis focuses on creating a simulation model based on the framework of cellular automata, which addresses many shortcomings of previous models. Cellular automata are dynamical systems, which are discrete in time and space. The implementation of the model proposed can easily be integrated with EpiSims/TRANSIMS. EpiSims is an epidemiological modeling tool for studying the spread of infectious diseases; it uses social contact network from TRANSIMS (A Transport Analysis and Simulation System). Simulation results from the prototype implementation showed qualitatively correct results for vector densities, diffusion and epidemiological curves.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
50

Tangena, Julie-Anne Akiko. "The risk of vector-borne disease exposure in rubber plantations of northern Lao PDR." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11981/.

Full text
Abstract:
Unprecedented economic growth in South-East Asia has encouraged the expansion of rubber plantations. Outbreaks of vector-borne diseases occur in these plantations, yet data on the vector dynamics is limited. In this thesis I describe the mosquito ecology in rubber plantations compared to neighbouring habitats in northern Lao PDR, to assess the risk of vector-borne diseases for rubber workers and villagers, and to identify how to mitigate these risks. I carried out a study to identify an ethically sound alternatives to human landing catches (HLC). The human-baited Double Net trap (HDN) collected similar numbers of Anopheles and Culex as HLC, but under-estimated the number of Aedes albopictus. As both HLC and HDN are crude ways of identifying the human-biting rate, the HDN is a representative method to estimate the human-biting rate outdoors without exposing collectors to mosquito bites. Using the HDN, I compared the adult mosquito dynamics in the secondary forests, immature rubber plantations, mature rubber plantations and villages. A total of 113 species were identified, including 61 species not documented in Lao PDR before The highest number of mosquitoes were collected in the secondary forests. Three of the four most common species found were vector species; the dengue and chikungunya vector Ae. albopictus, the lymphatic filariasis vector Ar. kesseli and the JE vector Cx. vishnui. Additionally, in all habitats a daily exposure to malaria vectors was found. To assess the risk of exposure to vector-borne diseases I explored the local human behaviour using sociological methods. Compared to staying in the village, dengue exposure risk increased when working in the plantations, which was exasperated when also living in these man-made forests. By contrast, malaria vector exposure risk decreased when living in the plantations. I identified the characteristics of mosquito breeding sites in rubber plantations and villages. Aedes albopictus immature stages were most frequently collected from tyres and latex collection cups in the mature rubber plantations and from tyres and water containers (< and > 10 L) in the villages. A majority of the Cx. quinquefasciatus were collected from water containers (< and > 10 L) in the mature rubber plantations and villages. Anopheles dirus s.l. were mostly collected from puddles in the immature rubber plantations and villages. This thesis emphasizes the importance of implementing mosquito control in the rubber plantations for the control of dengue disease. Larval control and personal protection methods are possible vector control methods for our study area. The successful implementation of vector control requires an inter-sectoral approach, with strong collaboration between the health sector, rubber industry and local communities.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography