Contents
Academic literature on the topic 'Variétés symétriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variétés symétriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variétés symétriques"
Zeghib, A. "Feuilletages géodésiques des variétés localement symétriques." Topology 36, no. 4 (July 1997): 805–28. http://dx.doi.org/10.1016/s0040-9383(96)00033-x.
Full textZeghib, A. "Ensembles invariants des flots géodésiques des variétés localement symétriques." Ergodic Theory and Dynamical Systems 15, no. 2 (April 1995): 379–412. http://dx.doi.org/10.1017/s0143385700008439.
Full textTholozan, Nicolas. "Sur la complétude de certaines variétés pseudo-riemanniennes localement symétriques." Annales de l’institut Fourier 65, no. 5 (2015): 1921–52. http://dx.doi.org/10.5802/aif.2977.
Full textKlingler, B. "Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes." Commentarii Mathematici Helvetici 76, no. 2 (June 1, 2001): 200–217. http://dx.doi.org/10.1007/s00014-001-8320-0.
Full textTchoudjem, Alexis. "Sur la cohomologie à support des fibrés en droites sur les variétés symétriques complètes." Transformation Groups 15, no. 3 (July 23, 2010): 655–700. http://dx.doi.org/10.1007/s00031-010-9105-6.
Full textVEROVIC, PATRICK. "Problème de l'entropie minimale pour les métriques de Finsler." Ergodic Theory and Dynamical Systems 19, no. 6 (December 1999): 1637–54. http://dx.doi.org/10.1017/s0143385799151952.
Full textSabourin, Hervé, and Rupert W. T. Yu. "Sur l'irréductibilité de la variété commutante d'une paire symétrique réductive de rang 1." Bulletin des Sciences Mathématiques 126, no. 2 (February 2002): 143–50. http://dx.doi.org/10.1016/s0007-4497(01)01091-0.
Full textBulois, Michaël. "Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple." Annales de l’institut Fourier 59, no. 1 (2009): 37–80. http://dx.doi.org/10.5802/aif.2426.
Full textGUÈYE, Ousmane. "DE L’ESPACE NATUREL À L’ESPACE IMAGÉ DANS LE RECUEIL DES FABLES DE LA FONTAINE." Liens, revue internationale des sciences et technologies de l'éducation 1, no. 4 (July 5, 2023): 148–57. http://dx.doi.org/10.61585/pud-liens-v1n407.
Full textPawlowski, Brendan. "Cohomology classes of rank varieties and a counterexample to a conjecture of Liu." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (January 1, 2015). http://dx.doi.org/10.46298/dmtcs.2462.
Full textDissertations / Theses on the topic "Variétés symétriques"
Zeghib, Abdelghani. "Feuilletages géodésiques des variétés localement symétriques et applications." Dijon, 1985. http://www.theses.fr/1985DIJOSE42.
Full textCossutta, Mathieu. "Cohomologie de certaines variétés localement symétriques et correspondance theta." Paris 7, 2009. http://www.theses.fr/2009PA077065.
Full textThe results of this thesis are about the cohomology of some locally symetric manifolds of arithmetic type. In a first chapter we discuss the automorphic description of these cohomology groups in the framework of Arthur's conjectures. In a second and third chapter, using this description and the theta correspondance we construct new cohomology classes, generalising some previous work of Jian-Shu Li. In the fifth chapter using this cohomology classes we study the growth of Betti numbers in a tower of congruence coverings. The last chapter makes a link between these classes, totally geodesic submanifolds and L-functions
Estezet, Patrick. "Tenseurs symétriques à énergie nulle sur les variétés à courbure constante." Grenoble 1, 1988. http://www.theses.fr/1988GRE10099.
Full textBulois, Michaël. "Etude de quelques sous-variétés des algèbres de Lie symétriques semi-simples." Phd thesis, Université de Bretagne occidentale - Brest, 2009. http://tel.archives-ouvertes.fr/tel-00455626.
Full textBulois, Michaël. "Étude de quelques sous-variétés des algèbres de Lie symétriques semi-simples." Brest, 2009. http://www.theses.fr/2009BRES2042.
Full textLie algebras were introduced toward the end of nineteenth century in order to study some problems arising from geometry. In the interest of classifying these objects, the subcategory of semisimple Lie algebras has been studied. Symmetric Lie algebras are a generalisation of Lie algebras and there are connections between complex symmetric Lie algebras and real Lie algebras. There is an another level structure on (semisimple complex) Lie algebras. Denoting by G the algebraic adjoint group of g, we can conside g as a G-variety under the adjoint action M. We can then study some properties in the framework of algebraic geometry. One can then study various G-varieties arising from this setting. From a global perspective, I try to generalize or understand some properties of analogue varieties in symmetric Lie algebras
Jiang, Zhi. "Sur l'application d'albanese des variétés algébriques et le cône nef des produits symétriques de courbes." Université Paris Diderot (Paris 7), 2010. http://www.theses.fr/2010PA077037.
Full textIn the first part, I study irregular varieties and in particular, varieties with maximal Albanese dimension. For a general irregular variety X, I give an optimal condition on the plurigenera P_m(X) such that the Albanese map should be subjective and I also obtain a (more restrictive) still optimal condition on P_m(X) such that the Albanese map should be an algebraic fiber space. For a variety X of maximal Albanese dimension with some additional assumptions on P__m(X) and q(X), I describe (birationally) its geometry structure. Then I study morphisms between varieties of maxiaml Albanese dimension. I also make a remark about a work of Chen and Hacon (Pareschi and Popa) to show that for a varieties of maximal Albanese dimension, I6K_XI induces a model of its litaka fibration. In the second part, I study a very concrete problem: the structure of the nef cone of the symmetric product of a generic curve. There is an interesting theorem of Kouvidakis about this problem. I use a degeneration approach to study this problem. The ingredient is an idea due to Ein and Lazarsfeld which they used to study the Seshadri constants of surfaces. I can improve Kouvidakis'result
Le, Barbier Michael. "Variétés des réductions des groupes algébriques réductifs." Montpellier 2, 2009. http://www.theses.fr/2009MON20051.
Full textInspired by the construction by S. Mukai of a variety classifying Gauss reductions of a smooth projective quadric, A. Iliev and L. Manivel define the variety of reductions for a simple Jordan algebra. Study of these varieties bring up three new Fano varieties. General interset towards Fano varieties is two-fold: on the first side, their intrinsec geometry is remarkable, an the second side, they play a crucial part in birational geometry. New ones are however seldom found. I generalise this construction to reductive symmetric pairs, study some of their general properties and three small dimension examples. These varieties are projective, quasi-homogenous under the operation of the fixed point group of the symmetric pair. Points in the open orbit are the anisotropic, reductive, maximal subalgebras of the symmetric pair. In the general setup, I explain how the centralizer map, a rational map from the anisotropic space to the variety of reductions, parametrizes a smooth open subset, simplifies the study of combinatorial properties of the orbits in this open subset, and allows to slightly generalise to symmetric-pair's context the well-known description of the irregular locus of simple Lie algebras. I classify linear subspaces of the variety of reductions through a general point, and deduce, for the good cases, the positivity of the anticanonical class of the variety. Among studied examples lie two Fano varieties, one is a smooth 6-fold of index 2, the second is a singular normal 8-fold of index 3
Brunebarbe, Yohan. "Formes différentielles symétriques, variations de structures de Hodge et groupes fondamentaux des variétés complexes." Paris 7, 2014. http://www.theses.fr/2014PA077060.
Full textIn a first part we show that a compact Kâhler manifold whose fundamental group admits a linear representatior with infinite image possesses a non zero symmetric differential form. A crucial step is the study of the particula case where the linear representation is the monodromy of a variation of Hodge structures. In a second part we extend the results of positivity of the cotangent bundle of varieties supporting a non trivial variation of Hodge structures to non necessarily compact algebraic varieties. We gathered in a last part some applications of the results of the preceding parts to the study of complex surfaces with a big fundamental group
Gorsse, Bertrand. "Mesures p-adiques associées aux carrés symétriques." Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10150.
Full textWe consider the special values of a L-function, which are called symmetric square, associated to a primitive cusp form. Following Rankin's method, we can write the symmetric square as an integral involving products of Eisenstein series by certains classical modular forms of half-integral weight (1/2 or 3/2). We can view those products as polynomials in one variable R with coefficient power series in the variable q. We prove that the coefficients of the (q,R)-expansion satisfy Kummer's congruences from which we deduce other congruences for the special values of the symmetric square
Ettioutioui, Mhammed. "Espaces homogènes des géodésiques." Lyon 1, 1997. http://www.theses.fr/1997LYO10230.
Full text