Academic literature on the topic 'Variational critical problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variational critical problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variational critical problems"
Ambrosetti, Antonio. "Critical points and nonlinear variational problems." Mémoires de la Société mathématique de France 1 (1992): 1–139. http://dx.doi.org/10.24033/msmf.362.
Full textPrigozhin, Leonid. "Variational inequalities in critical-state problems." Physica D: Nonlinear Phenomena 197, no. 3-4 (October 2004): 197–210. http://dx.doi.org/10.1016/j.physd.2004.07.001.
Full textAmbrosetti, A., J. Garcia Azorero, and I. Peral. "Elliptic Variational Problems in RN with Critical Growth." Journal of Differential Equations 168, no. 1 (November 2000): 10–32. http://dx.doi.org/10.1006/jdeq.2000.3875.
Full textGhoussoub, Nassif, and Frédéric Robert. "Hardy-singular boundary mass and Sobolev-critical variational problems." Analysis & PDE 10, no. 5 (July 1, 2017): 1017–79. http://dx.doi.org/10.2140/apde.2017.10.1017.
Full textChow, Shui-Nee, and Reiner Lauterbach. "A bifurcation theorem for critical points of variational problems." Nonlinear Analysis: Theory, Methods & Applications 12, no. 1 (January 1988): 51–61. http://dx.doi.org/10.1016/0362-546x(88)90012-0.
Full textPrigozhin, L. "On the Bean critical-state model in superconductivity." European Journal of Applied Mathematics 7, no. 3 (June 1996): 237–47. http://dx.doi.org/10.1017/s0956792500002333.
Full textLeonardi, Salvatore, and Nikolaos S. Papageorgiou. "On a class of critical Robin problems." Forum Mathematicum 32, no. 1 (January 1, 2020): 95–109. http://dx.doi.org/10.1515/forum-2019-0160.
Full textAlves, C. O., Ana Maria Bertone, and J. V. Goncalves. "A Variational Approach to Discontinuous Problems with Critical Sobolev Exponents." Journal of Mathematical Analysis and Applications 265, no. 1 (January 2002): 103–27. http://dx.doi.org/10.1006/jmaa.2001.7698.
Full textBéhi, Droh Arsène, and Assohoun Adjé. "A Variational Method for Multivalued Boundary Value Problems." Abstract and Applied Analysis 2020 (January 21, 2020): 1–8. http://dx.doi.org/10.1155/2020/8463263.
Full textPiccione, Paolo, and Daniel V. Tausk. "Lagrangian and Hamiltonian formalism for constrained variational problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, no. 6 (December 2002): 1417–37. http://dx.doi.org/10.1017/s0308210500002183.
Full textDissertations / Theses on the topic "Variational critical problems"
Fiscella, A. "VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/245334.
Full textMaad, Sara. "Critical point theory with applications to semilinear problems without compactness." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2002. http://publications.uu.se/theses/91-506-1557-2/.
Full textKönig, Tobias [Verfasser], and Rupert [Akademischer Betreuer] Frank. "Symmetry, uniqueness and blow-up in some elliptic variational problems with critical exponent / Tobias König ; Betreuer: Rupert Frank." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1215499914/34.
Full textSouza, Diego Ferraz de. "Concentration-compactness principle and applications to nonlocal elliptic problems." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9308.
Full textMade available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2016-12-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The main goal of this work is to analyze concentration-compactness principles for fractional Sobolev spaces based on the concentration compactness principle of P.-L. Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to K. Tintarev and K.-H Fieseler. As application, we address questions on compactness of the associated energy functional to the following nonlocal elliptic problems, $' ''''''&' ''''''% p qsu fpx; uq in RN; p qsu apxqu fpx; uq in RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3; p q Kpxqu2 in R3; where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to a suitable Lebesgue space. We obtain existence results for a wide class of possible singular potentials apxq; not necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition.
O objetivo principal deste trabalho é analisar princípios de concentração de compacidade para espaços de Sobolev fracionários baseados na concentração de compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos questões sobre a compacidade do funcional energia associado aos seguintes problems elípticos não locais, $' ''''''&' ''''''% p qsu fpx; uq em RN; p qsu apxqu fpx; uq em RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3; p q Kpxqu2 em R3; onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
Freitas, Luciana Roze de. "Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18012011-145302/.
Full textIn this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
Guimarães, Angelo. "Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexo." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6901.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:53Z (GMT) No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-06T14:33:53Z (GMT). No. of bitstreams: 2 Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p
Neste trabalho estudaremos existência e multiplicidade de soluções fracas do problema elíptico com termo semilinear côncavo-convexo, em um domínio limitado de um espaço euclidiano de dimensão N. Ao tomarmos f=0 e σ=1 temos um problema homogêneo com expoente crítico de Sobolev em que utilizamos o Teorema do Passo da Montanha para encontrar existência de uma solução quando p
Milbers, Zoja. "Eigenvalue Problem for the 1-Laplace Operator." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1238150433158-43544.
Full textWir betrachten das zum 1-Laplace-Operator gehörige Eigenwertproblem. Wir definieren höhere Eigenlösungen mittels weak slope und weisen die Existenz einer Folge von Eigenlösungen nach, indem wir die nichtglatte Theorie kritischer Punkte anwenden. Zusätzlich leiten wir eine neue notwendige Bedingung für den ersten Eigenwert des 1-Laplace-Operators mittels innerer Variationen her
Abreu, Rafael dos Reis 1983. "Soluções ground state para algumas classes de problemas elípticos." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305901.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-23T11:08:01Z (GMT). No. of bitstreams: 1 Abreu_RafaeldosReis_D.pdf: 1052192 bytes, checksum: 6fe840dfe507b4cc6c5ad9f908da486a (MD5) Previous issue date: 2013
Resumo: Neste trabalho, tratamos de resultados de existência de soluções ground state para algumas classes de problemas elípticos sobre espaços euclidianos ou sobre domínios exteriores. Nos casos em que consideramos um domínio exterior, consideramos a condição de fronteira de Dirichlet ou de Neumann. O fato de se considerar domínios não limitados naturalmente implica em algumas dificuldades como, por exemplo, a falta de compacidade. Quando isso ocorre, em geral, a condição Palais-Smale não é válida. Para contornar esta e outras dificuldades, usamos o Teorema do Passo da Montanha sem condição Palais-Smale, Lema de Lions e Teorema de Vitali. Em nosso estudo, utilizamos métodos variacionais explorando diversas técnicas para a obtenção de pontos críticos de funcionais associados a cada problema. Pontos críticos não nulos de cada funcional são soluções de seu respectivo problema
Abstract: In this work, we deal with existence of ground state solutions for some classes of elliptic problems on Euclidean spaces or on exterior domains. In cases where we consider an exterior domain, we consider the Dirichlet boundary condition or the Neumann boundary condition. Elliptic problems involving unbounded domains naturally have some difficulties, por example, the lack of compactness. When it occurs, in general, the Palais-Smale condition is not valid. To overcome this difficulty and others, we use the Mountain Pass Theorem without Palais-Smale condition, results due to Lions and the Vitali's Theorem. In our study, we use variational methods exploring techniques to obtain critical points of functionals related to each problem. Nonzero critical points of each functional are solutions of its respective problem
Doutorado
Matematica
Doutor em Matemática
Almeida, Samuel Oliveira de. "Soluções para problemas elípticos envolvendo o expoente crítico de Sobolev." Universidade Federal de Juiz de Fora, 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/1468.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-27T18:35:32Z (GMT) No. of bitstreams: 1 samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5)
Made available in DSpace on 2016-06-27T18:35:32Z (GMT). No. of bitstreams: 1 samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5) Previous issue date: 2013-04-05
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho estudamos a existência de soluções para problemas elípticos envolvendo o expoente crítico de Sobolev. Primeiramente, investigamos a existência de soluções para um problema superlinear do tipo Ambrosetti-Prodi com ressonância em 1, onde 1 é o primeiro autovalor de (−Δ,1 0 (Ω)). Além disso, estudamos resultados de multiplicidade para uma classe de equações elípticas críticas relacionadas com o problema de Brézis-Nirenberg, com condição de contorno de Neumann sobre a bola.
In this work we study the existence of solutions for elliptic problems involving critical Sobolev exponent. Firstly we investigate the existence of solutions for an Ambrosetti-Prodi type superlinear problem with resonance at 1 , where 1 is the first eigenvalue of (−Δ,1 0 (Ω)). Besides, we study multiplicity results for a class of critical elliptic equations related to the Brézis-Nirenberg problem with Neumann boundary condition on a ball.
Felix, Diego Dias. "Sobre uma classe de problemas elípticos envolvendo o crescimento do tipo Trudinger-Moser." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9263.
Full textMade available in DSpace on 2017-08-15T16:10:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2015-07-30
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
In this work, we study a class of quasilinear elliptic problem involving nonlinearities with subcritical polynomial growth, subcritical exponential growth and critical exponential growth. Our main focus is to treat nonlinearities which do not satisfy the condition of super-quadratic of Ambrosetti-Rabinowitz. Our main tool is the Mountain Pass Theorem with the Cerami condition.
Neste trabalho, estudamos uma classe de problemas elípticos quase lineares envolvendo não linearidades com crescimento polinomial subcrítico, exponencial subcrítico e exponencial crítico. Nosso foco principal é tratar não linearidades que não satisfazem a condição de superquadraticidade de Ambrosetti-Rabinowitz. A nossa ferramenta é o Teorema do Passo da Montanha com a condição de Cerami.
Books on the topic "Variational critical problems"
Ambrosetti, A. Critical points and nonlinear variational problems. Paris, France: Société mathématique de France, 1992.
Find full textBartsch, Thomas. Topological methods for variational problems with symmetries. Berlin: Springer-Verlag, 1993.
Find full textBahri, A. Critical points at infinity in some variational problems. Harlow: Longman Scientific & Technical, 1989.
Find full textCritical points at infinity in some variational problems. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full text1944-, Ekeland I., Szulkin Andrzej, and NATO Advanced Study Institute, eds. Minimax results of L[j]usternik-Schnirelman type and applications: Part 2 of the proceedings of the NATO ASI "variational methods in nonlinear problems". Montréal, Québec, Canada: Presses de l'Université de Montréal, 1989.
Find full text1966-, Pérez Joaquín, and Galvez José A. 1972-, eds. Geometric analysis: Partial differential equations and surfaces : UIMP-RSME Santaló Summer School geometric analysis, June 28-July 2, 2010, University of Granada, Granada, Spain. Providence, R.I: American Mathematical Society, 2012.
Find full textOntario. Esquisse de cours 12e année: Sciences de l'activité physique pse4u cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Find full textOntario. Esquisse de cours 12e année: Technologie de l'information en affaires btx4e cours préemploi. Vanier, Ont: CFORP, 2002.
Find full textOntario. Esquisse de cours 12e année: Études informatiques ics4m cours préuniversitaire. Vanier, Ont: CFORP, 2002.
Find full textOntario. Esquisse de cours 12e année: Mathématiques de la technologie au collège mct4c cours précollégial. Vanier, Ont: CFORP, 2002.
Find full textBook chapters on the topic "Variational critical problems"
Precup, Radu. "Compression–Expansion Critical Point Theorems in Conical Shells." In Nonlinear Analysis and Variational Problems, 135–45. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0158-3_12.
Full textMotreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Variational Principles and Critical Point Theory." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 97–139. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_5.
Full textConti, M., and R. Lucchetti. "The Minimax Approach to the Critical Point Theory." In Recent Developments in Well-Posed Variational Problems, 29–76. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8472-2_2.
Full textBartsch, Thomas. "Category, genus and critical point theory with symmetries." In Topological Methods for Variational Problems with Symmetries, 8–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0073861.
Full textHebey, Emmanuel. "Bubbles over Bubbles: A C 0-theory for the Blow-up of Second Order Elliptic Equations of Critical Sobolev Growth." In Variational Problems in Riemannian Geometry, 3–17. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7968-2_1.
Full textReichel, Wolfgang. "2. Uniqueness of critical points (I)." In Uniqueness Theorems for Variational Problems by the Method of Transformation Groups, 9–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40915-1_2.
Full textReichel, Wolfgang. "3. Uniqueness of critical points (II)." In Uniqueness Theorems for Variational Problems by the Method of Transformation Groups, 27–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40915-1_3.
Full textdel Pino, M., P. Felmer, and M. Musso. "Spike Patterns in the Super-Critical Bahri—Coron Problem." In Variational and Topological Methods in the Study of Nonlinear Phenomena, 89–103. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0081-9_7.
Full textGoodman, David C. "Population-Based Measures of Newborn Care Variation: A Critical Piece of Improving Perinatal Outcomes." In The Problem of Practice Variation in Newborn Medicine, 73–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94655-5_7.
Full textZhong, Ziyuan, Yuchi Tian, and Baishakhi Ray. "Understanding Local Robustness of Deep Neural Networks under Natural Variations." In Fundamental Approaches to Software Engineering, 313–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_16.
Full textConference papers on the topic "Variational critical problems"
Reichel, Wolfgang. "Supercritical variational problems with unique critical points." In Proceedings of the 4th European Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777201_0024.
Full textRosen, David W., Wei Chen, Stewart Coulter, and Srinivas Vadde. "Goal-Directed Geometry: Beyond Parametric and Variational Geometry CAD Technologies." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0084.
Full textGoun, A. A., and O. K. Sliva. "Time Optimal Transfer Function of a Mechanism in the Presence of Dissipative Forces." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61907.
Full textGoun, A. A., O. K. Sliva, and Vyacheslav Murzin. "Time Optimal Transfer Function of a Mechanism." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58384.
Full textWhite, Joshua A., and Ronaldo I. Borja. "Stabilized Finite Element Methods for Coupled Solid-Deformation/Fluid-Flow in Porous Geomaterials." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66524.
Full textLo¨o¨f, Johan, Lars Lindkvist, and Rikard So¨derberg. "Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86598.
Full textGarstecki, Andrzej, and Witold Kakol. "Structural Sensitivity Analysis in Eigenvalue Problems Using Finite Strip Method." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0150.
Full textPark, Jong Sang, and Kyung K. Choi. "Design Sensitivity Analysis and Optimization of Nonlinear Structural Systems With Critical Loads." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0067.
Full textLo¨o¨f, Johan, and Rikard So¨derberg. "Top-Down Decomposition of Multi-Product Requirements Onto Locator Tolerances." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43453.
Full textDykman, M. I., G. P. Golubev, V. P. Golubchenko, D. G. Luchinsky, S. V. Tsuprikov, and A. L. Velikovich. "Fluctuational Transitions and Critical Phenomena in a Noise-Driven Optically Bistable Device." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ndd440.
Full textReports on the topic "Variational critical problems"
Komba, Aneth, and Richard Shukia. An Analysis of the Basic Education Curriculum in Tanzania: The Integration, Scope, and Sequence of 21st Century Skills. Research on Improving Systems of Education (RISE), February 2023. http://dx.doi.org/10.35489/bsg-rise-wp_2023/129.
Full textPeitz, David, and Naomi Reibold. White-tailed deer monitoring at Arkansas Post National Memorial, Arkansas: 2005–2020 trend report. Edited by Tani Hubbard. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285087.
Full textHeitman, Joshua L., Alon Ben-Gal, Thomas J. Sauer, Nurit Agam, and John Havlin. Separating Components of Evapotranspiration to Improve Efficiency in Vineyard Water Management. United States Department of Agriculture, March 2014. http://dx.doi.org/10.32747/2014.7594386.bard.
Full text