Dissertations / Theses on the topic 'Variation (Genetics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Variation (Genetics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
De, Bustos Cecilia. "Genetic and Epigenetic Variation in the Human Genome : Analysis of Phenotypically Normal Individuals and Patients Affected with Brain Tumors." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6629.
Full textWalker, Tina Kay. "Genetic variation in schistosomes." Thesis, Brunel University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278245.
Full textPandya, Arpita. "Human Y-chromosomal DNA variation." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298658.
Full textKeightley, Peter D. "Studies of quantitative genetic variation." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/12340.
Full textLoh, Yong-Hwee Eddie. "Genetic variation in fast-evolving East African cichlid fishes: an evolutionary perspective." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41148.
Full textGunn, Melissa Rose School of Biological Earth & Environmental Science UNSW. "The use of microsatellites as a surrogate for quantitative trait variation in conservation." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Science, 2003. http://handle.unsw.edu.au/1959.4/22457.
Full textRoussos, Athanasios. "Morphological variation, population genetics and genetic relatedness in three species of Callopora." Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa42590.
Full textRudd, Danielle Song. "Genomic copy number variation in schizophrenia." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/4739.
Full textCotsapas, Chris Biotechnology & Biomolecular Sciences Faculty of Science UNSW. "The genetics of variation in gene expression." Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2005. http://handle.unsw.edu.au/1959.4/30204.
Full textBromham, Lindell. "Rate variation in DNA sequence evolution." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339362.
Full textRootsi, Siiri. "Human Y-chromosomal variation in European populations /." Tartu : Tartu University Press, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/1252/5/rootsi.pdf.
Full textGoropashnaya, Anna. "Phylogeographic Structure and Genetic Variation in Formica Ants." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3803.
Full textEhrenreich, Ian Michael. "The Genetics of Phenotypic Variation in Arabidopsis thaliana." NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-08062008-162151/.
Full textRussell, Joanne Ritchie. "Molecular variation in Theobroma species." Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386981.
Full textMathieson, Iain. "Genes in space : selection, association and variation in spatially structured populations." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:85f051b6-2121-49cf-9468-3ca7ba77cc4a.
Full textGresham, David J. "Genetic variation and disease in the Roma (Gypsies)." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2001. https://ro.ecu.edu.au/theses/1516.
Full textArcher, Jason Allan. "Genetic variation in the efficiency of feed utilisation by animals." Title page, table of contents and abstract only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09pha6711.pdf.
Full textRogell, Björn. "Genetic variation and local adaptation in peripheral populations of toads." Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107395.
Full textMurtagh, Gareth James. "Sex and variation in lichen-forming fungi." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285566.
Full textStewart, John E. B. (John Edward Bakos). "Genetic Variation in a Population of the Plains Woodrat Neotoma micropus." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc500709/.
Full textElis, Mabon. "Evolutionary genetics of flower colour variation in Antirrhinum." Thesis, University of East Anglia, 2018. https://ueaeprints.uea.ac.uk/69572/.
Full textRowell, Jennie Lynn. "GENETIC VARIATION IN THE DOMESTICATED DOG AS A MODEL OF HUMAN DISEASE." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338237356.
Full textSUSCA, Roberta Rosa. "Patterns of genetic and linguistic variation. A study of uniparental markers." Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2488149.
Full textQuesta tesi riassume l’attività di ricerca da me svolta durante i tre anni di dottorato, sovvenzionato dal progetto ERC LanGeLin, il cui scopo principale è di migliorare le conoscenze sulla co-evoluzione di lingue e geni. I progetti descritti condividono l’uso di marcatori uniparentali usati per gli studi di evoluzione umana, ma differiscono per la combinazione di metodi molecolari e statistici. La Parte I descrive lo stato dell’arte dei marcatori uniparentali e i pro e contro del loro utilizzo in ambito linguistico e archeologico. La Parte II riassume i risultati delle ricerche condotte nell’ambito del progetto LanGeLin che descrive la diversità dei pattern genetici e linguistici in 36 popolazioni Euroasiatiche. Il progetto LanGeLin (Language and Gene Lineages), finanziato dal “European Research Council” ha lo scopo di testare l’ipotesi di Darwin presentata in “Origine delle specie”. Darwin intuì che l’albero filogenetico delle diverse sottospecie umane, potesse sovrapporsi a quello ottenuto a partire dalle diverse lingue, offrendo di fatto la possibilità di studiare la genealogia delle lingue e allo stesso tempo capire come le differenze tra queste avrebbero permesso di far luce sugli aspetti elusivi della storia demografica umana. R. Sokal e L.L. Cavalli-Sforza nel 1988 hanno elucidato come la comparazione dei vocaboli rifletta la correlazione fra variabilità genetica e linguistica nelle maggiori famiglie linguistiche ma, a causa di metodi linguistici, risulta difficile comparare popolazioni derivanti da gruppi linguistici distanti. Il nuovo metodo linguistico PCM si basa sulle caratteristiche linguistiche più stabili della sintassi. È stato dunque possibile, anche in questa tesi, testare su larga scala geo-linguistica la correlazione tra dati genetici e linguistici. Lo studio delle discendenze materne e paterne è stato condotto separatamente per indagarne le relative storie di migrazione: due differenti storie sono emerse dall’analisi del Ychr (discendenza patrilineare) e del mtDNA (discendenza matrilineare). Non ovvie considerazioni sono scaturite dalla comparazione delle caratteristiche genetiche e linguistiche, che ha portato a definire come la correlazione tra lingue e sequenza genetica sia dipendente dall’area geografica e dai marcatori genetici considerati. La Parte III descrive l’analisi di sequenze di mtDNA del Mesolitico (Ms) che ci ha permesso di indagare sul popolamento della Sardegna in periodo Neolitico (Ne) e pre-Neolitico (pN). Lo studio è stato incentrato su due sequenze mitocondriali sarde Ms in relazione al contesto europeo. C’è ancora molta incertezza sulla variabilità genetica della Sardegna preistorica, a causa della scarsità di resti umani Ne. Dal punto di vista genetico, i sardi moderni possono considerarsi un gruppo a se stante rispetto al resto dell’Europa continentale, mostrando alti livelli di diversità interna e una forte vicinanza con i primi coltivatori europei del Ne. Questa tesi riporta le due prime sequenze mtDNA complete sarde, datate circa 10000 anni fa. I due individui confermano un’occupazione mesolitica dell’isola e rappresentano un aplotipo mai trovato prima in Sardegna mesolitica e con basse frequenze nell’intera Europa. Le due sequenze risultano ben differenziate se comparate con altri dati europei pN, e più simili a popolazioni dell’era pre-glaciale che a popolazioni coeve. Analisi di inferenza Bayesiana hanno mostrato come i primi abitanti dell’isola abbiano contribuito poco al popolamento attuale dell’isola, la cui diversità genetica deriva da migrazioni dal continente in tempi neolitici. Un progetto portato avanti parallelamente, ha riguardato lo studio di frequenze alleliche in gemelli dizigotici provenienti da popolazioni umane africane, europee ed asiatiche. Le tecniche bioinformatiche e biostatistiche usate per le analisi genomiche su larga scala, fanno da collante con i precedenti progetti descritti.
Hamilton, Katherine Elaine. "Structural and regulatory gene variation in Salmonid fishes." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356872.
Full textDe, Winter Gunnar. "The ecology and evolution of individual behavioural variation." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/44995/.
Full textFredman, David. "Computational exploration of human genome variation /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-025-7/.
Full textKvernes, Macpherson Carina. "Studying genetics of leaf shape variation in Arabidopsis lyrata." Thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160116.
Full textMarcar, Nico Emile. "Genotypic variation for manganese efficiency in cereals /." Title page, abstract and contents only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm313.pdf.
Full textScheet, Paul A. "A flexible and computationally tractable model for patterns of population genetic variation/." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8932.
Full textPatel, Tulsi. "Investigating genetic variation in Alzheimer's disease." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52447/.
Full textYoung, J. R. "The molecular genetics of antigenic variation in Trypanosoma brucei." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372285.
Full textForsberg, Lena. "Genetic variation and regulation of oxidative stress related genes /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4241-2/.
Full textSharkey, Andrew M. "Genetic variation in the rodent malaria parasite Plasmodium chabaudi." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/14391.
Full textWhiteley, Rachel. "Quantitative and molecular genetic variation in Ulmus laevis Pall. /." Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/s313.pdf.
Full textCardno, Alastair George. "The quantitative genetics of clinical variation in psychotic illnesses." Thesis, Cardiff University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394591.
Full textModin, Helena. "Multiple sclerosis : linkage analysis and DNA variation in a complex trait /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-792-4/.
Full textShringarpure, Suyash. "Statistical Methods for studying Genetic Variation in Populations." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/117.
Full textOchola, Harold Martin Owino. "Using genomics and population genetics to understand genetic variation in Malawi Plasmodium falciparum clinical isolates." Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/15753/.
Full textLee, Peter Daniel. "Building a model for mapping genetic variation affecting gene expression." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85931.
Full textWhittaker, S. L. "Genetics of P. infestans - variation in DNA content and ploidy." Thesis, Bangor University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280024.
Full textYue, Wei. "Characterization of genetic variation in secondary metabolites in Fusarium." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/36235.
Full textGenetics Interdepartmental Program
Christopher Toomajian
Secondary metabolites (SMs), low molecular weight molecules that are not essential for normal organism growth and development, may confer a selective advantage in some environments. Fungal SMs are structurally and functionally diverse and include mycotoxins, plant regulators and pigments, and the genes that work together in SM biosynthetic pathways are physically clustered in the genome. Fusarium, a genus of filamentous fungi, is noted for SM production, especially mycotoxins, which may contribute to plant pathogenesis. Fusarium species exhibit differences in their SM profiles, and comparative genomics studies have found corresponding differences in the SM gene clusters in some Fusarium species. The investigation of differences in the genomes and SM gene clusters between closely related species, such as F. proliferatum and F. fujikuroi, may help explain their phenotypic divergence, including differences in SM profiles. In addition, the study of intra-species SM variation may indicate how SM loci affect a pathogen’s fitness traits. My research includes three main projects that address different aspects of Fusarium SM variability. To carry out my projects, I established a feasible Genotyping-by-Sequencing (GBS) protocol for Fusarium. One project explored the genetic bases underlying phenotypic divergence related to SM profiles and pathogenicity between F. proliferatum and F. fujikuroi using a quantitative genetics approach. Specifically, I 1) constructed the first high density genetic map based on progeny from an interspecific cross between these two species; and 2) detected a novel regulatory locus for gibberellic acid production and identified a region affecting onion virulence that includes the fumonisin gene cluster. The second project characterized the F. proliferatum parent genome from the previous cross and its SM gene clusters using a comparative genomics approach. Specifically, I 1) assembled the F. proliferatum genome into 12 chromosomes with a combined length of ~43 Mb; 2) annotated this assembly and characterized its 50 SM gene clusters; and 3) detected over 100 F. proliferatum specific genes that might play roles in this species’ host specificity and plant pathogenicity. The third project used a population genomics approach to explore how different F. graminearum chemotypes, or isolates classified based on the accumulation of alternate trichothecene toxin types, may differ for fitness traits and whether trichothecene genes are directly responsible for these differences. Specifically, I 1) genotyped over 300 F. graminearum strains from New York and the upper Midwest in the U.S. and from South America using our GBS protocol; 2) detected two major subpopulations that were correlated, though imperfectly, to the predicted 3-acetyl deoxynivalenol (3ADON) and 15-acetyl deoxynivalenol (15ADON) chemotypes in the U.S.; 3) identified a rapid linkage disequilibrium decay over a few tens of kb followed by a slower decay to background levels over a distance of 200 kb to 400 kb in selected subpopulations in the U.S.; and 4) found that neither chemotype has a clear fitness advantage in a small set of isolates from New York, but that isolates belonging to one genetic subpopulation may on average have a fitness advantage over isolates from the other subpopulation.
King, Rachel, and n/a. "Spatial Structure and Population Genetic Variation in a Eucalypt Species Complex." Griffith University. Australian School of Environmental Studies, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050113.091713.
Full textKing, Rachel. "Spatial Structure and Population Genetic Variation in a Eucalypt Species Complex." Thesis, Griffith University, 2004. http://hdl.handle.net/10072/365496.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Australian School of Environmental Studies
Full Text
Judson, Olivia P. "Parasites, sex and genetic variation in a model metapopulation." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296922.
Full textGoulson, David. "Maintenance of phenotypic variation in the butterfly, Maniola jurtina." Thesis, Oxford Brookes University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293305.
Full textSmith, Thomas C. A. "Within genome variation of germ-line and somatic mutation." Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/68212/.
Full textSSEKIMPI, PUPULIO SSEMOMBWE NKUNA ABBY. "CHROMOSOME VARIATION IN DROSOPHILA SPECIES OF THE MULLERI COMPLEX." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183809.
Full textBarrera, Luis A. "Towards a Systematic Approach for Characterizing Regulatory Variation." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718710.
Full textBiophysics
Sawyer, Sarah Lynn. "Using SNPs to study complex genetic disease : a population and evolutionary genetics perspective /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-967-6/.
Full textJohansson, Åsa. "Genome Variation in Human Populations : Exploring the Effects of Demographic History and the Potential for Mapping of Complex Traits." Doctoral thesis, Uppsala University, Department of Genetics and Pathology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7293.
Full textA major challenge in human genetics is to understand the genetic variation underlying common diseases. In this thesis, I focus on forces creating differences between individuals and genomic regions, methods for characterizing genomic variation, and the association between genomic and phenotypic variation. Genetic markers are widely used to locate genes associated with different phenotypes. In my first paper, I describe novel algorithms for automatic genotype determination of microsatellite markers, a procedure which is currently both time-consuming and error prone.
The co-segregation of genetic markers in a population leads to non-random association of alleles at different loci - linkage disequilibrium (LD). LD varies throughout the genome and differs between populations due to factors such as their demographic history. In my second paper, I discuss the increased power, for mapping of human traits, that results from studying a population with appreciable levels of LD such as is found in the Swedish Sami population.
Lately, large-scale analyses of single nucleotide polymorphisms (SNPs) have become available and efforts have been made to identify a set of SNPs, which captures most of the genome variation in a population (tagSNPs). In my third paper, I describe the limitations of this approach when applied to data from an independent population sample of randomly ascertained SNPs. The transferability of tagSNPs between populations is poor, presumably due to variation in allele frequencies and the bias towards common SNPs used in most studies.
The level of genomic variation is influenced by population structure, recombination and mutation rate, as well as natural selection. During the exodus from Africa, humans have adapted to new environmental conditions. In my fourth paper, I describe a new method for identifying genomic regions carrying signatures of recent positive selection and apply this to an available dataset of millions of SNPs.