Dissertations / Theses on the topic 'Variable and anisotropic composites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Variable and anisotropic composites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chevalier, Romain. "Modélisation multi-échelles du comportement hygro-mécanique et étude de la stabilité dimensionnelle de structures composites lamellées collées aboutées en Pinus pinaster (Ait.)." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0057.
Full textThis thesis focuses on the development of a multi-scale model of the hygro-mechanical behaviour and the study of the shape stability of glued laminated timber (GLT) made of Pinus pinaster (Ait.). Wooden structures are subject to dimensional variations due to changes in climatic conditions. In the case of GLT structures, shape stability can be achieved through systematic design based on the properties of the constituent lamellae. To this end, a multi-scale model based on an exhaustive bibliographic study of the properties of Pinus pinaster (Ait.) has been developed. Using a numerical homogenisation method and a metamodel based on Non-Uniform Rational Basis-Spline (NURBS) hypersurfaces, this model provides a spatial representation of the heterogeneous, variable, and anisotropic properties of Pinus pinaster (Ait.) lamellae. In addition, configurations of GLTs, based on laminate theory, have been proposed and experimentally subjected to variations in climatic conditions. The induced displacements are measured using a digital image correlation method. Finally, a comparison of the displacements is carried out, enabling the recommendation of GLT configurations that improve the shape stability of the GLTs produced by the Gascogne Bois company
McKernan, Scott John. "Anisotropic tensile probabilistic failure criterion for composites." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA237601.
Full textThesis Advisor(s): Wu, Edward M. "June 1990." Description based on title screen as viewed on October 16, 2009. Author(s) subject terms: Composite materials, probabilistic failure criterion, combined stress. Includes bibliographical references (p. 151). Also available in print.
Bradford, Ian David Richard. "Finite deformations of highly anisotropic materials." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334952.
Full textMohamed, Abdel-Mohsen Onsy. "Performance of an anisotropic clay under variable stresses." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75342.
Full textAs a consequence to what is mentioned above, two types of consolidated undrained true triaxial tests were conducted in this study. In the first type, specimens were trimmed from the block sample with 90, 60, 30 and 0 degree orientation angles of particle's bedding planes; these angles were measured with respect to the direction of the major principal stress axis. For each degree of inclination, specimens were tested with three confining pressures 207, 276 and 345 kPa, and for each value of confining pressure, the loading path was varied from compression to tension.
The degree of dissociation between the stress and strain increment vectors was seen to depend on both initial and stress induced anisotropy.
Most important of all, a constitutive relationship for anisotropic kaolinite clay was derived on the basis of the observed experimental behaviour of soil samples under loading.
Additionally, anisotropy is characterized by a double transformation technique. The first transformation accounts for the directional dependency whilst the second transformation concerns itself with anisotropy of the base vectors. The relative joint invariant principle is used to calculate the degree of dissociation during the loading process. The variation of the dissociation angle during the loading process can be considered as a measure of the evolution of the resultant anisotropy. The model has shown to provide viable predictions of the stress-strain relationships obtained from true triaxial tests on an anisotropic kaolinite clay for: (a) different inclinations of particle's bedding planes, (b) different stress paths in one sector, (c) different stress paths in other sectors, and (d) the failure surfaces for different inclinations of particle's bedding planes in the octahedral plane. (Abstract shortened with permission of author.)
Senan, Anish Sen. "Determination of the Viscoelastic Properties of General Anisotropic Materials." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/SenanAS2003.pdf.
Full textBourn, Steven. "Anisotropic behaviour of magneto-electric coupling in multiferroic composites." Thesis, University of Central Lancashire, 2018. http://clok.uclan.ac.uk/23578/.
Full textCosta, Luan Mayk Torres. "Modélisation micromécanique à variables internes du comportement viscoélastique anisotrope des matériaux hétérogènes : applications aux composites à matrice organique." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0116.
Full textThe primary aim of this thesis is to devise a novel micromechanical approach for predicting the macroscopic viscoelastic response of heterogeneous materials. The behavior is achieved through micromechanical modeling that is based on local properties and microstructure. The effective viscoelastic properties are obtained by the use of appropriate mean-field homogenization methods. The mechanical approach is based on a Volterra integral-form functional constitutive law. Firstly, a new internal variable micromechanical formulation is obtained by utilizing the relaxation modulus. Secondly, a second micromechanical approach is developed, which employs the creep modulus and consists to the dual formulation. Using Green's function techniques, we derive integral equations that describe the heterogeneous viscoelastic problem for both cases. The main equation contains a challenging volume integral term, which necessitates the development of a second complementary integral equation. These two integral equations form the general formulation that we apply to the classical Eshelby viscoelastic inclusion problem. We employ an internal variable method that considers the material's history to be contained in its internal state. The approach is solved directly in the time domain, resulting in an exact solution with reduced computation time compared to hereditary approaches processed in the Laplace-Carson space. Our model enables us to evaluate the impact of anisotropic inclusions and to examine the influence of aging behavior on the composite viscoelastic properties. Both approaches proposed in this thesis deliver results that are consistent with those reported in the literature and offer a significant computational advantage over existing methods
Yalcin, Omer Fatih. "A Dynamic Theory For Laminated Composites Consisting Of Anisotropic Layers." Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607116/index.pdf.
Full textit contains all kinds of deformation modes of the layered composite
its validity range for frequencies and wave numbers may be enlarged by increasing, respectively, the orders of the theory and interface conditions. CM is assessed by comparing its prediction with the exact for the spectra of harmonic waves propagating in various directions of a two-phase periodic layered composite, as well as, for transient dynamic response of a composite slab induced by waves propagating perpendicular to layering. A good comparison is observed in the results and it is found that the model predicts very well the periodic structure of spectra with passing and stopping bands for harmonic waves propagating perpendicular to layering. In view of the results, the physical significance of Floquet wave number is also discussed in the study.
Searle, Timothy John. "The manufacture of marine propellers in moulded anisotropic polymer composites." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/2766.
Full textBelijar, Guillaume. "Anisotropic composite elaboration and modeling : toward materials adapted to systems." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30353/document.
Full textThis study was aimed to demonstrate the possibility, based on a predictive approach, to tailor the structure of a composite from isotropic to anisotropic when applying an electric field. This composites have great potential for future applications such as embed capacitors or thermally conductive composites. A theoretical approach of the forces and mechanisms acting in the elaboration of anisotropic composites by chaining allowed identifying the key parameters. Based on this approach a model of particle chaining under electric field was established to predict the structuration dynamics. This model (effective dipole moment) allowed simulating more than 4500 particles. The parameters previously identified were then measured, and for the particle permittivity, a dielectrophoretic measurement method was developed, which was a first for ceramic particles. The elaboration of anisotropic composites was coupled to a novel on-line monitoring of a chaining marker (permittivity), allowing to obtain the structuration dynamics. To validate the predictive aspect of the model, experimental and numerical dynamics were compared showing the robustness and accuracy of the model, even if improvement is still possible at low filler content. In the last part, a proof of concept was demonstrated of the elaboration of anisotropic composites with fillers oriented normally to the direction of the electric field
Panesar, Ajit S. "Multistable morphing composites using variable angle tows (VAT)." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574264.
Full textChoi, Hyung Jip. "On iso- and nonisothermal crack problems of a layered anisotropic elastic medium." Diss., Virginia Polytechnic Institute and State University, 1991. http://hdl.handle.net/10919/53606.
Full textPh. D.
Barakati, Amir. "Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3562.
Full textSchclar, Noemi Alejandra. "Application of the Boundary Element Method to the structural analysis of three dimensional anisotropic material." Thesis, University of Portsmouth, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334408.
Full textLi, Renfu. "A Study of Interface Crack Branching in Dissimilar Anisotropic Bimaterial Composites Including Thermal." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4893.
Full textVel, Senthil S. "Analytical Solutions for the Deformation of Anisotropic Elastic and Piezothermoelastic Laminated Plates." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30003.
Full textPh. D.
Batarseh, Melanie Turkett. "Formation of anisotropic hollow fiber membranes via thermally induced phase separation /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textVIGNOLI, LUCAS LISBOA. "A STUDY OF STRESS CONCENTRATION EFFECTS IN ANISOTROPIC MATERIALS APPLIED TO UNIDIRECTIONAL LAMINATE COMPOSITES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27721@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Entalhes e mudanças bruscas de geometria são indispensáveis na prática, mas geram uma perturbação no campo de tensões e são responsáveis pela falha da maioria dos componentes estruturais. O presente trabalho tem por objetivo estudar o efeito de concentração de tensão em materiais compósitos. O formalismo de Stroh é utilizado para obter a solução analítica da distribuição de tensão na borda de furos elípticos em placas infinitas anisotrópicas sob tensões nominais aplicados genéricas no plano. A teoria clássica dos laminados é aplicada para obter propriedades equivalentes de laminados simétricos de tal forma que o mesmo possa ser considerado uma placa ortotrópica homogênea de rigidez equivalente. Os critérios de Tsai-Wu, Puck e LaRC05 são estudados pelos seus destacados desempenhos no WWFE (World-Wide Failure Exercise) e aplicados a diversas condições de carregamentos para furos circulares e elípticos para diferentes laminados. O estado multiaxial da distribuição de tensões na borda do furo causado pelo efeito da espessura é estudado analiticamente considerando a hipótese limite de deformação plana. A análise de placas finitas é realizada utilizando o software comercial de elementos finitos ANSYS considerando-se tensão plana para comparar soluções aproximadas para as mesmas encontradas na literatura. Por último, um estudo com base na micromecânica utilizando o modelo de Halpin-Tsai para estimar as propriedades de uma lâmina em função da fração volumétrica das fibras é apresentado para avaliar a importância da mesma na concentração de tensão.
Notches and abrupt geometry variations are unavoidable in practice, but they result in stress field irregularities and are the reason for failure in majority of structural components. The aim of the present work is to study stress concentration on composite materials. To accomplish, the Stroh formalism is introduced to obtain the analytical solution of the stress distribution around the border an elliptical hole in an infinity plate subjected to general in-plane applied nominal stresses. The classical laminate theory is used to obtain equivalent properties of symmetric laminates since it could be modeled as a homogeneous plate with equivalent stiffness. Tsai-Wu, Puck and LaRC05 criteria are discussed in detail and applied for different load conditions for laminate plates with circular and elliptical holes. The multiaxial stress distribution along the hole border caused by the thickness effect is studied using the plane strain hypothesis. Finite plates are analyzed using the commercial finite element package ANSYS considering plane stress hypothesis to compare the approximation solutions available in literature. At last, a micromechanics based approach using the Halpin-Tsai model to estimate the lamina mechanical properties according to the fiber volumetric fraction is presented to evaluate its influence on stress concentration.
Tatsumi, Mio. "Studies on Novel Anisotropic Polymer Composites Synthesized from Mesomorphic Colloidal Suspensions of Cellulose Nanocrystals." Kyoto University, 2015. http://hdl.handle.net/2433/202725.
Full text0048
新制・課程博士
博士(農学)
甲第19320号
農博第2141号
新制||農||1036(附属図書館)
学位論文||H28||N4948(農学部図書室)
32322
京都大学大学院農学研究科森林科学専攻
(主査)教授 西尾 嘉之, 教授 木村 恒久, 教授 髙野 俊幸
学位規則第4条第1項該当
Setoodeh, Shahriar. "Optimal Design of Variable-Stiffness Fiber-Reinforced Composites Using Cellular Automata." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29204.
Full textPh. D.
FALLAHI, NASIM. "Analysis and Optimization of Variable Angle Tow Composites Through Unified Formulation." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2875739.
Full textYang, Fan. "An anisotropic model of damage mechanics for inelastic behaviors of fiber reinforced composite laminates /." [Hong Kong] : University of Hong Kong, 1992. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13349429.
Full textRodopoulos, C. A. "Fatigue studies under constant and variable amplitude loading in MMCs." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245575.
Full textRodeghiero, Giacomo. "Complex Anisotropic Panels and Fast Electromagnetic Imaging – CAP-FELIM." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112223.
Full textNon-Destructive Testing/Evaluation (NdT/E) of multi-layered composite materials for problems of quality, viability, safety and availability of systems involving manufactured parts (in aeronautics and in automotive industry, as a good example) has become an interesting and challenging task nowadays. The focus of the PhD thesis is on the electromagnetic (EM) imaging of complex anisotropic multi-slab composite panels as increasingly encountered in applications, yet source of strong challenges at modeling stage and even more at often-in-infancy imaging stage. From eddy-currents to microwaves, there is a strong need to make available modeling and imaging procedures that are robust, fast, accurate and useful to potential end-users’ decision about potential defects both at low-frequency (LF) (conductive materials, carbon-fiber like) and high-frequency (HF) (dielectric materials, glass-fiber like). Moreover, it is important to get the results in close-to-real-time. However, this requires an accurate response to external sources of the multilayers, considering the layers which these composite structures are made of as undamaged or damaged. The modeling at forward stage is managed via a first-order solution involving the dyadic Green’s functions (DGF) of the layers along with the depolarization tensor of the assumed defects when they are small enough vis-à-vis the skin depth (LF case) or the wavelength (HF case). The accuracy of the DGF has to be ensured even if the sources lie far away from the origin, which yields a fast-oscillating spectrum of the dyads. The Padua-Domínguez interpolation-integration technique is introduced herein in order to evaluate in an effective fashion fast-oscillating integrals.Damages or disorders, which these composite structures may suffer from, are of many kinds. One could mention voids, fluid-filled cavities or uniaxial defects with obvious impacts on the electromagnetic and geometric parameters of the multilayers. That is, the task to make available to end-users imaging algorithms tailored to detect the presence of defects. The well-known standard MUltiple SIgnal Classification (MUSIC) algorithm, which is based on the Singular Value Decomposition (SVD) of such DGF, is here applied to localize the positions of small multiple defects with weak interaction embedded in anisotropic uniaxial media. The main drawback of MUSIC is its sensitivity with respect to the noise. Therefore, MUSIC with enhanced resolution and Recursively Applied and Projected (RAP) MUSIC are introduced to overcome such a drawback of the standard algorithm and to provide quality results with better resolution
楊帆 and Fan Yang. "An anisotropic model of damage mechanics for inelastic behaviors of fiber reinforced composite laminates." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31233314.
Full textSaeidi, Farid. "Hygrothermal Fracture Analysis Of Fibrous Composites With Variable Fiber Spacing Using Jk-integral." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615370/index.pdf.
Full textLebedev, Gor. "Composites multiferroїques pour dispositifs magnéto-électriques intégrés." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00782536.
Full textFayazbakhsh, Kazem. "The impact of gaps and overlaps on variable stiffness composites manufactured by automated fiber placement." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121454.
Full textLa conception de composites à rigidité variable (où l'orientation des fibres change avec le plan du stratifié) peut améliorer les performances mécaniques du stratifié, et permettre un meilleur compromis dans les designs. Les stratifiés à rigidité variable peuvent être obtenus à l'aide du procédé de dépose automatique de fibres (AFP). Souvent, lors de la fabrication, certains défauts (espaces ou recouvrements) apparaissent et affectent les performances mécaniques du stratifié. La perte de propriétés mécanique dépend des paramètres de conception et des paramètres du procédé. Ainsi, l'objectif de ce travail de thèse est de prédire l'amélioration effective des propriétés mécaniques d'un composite stratifié à rigidité variable, en tenant compte de ces défauts. D'abord, afin d'exploiter maximum les bénéfices du design à rigidité variable, une optimisation du parcours de dépose permet de maximiser la rigidité dans le plan et la charge maximal admissible en flambage. Un rayon de courbure constant du parcours de dépose est étudié à l'aide d'un algorithme génétique. Les fibres orientées perpendiculairement à la direction de chargement peuvent augmenter la charge de flambage jusqu'à 111%. Toutefois, en considérant le rayon de courbure minimum admissible par la tête de dépose AFP, l'amélioration maximum réalisable en terme de charge de flambage se réduit à 57%. Ensuite, une méthodologie est développée pour localiser les espaces et les recouvrements et calculer leurs pourcentages surfaciques. Il est constaté qu'une augmentation du nombre de mèches par course, en conservant une largeur de mèche constante, réduit significativement le pourcentage d'espaces et recouvrements. Une réduction inférieure est obtenue si la largeur de la mèche est augmentée en conservant le même nombre total de mèches. Enfin, une stratégie, la méthode de la couche défectueuse (Defect Layer Method), est proposée pour construire un modèle d'éléments finis pour les composites à rigidité variable avec espaces et recouvrements. Cette méthode est efficace numériquement et plus précise que les méthodes proposées dans la littérature. Une analyse par éléments finis de deux matériaux composites à rigidité variable spécifique est proposée. Elle montre que les recouvrements améliorent les performances mécaniques tandis que les espaces les réduisent. En considérant le cas d'une dépose avec recouvrements, l'amélioration maximale réalisable en terme de charge de flambage est de 105% (à comparer à 56% lorsque les recouvrements sont ignorés). En considérant le cas d'une dépose avec espace, l'amélioration en charge de flambement est limitée à 40%. Des frontières d'efficacité de Pareto prennent en compte les effets des espaces et des recouvrements sont obtenues. Elles constituent d'importants principes de conception qui ont un intérêt direct pour l'industrie.
Sen, Ozge. "Transient Dynamic Response Of Viscoelastic Cylinders Enclosed In Filament Wound Cylindrical Composites." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606412/index.pdf.
Full textwhereas, the rocket motor case is a fiber-reinforced filament wound cylindrical composite. Method of characteristics is employed to obtain the solutions. Method of characteristics is suitable because the governing equations are hyperbolic. The method is amenable to numerical integration and different boundary, interface and initial conditions can be handled easily.
BEN, ZINEB TARAK. "Analyse des zones a forts gradients de contraintes dans les plaques composites elancees a profil variable." Paris, ENSAM, 1996. http://www.theses.fr/1996ENAM0004.
Full textHuber, Armin [Verfasser], and Markus [Akademischer Betreuer] Sause. "Numerical Modeling of Guided Waves in Anisotropic Composites with Application to Air-coupled Ultrasonic Inspection / Armin Huber ; Betreuer: Markus Sause." Augsburg : Universität Augsburg, 2021. http://d-nb.info/1230755314/34.
Full textParra, Martinez Juan Pablo. "On multilayered system dynamics and waves in anisotropic poroelastic media." Doctoral thesis, KTH, VinnExcellence Center for ECO2 Vehicle design, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195801.
Full textQC 20161110
Leite, Rubim Rafael. "Graphene oxide sheets confined within anisotropic fluid matrices." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0209/document.
Full textSince the discovery of graphene oxide (GO), the most accessible of the precursors of graphene, this material has been widely studied for applications in science and technology. The motivation of this work is to study with a fundamental perspective the coupling between amphiphilic bilayers, which can be seen as an anisotropic matrix formed of two-dimensional objects, and another two-dimensional object, namely the graphene oxide sheet when they are dispersed in a common solvent. The competition between the intrinsic elasticities of the bilayers and GO sheets, as well as between direct bilayer-bilayer, bilayer-GO and GO-GO interactions allows us to envisage a rich polymorphism, depending on the composition of the system. Following the development of a dedicated procedure for controlling in an extended range of GO content the binary GO-water system, the confined domain of aqueous GO dispersions was first investigated, and the ternary phase diagram then constructed. The obtained systems have been characterised, using techniques such as optical microscopy, light and x-ray scattering. Elastic and thermodynamic properties have been described by applying, and adapting to the scope of this study, models for two-component lamellar stacks
Desde sua descoberta, o grafeno oxidado (GO), o mais acessível dos precursores do grafeno,tem sido amplamente utilizado para aplicações na ciéncia e tecnologia. A motivação destetrabalho é de estudar, de um ponto de vista fundamental, o acoplamento entre bicamadas anfifílicas auto-organizadas (que podem ser vistas como uma matriz anisotrópica formada por objetos bidimensionais) e um objeto ele mesmo bidimensional, neste caso a folha de óxido de grafeno, quando estão dispersados em um solvente comum.A competição entre as elasticidades intrínsecas das bicamas e das folhas de GO, assimcomo as interaçãoes diretas bicamada-bicamada, bicamada-GO e GO-GO, permitem esperar um rico polimorfismo em função da composição do sistema. Seguindo o desenvolvimento de um procedimento destinado ao controle, em um intervalo extendido da quantidade de GO, o sistema binário GO-água, o domínio confinado de dispersões aquosas de GO foi explorado e, em seguida, o diagrama de fases ternário contruído.Os sistemas obtidos foram caracterizados por t_ecnicas como microscopia ótica, espalhamento dinâmico de luz e espalhamento de raios-x à baixos ângulos. As propriedadeselásticas e termodinâmicas foram descritas pela aplicação de modelos inicialmente concebidos para fases lamelares à dois constituintes e adaptados ao escopo deste estudo
Bacco, Giacomo. "Advanced Design and Optimization of Anisotropic Synchronous Machines." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423172.
Full textQuesto lavoro analizza molti aspetti di ricerca dei motori sincroni anisotropi, che includono le macchine sincrone a riluttanza pura (SyR), a riluttanza assistita da magneti (PMaSyR) e le macchine a magneti permanenti interni (IPM). Infatti, tutte queste macchine esibiscono una forte componente di riluttanza, da cui il nome anisotrope. Dai primi anni 2000, la progettazione di macchine elettriche ha cominciato a basarsi in modo consistente sull’analisi agli elementi finiti (FEA) accoppiata ad algoritmi di ottimizzazione automatici. Questo flusso di lavoro permette al progettista di fare un minor numero di ipotesi preliminari e di esplorare uno spazio di progetto più ampio. Gli svantaggi di questo approccio sono che il tempo richiesto è lungo e che le risorse computazionali richieste possono essere elevate. Tuttavia, le prestazioni dei computer migliorano di anno in anno, e in particolar modo con la diffusione delle architetture a multi-processore. Pertanto oggigiorno è comune impiegare decine o persino centinaia di core su cluster di PC per effettuare analisi agli elementi finiti durante un’ottimizzazione. La tesi è strutturata nel seguente modo. La prima parte copre le conoscenze di base necessarie a sviluppare gli argomenti trattati nel seguito. C’è quindi un’introduzione alle macchine studiate, delle conoscenze generali sui materiali magnetici e ferromagnetici, alcuni concetti di base sull’algoritmo di ottimizzazione differential evolution (DE) utilizzato, e il disegno delle barriere fluide dei rotori di macchine a riluttanza. Nella seconda parte si sono sviluppati modelli analitici di macchine SyR e PMaSyR. Il modello completo è non lineare e può diventare abbastanza complesso da sviluppare, specialmente in un contesto industriale. Pertanto, usando alcune ipotesi semplificative, si possono derivare alcune semplici equazioni di progetto. Questo modello semplice è anche esteso e applicato a strutture di rotore asimmetriche, che tentano di compensare alcune armoniche di coppia. La terza parte si concentra sull’applicazioni di ottimizzazioni multiobiettivo accoppiate a FEA per alcuni casi di studio. In particolare, si è ottimizzato, prototipato e testato un motore SyRper pompe centrifughe. Poi, è stato condotto uno studio di fattibilità per un motore PMaSyR attraverso ottimizzazioni multi-obiettivo. Dopodiché si sono studiati motori SyRper alte velocità e si sono dedotti i limiti di potenza di questa macchina. Infine l’ottimizzazione DE multi-obiettivo è stata anche applicata per migliorare le capacità di controllo sensorless delle macchine anisotrope già in fase di progetto.
Bagault, Caroline. "Mechanical contact for layered anisotropic materials using a semi-analytical method." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00940377.
Full textDucoulombier, Nicolas. "Anisotropic concrete : 3D priting of concrete reinforced by long fibers, process, characterisation et modelisation." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2070.
Full textThis work focuses on the reinforcement strategies for large scale additive manufacturing of cementitious materials. This new process allows an important geometrical complexity for constructive elements, generally consuming a lot of material and human resources. In addition, it makes it theoretically possible to industrialize the manufacture of singular constructive elements, for example optimized to meet a given mechanical load. However, there is currently no standardized reinforcement method for obtaining the tensile strength and ductility required for their use in building structures. This severely limits their use in practice.While many reinforcement methods are considered in the literature for the 3D-printed cementitious materials, they are a direct transcription of the traditional reinforcement methods such as fibre-reinforced concrete, passive reinforcement and post-tension method. This thesis work proposes an alternative reinforcement process, patented during this thesis work, which takes advantage of the specificity of the extrusion process. Many continuous reinforcements can be inserted before the extrusion die and driven by the flow of the cementitious material, the latter providing the force necessary for the unwinding of each individual continuous reinforcements. The extruded material is then a unidirectional cementitious matrix composite reinforced by many continuous fibers aligned in the direction of the printing path.This work then defines the specifications of the process in terms of rheological properties of the cementitious matrix at the time of deposition and the type of reinforcement to be preferred, allowing good cohesion between the reinforcements and the cementitious matrix necessary for the development of a significant tensile reinforcement. The mechanical behaviour of the interface is also precisely studied thanks to the development of dedicated micromechanical tests and the observation of the damage by X-ray microtomography. The perspectives of this work are the characterization and multi-scale modeling of the behavior of the cementitious matrix composite and the proposal of innovative constructive systems
Post, Nathan L. "Reliability based design methodology incorporating residual strength prediction of structural fiber reinforced polymer composites under stochastic variable amplitude fatigue loading." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26492.
Full textPh. D.
Blanco, Villaverde Norbert. "Variable mixed-mode delamination in composite laminates under fatigue conditions: testing & analysis." Doctoral thesis, Universitat de Girona, 2005. http://hdl.handle.net/10803/7760.
Full textMost of the failures in structural elements in use are a consequence of mechanical fatigue. Therefore, fatigue is a decisive factor in designing durable mechanical elements. In laminated composite materials, the fatigue process involves different damage mechanisms that result in the degradation of the material. One of the most important damage mechanisms is the delamination between plies of the laminate. In aeronautical applications, composite plates are sensitive to impact and delamination occurs readily in composite laminates on impact. Many composite components have curved shapes, tapered thickness and plies with different orientations, which make the delamination grow with a mode mix that depends on the extent of the crack. Thus, delaminations generally grow under varying mode mix. It is therefore important to develop methods that can characterise subcritical, mixed-mode growth in fatigue delamination. The main objective of the present investigation is the characterisation of the variable mixed-mode delamination in composite laminates under fatigue conditions. To this end, a mixed-mode fatigue delamination model is proposed. Oppositely to the mixed-mode fatigue delamination models present in the literature, the proposed model takes into account the non-monotonic variation of the propagation parameters with the mode mix observed in different experimental data. Moreover, the mixed-mode end load split (MMELS) test, which main characteristic is that the propagation mode of the interlaminar crack varies with the crack extent, is analysed. Two theoretical approaches present in the literature are considered. However, the resulting expressions for the MMELS test are not equivalent and the differences between approaches can be up to 50 times. A more accurate alternative analysis of the MMELS test is carried out in the present study for comparison. The alternative analysis is based on the finite element method and the virtual crack closure technique. Significant findings are found for precise materials characterisation using the MMELS test. A MMELS test rig is also designed and built. Different specimens of essentially unidirectional carbon/epoxy laminates are tested for the experimental characterisation of fatigue delamination under varying mode mix. A fractographic analysis is also conducted in some of the delaminated fracture surfaces. The experimental results are compared to the predictions of a proposed model for the fatigue propagation of interlaminar cracks.
Zoukel, Abdelhalim. "Etude des phénomènes d’interaction faisceau d’électrons-gaz-matière dans un MEB à pression variable : Applications aux matériaux composites (polymères, céramiques et métaux)." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10161/document.
Full textScanning electron microscope (SEM) is an essential technique to characterize materials. The new generation of SEMs known as a variable pressure SEM (also named environmental SEM) allows to work under less drastic conditions of pressure and voltage. However, the imaging and chemical microanalysis face a major challenge with regard to the scattering of the primary electron beam by the atoms/molecules of the gas medium. This phenomenon of beam skirting leads to the appearance of several artifacts beyond those familiar in conventional SEM. The main recognized artifact is the degradation of the spatial resolution which is delineated by the high-vacuum interaction volume. The objectives of the research reported herein were: (i) to study the magnitude and the extent of the electron beam skirt. (ii) and the development of an original and new methodology in order to deal with the effect of the electron beam skirt on the spatial resolution. The effectiveness of this study is demonstrated by its ability to quantify the effects of some experimental parameters on the degradation of the spatial resolution. Further, the new methodology proposed is a valuable asset to keep the ultimate spatial resolution obtained at high vacuum mode. This depend strongly on the new interaction volume (called the low-vacuum interaction volume) created by both scattered and unscattered fraction of the electron beam
Zoukel, Abdelhalim. "Etude des phénomènes d’interaction faisceau d’électrons-gaz-matière dans un MEB à pression variable : Applications aux matériaux composites (polymères, céramiques et métaux)." Electronic Thesis or Diss., Lille 1, 2013. http://www.theses.fr/2013LIL10161.
Full textScanning electron microscope (SEM) is an essential technique to characterize materials. The new generation of SEMs known as a variable pressure SEM (also named environmental SEM) allows to work under less drastic conditions of pressure and voltage. However, the imaging and chemical microanalysis face a major challenge with regard to the scattering of the primary electron beam by the atoms/molecules of the gas medium. This phenomenon of beam skirting leads to the appearance of several artifacts beyond those familiar in conventional SEM. The main recognized artifact is the degradation of the spatial resolution which is delineated by the high-vacuum interaction volume. The objectives of the research reported herein were: (i) to study the magnitude and the extent of the electron beam skirt. (ii) and the development of an original and new methodology in order to deal with the effect of the electron beam skirt on the spatial resolution. The effectiveness of this study is demonstrated by its ability to quantify the effects of some experimental parameters on the degradation of the spatial resolution. Further, the new methodology proposed is a valuable asset to keep the ultimate spatial resolution obtained at high vacuum mode. This depend strongly on the new interaction volume (called the low-vacuum interaction volume) created by both scattered and unscattered fraction of the electron beam
Marchetti, Fabien. "Modelling and characterisation of anisotropic multilayered plates on a wide frequency range." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI130.
Full textThis PhD thesis concerns the modelling and the dynamic characterisation of anisotropic multilayered structures. In the first chapter, a classification of some analytical models and experimental methods of characterisation is presented in the form of a bibliographical synthesis where the main published results are gathered. The second chapter introduces an extension of an equivalent model of multilayered structures to the case of anisotropic materials. This model describes the first dispersion curves of the structure and considers the shear phenomena that can affect the bending mode in high frequencies. The main advantage of the model lies in its simplicity and rapidity thanks to a number of kinematic variables independent of the number of layers. The characteristics of the multilayer are defined by the 5 flexural rigidities of a thin equivalent plate which is compared to the multilayer. The results of the model are validated by means of an experimental study on carbon fiber composite plates. A particular interest is dedicated to the modelling of structural damping. An energetic loss factor, based on a temporal and spatial definition of the attenuation, is compared to an equivalent one. A new definition of the spatial attenuation is suggested for high damped structures and is compared to literature. In the third chapter, the methodology of the characterisation technique CFAT is adapted for anisotropic plates. This inverse method is based on the displacement field analysis of the structure and has, by means of its local aspect, relevant advantages for industrial applications. This adaptation is, as a first step, introduced for the identification of sources (initial objective of the method) and applied, in a second step, for the characterisation. Several numerical and experimental applications are presented to validate the results of the method. Finally, the fourth chapter deals with the experimental characterisation of a honey comb sandwich on a high frequency range (1 to 300 kHz). The complex dynamic behaviour of this thick structure is described through the promissing results given by the simulations of our model and the estimations of RIC. These results are also compared to the ones of a reference model and other characterisation methods
Le, Thi Huyen Cham. "Robust variable kinematics plate finite elements for composite structures." Thesis, Paris 10, 2019. http://faraway.parisnanterre.fr/login?url=http://bdr.parisnanterre.fr/theses/intranet/2019/2019PA100053/2019PA100053.pdf.
Full textThe aim of this work is the development of two classes of new four-node and eightnode quadrilateral finite elements implemented into the commercial finite element (FE) code Abaqus for composite plates. Variable kinematics plate models are formulated in the framework of Carrera’s Unified Formulation (CUF), which encompasses Equivalent Single Layer (ESL) as well as Layer-Wise (LW) models, with the variables that are defined by polynomials up to 4th order along the thickness direction z. The two classes refer to two variational formulations that are employed to derive the finite elements matrices, namely the Principle of Virtual Displacement (PVD) and Reissner’s Mixed Variational Theorem (RMVT). Thanks to the static condensation technique, a Hybrid formulation based on the RMVT is derived. For the purpose of eliminating the shear locking pathology, two field compatible approximations for only the z−constant transverse shear strain terms, referred to as QC4 and CL8 interpolations, are extended to all variable kinematics CUF plate elements. Moreover, the QC4S and CL8S interpolations, are also introduced for the transverse shear stress field within RMVT-based and Hybrid mixed-based elements. Numerical results in comparison with those available in literature show that the proposed FEs are efficient for modeling a robust finite elements
Jeancolas, Antoine. "Étude expérimentale et modélisation micromécanique du comportement de composites hybrides : optimisation de la conductivité thermique." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0285/document.
Full textThe increase of electronic components in the integrated circuits and the required electrical power set the question of the dissipation of the heat generated. The electrical box must favor the heat dissipation while maintaining electrical insulation. The solution chosen to transfer the heat is to develop composite materials whose reinforcements by their structure will improve the thermal conductivity. Polymer-based composite materials were chosen for their building ability. Thermal conductivity and electrical insulation are insured by ceramic reinforcements. The homogenization methods allow to improve the composites’ design according to the properties of their constituents, their geometry and their distribution. They thus provide an optimized formulation of materials satisfying the characteristics emanating from the industrial partner (‘Institut de Soudure’). The expected thermal conductivity of the composites imposes a high volume fraction of reinforcements to counterbalance the insulating polymer matrix. Homogenization methods have been developed to provide predictions of effective thermal conductivity for high (greater than 20%) reinforcement rates and high thermal conductivity contrasts. The presence of an interphase resulting from strong physico-chemical incompatibilities between the components must also be modeled
Nguyen, Van Quang. "Méthodes d'éclatement basées sur les distances de Bregman pour les inclusions monotones composites et l'optimisation." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066183/document.
Full textThe goal of this thesis is to design splitting methods based on Bregman distances for solving composite monotone inclusions in reflexive real Banach spaces. These results allow us to extend many techniques that were so far limited to Hilbert spaces. Furthermore, even when restricted to Euclidean spaces, they provide new splitting methods that may be more avantageous numerically than the classical methods based on the Euclidean distance. Numerical applications in image processing are proposed
Jeancolas, Antoine. "Étude expérimentale et modélisation micromécanique du comportement de composites hybrides : optimisation de la conductivité thermique." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0285.
Full textThe increase of electronic components in the integrated circuits and the required electrical power set the question of the dissipation of the heat generated. The electrical box must favor the heat dissipation while maintaining electrical insulation. The solution chosen to transfer the heat is to develop composite materials whose reinforcements by their structure will improve the thermal conductivity. Polymer-based composite materials were chosen for their building ability. Thermal conductivity and electrical insulation are insured by ceramic reinforcements. The homogenization methods allow to improve the composites’ design according to the properties of their constituents, their geometry and their distribution. They thus provide an optimized formulation of materials satisfying the characteristics emanating from the industrial partner (‘Institut de Soudure’). The expected thermal conductivity of the composites imposes a high volume fraction of reinforcements to counterbalance the insulating polymer matrix. Homogenization methods have been developed to provide predictions of effective thermal conductivity for high (greater than 20%) reinforcement rates and high thermal conductivity contrasts. The presence of an interphase resulting from strong physico-chemical incompatibilities between the components must also be modeled
Lasseigne, Alexis. "Optimization of variable-thickness composite structures. Application to a CROR blade." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEM006/document.
Full textThis thesis deals with the optimal design of variable-thickness laminated composite structures. The stacking variables define a combinatorial optimization problem and large decision spaces which are potentially multimodal. Stochastic optimization algorithms allow solving this type of problem and allow taking advantage from the performance and the anisotropic nature of unidirectional composite plies to lighten laminated composite structures.The purpose of this study is twofold: (i) developing an optimization algorithm dedicated to variable-thickness laminated composites and (ii) assessing the potential of laminated composites in influencing the aerodynamic performances of a composite CROR blade.Firstly, an evolutionary algorithm is specialized in order to optimize layup tables and handle a set of design guidelines which is representative of industrial practices. In this purpose, a specific encoding of the solutions is suggested and specialized variation operators are developed.Secondly, the algorithm is enriched with a guiding technique based on the exploitation of an auxiliary space in order to improve its efficiency and to include further composites-related knowledge for the resolution of the problem.Finally, the method is applied for the design of a reduced-scale composite CROR blade intended for wind-tunnel testing. Beforehand, iterative processes are implemented to estimate the shape of the non-operating blade and the stress state within the operating blade
Androuin, Guillaume. "Caractérisation de la propagation de délaminage en fatigue : essais à résonance et sollicitation à amplitude variable." Thesis, Toulouse, ISAE, 2018. http://www.theses.fr/2018ESAE0004/document.
Full textThe detection of damage in composite aeronautical structures is carried out duringmaintenance phases. These operations are planned so that damage is detected beforereaching any critical size for the in-service structures. The optimization of maintenanceintervals is therefore of great interest both financially and operationally. Damage in composites structures is currently dealt through the no-growth approach :when damage appears and is detected, the affected parts are immediately repaired orreplaced. In order to improve the maintenance schedule, the behaviour of defects subjectedto aeronautical load spectra needs to be characterized. This would enable a transitiontowards a damage tolerance philosophy with a slow-growth approach by defining noncriticalpropagation phases for the mechanical strength of structures. In this context, delamination propagation under fatigue loading is studied. The effectsof loading frequency and load ratio on fatigue delamination propagation are determinedin mode I. Then a study of delamination propagation under complex load spectra isconducted for blocks at different loading amplitudes. Effects of the loading history arehighlighted. For the propagation in mode II, loading frequency effects on delamination propagationare investigated for four different composite materials using a dedicated vibration testingdevice. A thermal analysis is also conducted during high frequency tests. In addition, loadratio effects are determined for this propagation mode
Yang, Guanda [Verfasser], Dirk [Akademischer Betreuer] Schubert, Fritjof [Akademischer Betreuer] Nilsson, Dirk [Gutachter] Schubert, Fritjof [Gutachter] Nilsson, Georg [Gutachter] Fischer, and Kyle [Gutachter] Webber. "Big Data Analysis and Simulation Platform for Anisotropic Electrically Conductive Composites -Validation Utilizing PMMA and Carbon Filler / Guanda Yang ; Gutachter: Dirk Schubert, Fritjof Nilsson, Georg Fischer, Kyle Webber ; Dirk Schubert, Fritjof Nilsson." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1228214735/34.
Full textAkoussan, Komlan. "Modélisation et conception de structures composites viscoélastiques à haut pouvoir amortissant." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0188/document.
Full textModeling and design of composite viscoelastic structures with high damping powerThe aim of this thesis is to develop numerical tools to determine accurately damping properties of composite sandwich structures for the design of lightweight viscoelastic sandwichs structures with high damping power. In a first step, we developed a generic tool implemented in Matlab for determining damping properties in free vibration of viscoelastic sandwich plates with laminate faces composed of multilayers. The advantage of this tool, which is based on a finite element formulation, is its ability to take into account the anisotropy of composite layers, the material non-linearity of the viscoelastic core induiced by the frequency-dependent viscoelastic laws and various boundary conditions . The nonlinear complex eigenvalues problem is solved by coupling homotopy technic, asymptotic numerical method and automatic differentiation. Then for the continuous study of a modeling parameter on damping properties of viscoelastic sandwichs, we proposed a generic method to solve the nonlinear residual complex eigenvalues problem which has in addition to the frequency dependence introduced by the viscoelastic core, a modeling parameter dependence that describes a very specific study interval. This resolution is based on asymptotic numerical method, automatic differentiation, homotopy technique and continuation technic and takes into account various viscoelastic laws. We propose after that, two separate formulations to study effects on the damping properties according to two modeling parameters which are important in the design of high viscoelastic sandwichs with high damping power. The first is laminate fibers orientation in the sandwich reference and the second is layers thickness which when they are well defined allow to obtain not only sandwich structures with high damping power but also very light. The highly nonlinear complex eigenvalues problems obtained in these formulations are solved by the new method of resolution of eigenvalue residual problem with two nonlinearity developed before. Comparisons with discrete results and computation time are made to show the usefulness of these two formulations and of the new method of solving nonlinear complex eigenvalues residual problem of two dependances
Ridha, Hashem M. "The effect of using variable curing light types and intensities on the parameters of a mathematical model that predicts the depth of the cure of light-activated dental composites." Connect to resource online, 2009. http://hdl.handle.net/1805/2082.
Full textTitle from PDF t.p. (viewed Feb. 5, 2010) Advisor(s): John A. Levon, Chair of the Research Committee, Carl J. Andres, Tien-Min Gabriel Chu, David Brown, Suteera Hovijitra. Curriculum vitae. Includes abstract. Includes bibliographical references (leaves 66-69).