Academic literature on the topic 'Vapor-gas mixture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vapor-gas mixture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vapor-gas mixture"

1

Kryukov, A. P., V. Yu Levashov, and I. N. Shishkova. "Evaporation in mixture of vapor and gas mixture." International Journal of Heat and Mass Transfer 52, no. 23-24 (November 2009): 5585–90. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gorpinyak, M. S., and A. P. Solodov. "Vapor–Gas Mixture Condensation in Tubes." Thermal Engineering 66, no. 6 (May 31, 2019): 388–96. http://dx.doi.org/10.1134/s004060151906003x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kryukov, A. P., V. Yu Levashov, and N. V. Pavlyukevich. "Condensation from a vapor-gas mixture." Journal of Engineering Physics and Thermophysics 83, no. 4 (September 2010): 679–87. http://dx.doi.org/10.1007/s10891-010-0390-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hai, Duong Ngoc, and Nguyen Van Tuan. "Shock adiabat analysis for the mixture of liquid and gas of two components." Vietnam Journal of Mechanics 22, no. 2 (June 30, 2000): 101–10. http://dx.doi.org/10.15625/0866-7136/9968.

Full text
Abstract:
The liquid and gas mixture is met in many natural and industrial processes. In the paper, the investigation results of shock waves, propagated in the liquid and two-component gas (one component is neutral, the other is condensed) mixture, are presented. The influence of the relative gas ratios, initial gas volume, wave intensity etc. on the main wave characteristics, is analyzed and illustrated as examples for two mixtures. The first is a mixture of water and gas (air and water vapor). The second is a mixture of crude oil and gas (one component is soluble, the other is insoluble).
APA, Harvard, Vancouver, ISO, and other styles
5

Kozlyuk, A. I., N. V. Karyagina, and V. L. Makarenko. "Process parameters in vapor-gas mixture generation." Combustion, Explosion, and Shock Waves 20, no. 5 (1985): 551–53. http://dx.doi.org/10.1007/bf00782249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Корценштейн, Н. М. "Охлаждение парогазовой смеси испаряющимися каплями воды." Письма в журнал технической физики 48, no. 11 (2022): 41. http://dx.doi.org/10.21883/pjtf.2022.11.52613.19199.

Full text
Abstract:
A model of thermal relaxation in the flow of a hot vapor–gas mixture and cold water droplets is presented. Numerical modeling of vapor and gas cooling during heating and evaporation of droplets has been carried out. Approximation expressions are obtained for the cooling time of vapor and gas in a given temperature range depending on the initial radius of droplets, the mass fraction of droplets, and the initial composition of the vapor-gas mixture.
APA, Harvard, Vancouver, ISO, and other styles
7

Solovjov, Vladimir P., and Brent W. Webb. "An Efficient Method for Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot." Journal of Heat Transfer 123, no. 3 (November 3, 2000): 450–57. http://dx.doi.org/10.1115/1.1350824.

Full text
Abstract:
An efficient approach for predicting radiative transfer in high temperature multicomponent gas mixtures with soot particles is presented. The method draws on the previously published multiplication approach for handling gas mixtures in the spectral line weighted-sum-of-gray-gases (SLW) model. In this method, the gas mixture is treated as a single gas whose absorption blackbody distribution function is calculated through the distribution functions of the individual species in the mixture. The soot is, in effect, treated as another gas in the mixture. Validation of the method is performed by comparison with line-by-line solutions for radiative transfer with mixtures of water vapor, carbon dioxide, and carbon monoxide with a range of soot loadings (volume fractions). Comparison is performed also with previously published statistical narrow band and classical weighted-sum-of-gray-gases solutions.
APA, Harvard, Vancouver, ISO, and other styles
8

Volkov, Roman S., Ivan S. Voytkov, and Pavel A. Strizhak. "Temperature Fields of the Droplets and Gases Mixture." Applied Sciences 10, no. 7 (March 25, 2020): 2212. http://dx.doi.org/10.3390/app10072212.

Full text
Abstract:
In this research, we obtain gas–vapor mixture temperature fields generated by blending droplets and high-temperature combustion products. Similar experiments are conducted for droplet injection into heated air flow. This kind of measurement is essential for high-temperature and high-speed processes in contact heat exchangers or in liquid treatment chambers, as well as in firefighting systems. Experiments are conducted using an optical system based on Laser-Induced Phosphorescence as well as two types of thermocouples with a similar measurement range but different response times (0.1–3 s) and accuracy (1–5 °C). In our experiments, we inject droplets into the heated air flow (first scheme) and into the flow of high-temperature combustion products (second scheme). We concentrate on the unsteady inhomogeneous temperature fields of the gas–vapor mixture produced by blending the above-mentioned flows and monitoring the lifetime of the relatively low gas temperature after droplets passes through the observation area. The scientific novelty of this research comes from the first ever comparison of the temperature measurements of a gas–vapor–droplet mixture obtained by contact and non-contact systems. The advantages and limitations of the contact and non-contact techniques are defined for the measurement of gas–vapor mixture temperature.
APA, Harvard, Vancouver, ISO, and other styles
9

Bolotnova, R. Kh, U. O. Agisheva, and V. A. Buzina. "Features of spatial shock-wave flows in vapor-gas-liquid mixtures." Proceedings of the Mavlyutov Institute of Mechanics 10 (2014): 27–31. http://dx.doi.org/10.21662/uim2014.1.005.

Full text
Abstract:
The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.
APA, Harvard, Vancouver, ISO, and other styles
10

Mathis, Hélène. "A thermodynamically consistent model of a liquid-vapor fluid with a gas." ESAIM: Mathematical Modelling and Numerical Analysis 53, no. 1 (January 2019): 63–84. http://dx.doi.org/10.1051/m2an/2018044.

Full text
Abstract:
This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid and its vapor. Since the gas and the vapor are miscible, the mixture is subjected to a non-symmetric constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium entropy of the system allows to recover the Dalton’s law between the two gaseous phases. In addition, we distinguish whether phase transition occurs or not between the liquid and its vapor. The thermodynamical equilibria are described both in extensive and intensive variables. In the latter case, we focus on the geometrical properties of equilibrium entropy. The consistent characterization of the thermodynamics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM) depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM) for the three-phase mixtures with and without phase transition. Supplementary equations on mass, volume and energy fractions are considered with appropriate source terms which model the relaxation towards the thermodynamical equilibrium, in agreement with entropy growth criterion.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Vapor-gas mixture"

1

McGhee, Samuel H. "Prediction of film condensation and aerosol formation in a gas-vapor mixture flow through a vertical tube." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-08222009-040408/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Рачинський, Артур Юрійович. "Гідродинаміка і тепломасообмін в контактному утилізаторі теплоти газокрапельного типу." Thesis, КПІ ім. Ігоря Сікорського, 2017. https://ela.kpi.ua/handle/123456789/19313.

Full text
Abstract:
Роботу присвячено експериментальним дослідженням, що направлені на підвищення ефективності роботи контактних тепломасообмінних апаратів шляхом збільшення міжфазної поверхні тепломасообміну при розпилені рідини відцентровими форсунками, впровадження яких приводить до суттєвої економії матеріальних та енергетичних ресурсів. Виконано комплексні експериментальні дослідження характеристик факелу розпилу рідини (густини зрошення, кута розкриття факела форсунки, середнього об’ємно-поверхневого діаметра крапель рідини). Встановлено вплив вхідних параметрів на відповідні характеристики та визначено площу поверхні крапель розпиленої рідини. Експериментально встановлено значення граничної температури нагріву води та її залежність від початкового паровмісту, при якій вода нагрівається до граничної температури в залежності від початкового паровмісту й витрати сухого повітря. Визначено параметричні границі ефективного використання відцентрової механічної форсунки без випаровування крапель нагрітої рідини. Експериментально досліджено інтенсивність тепло- і масоовіддачі в контактному апараті газокрапельного типу з відцентровою форсункою в умовах утилізації теплоти відхідних газів енергетичних агрегатів. Вперше отримано емпіричні залежності для розрахунку середніх коефіцієнтів тепловіддачі та масовіддачі, які відносяться до дійсної поверхні крапель розпиленої води. Встановлено особливості процесів переносу в газокрапельній системі та отримано узагальнювальні залежності для процесів тепло- і масовіддачі. На основі експериментальних досліджень характеристик розпилу та процесів тепломасообміну при конденсації пари з парогазової суміші на краплях розпиленої рідини розроблено методику розрахунку крапельного контактного утилізаційного апарату.
Dissertation is devoted to experimental research, aimed at improving the efficiency of contact heat and mass transfer units by increasing the interfacial surface of heat and mass transfer during the liquid spraying by centrifugal nozzles, implementation of which results in significant savings of material and energy resources. Comprehensive experimental study of the characteristics of the liquid spraying torch (irrigation density, expansion angle of nozzle torch, the average volume-surface diameter of liquid droplets) was done. The influence of input parameters to the relevant properties was shown and surface area of the sprayed liquid droplets was defined. The limit temperature of water heating and its dependence on initial vapor content in which water is heated to the limit temperature depending on the initial vapor content and dry air output were experimentally set. The parametric borders of effective use of centrifugal mechanical nozzle without evaporation of heated liquid drops were defined. Intensity of heat and mass transfer in the contact gas-droplet unit with centrifugal nozzle in terms of heat utilization of energy units’ exhaust gases was experimentally researched. The empirical dependences for calculating the average heat transfer and mass transfer coefficients relating to the actual surface of the sprayed liquid droplets are obtained for the first time. The peculiarities of transfer processes in the gas-droplet system were determined and generalized dependence for heat and mass transfer were received. Based on experimental studies of spraying characteristics and heat and mass transfer processes at vapor condensation from vapor-gas mixture on the sprayed liquid droplets, the method of calculating the droplet contact utilization unit was developed.
Диссертация посвящена исследованиям, направленным на повышение эффективности работы контактных аппаратов путем увеличения межфазной поверхности теплообмена путем распыления жидкости, внедрение которых приводит к существенной экономии материальных и энергетических ресурсов. Работа содержит результаты экспериментальных исследований характеристик распыла и процессов тепломассоотдачи при конденсации пара из парогазовой смеси на каплях распыленной жидкости. Исследовано влияние температуры и давления воды на тонкость распыла (величину среднего объемно-поверхностного диаметра капель) для центробежной форсунки в параметрических условиях ее работы и применительно к условиям работы контактного утилизатора теплоты отходящих газов. На основании проведенных опытов получены новые зависимости величины среднего объемно-поверхностного диаметра капель для параметров распыливания жидкости с помощью центробежной форсунки в новом диапазоне изменения избыточного давления и температуры воды перед форсункой. В результате теоретического анализа движения капель жидкости в факеле распыления центробежной форсунки и использования экспериментальных данных по средним объемно-поверхностным диаметрам капель предложена методика определения действительной межфазной поверхности процессов тепломассообмена в контактных газожидкостных аппаратах капельного типа. Экспериментально определена зависимость граничной температуры нагрева воды в контактном аппарате газокапельного типа с центробежной форсункой применительно к условиям утилизации теплоты отходящих газов энергетических агрегатов. Исследования проведены в диапазоне избыточных давлений воды перед форсункой (0,2–0,6) МПа и объемной доли водяных паров парогазовой смеси на входе в аппарат от 0,02 до 0,45. Показано использование полученной зависимости для рас чета предельных значений параметров парогазового потока, ограничивающих область эффективной работы контактного аппарата с конденсацией пара и отсутствием режима испарения капель нагретой жидкости. Экспериментально определена интенсивность тепло- и массоотдачи в контактном аппарате газокапельного типа с центробежной форсункой в условиях утилизации теплоты отходящих газов энергетических агрегатов. Исследование проведены в диапазоне избыточного давления воды перед форсункой (0,2 - 0,6) МПа и объемной долей водяного пара парогазовой смеси на входе в аппарат от 0,08 до 0,35. По результатам экспериментальных исследований определены коэффициенты тепло- и массоотдачи, которые были отнесены к реальной поверхности капель. Полученные в работе результаты экспериментальных исследований коэффициентов тепло- и массоотдачи сравнивались с известными литературными данными для одиночной капли. Установлено, что интенсивность теплоотдачи для капель жидкости с парогазовым потоком выше, чем для одиночной капли, а для массоотдачи, ниже. Установлены особенности процессов переноса в газокапельной системе и получены обобщающие зависимости для процессов тепло- и массообмена для факела капель конуса распыла. В результате указанного комплекса работ предложена методика теплового расчета контактного газокапельного утилизатора теплоты низкотемпературных отходящих газов при распылении жидкости механической центробежной форсункой, которая учитывает реальные условия протекания процессов переноса в рассматриваемой двухфазной системе. Приведенная процедура теплового расчета утилизационной установки позволяет при заданных параметрах отходящих газов и воды на входе получить тип и количество распылителей для генерирования капель воды, выполнить компоновку в штатном коробе для отвода газов, рассчитать параметры теплоносителей на выходе с установки и определить ее теплопроизводительность.
APA, Harvard, Vancouver, ISO, and other styles
3

Рачинський, Артур Юрійович. "Гідродинаміка і тепломасообмін в контактному утилізаторі теплоти газокрапельного типу." Doctoral thesis, Київ, 2017. https://ela.kpi.ua/handle/123456789/19312.

Full text
Abstract:
Роботу присвячено експериментальним дослідженням, що направлені на підвищення ефективності роботи контактних тепломасообмінних апаратів шляхом збільшення міжфазної поверхні тепломасообміну при розпилені рідини відцентровими форсунками, впровадження яких приводить до суттєвої економії матеріальних та енергетичних ресурсів. Виконано комплексні експериментальні дослідження характеристик факелу розпилу рідини (густини зрошення, кута розкриття факела форсунки, середнього об’ємно-поверхневого діаметра крапель рідини). Встановлено вплив вхідних параметрів на відповідні характеристики та визначено площу поверхні крапель розпиленої рідини. Експериментально встановлено значення граничної температури нагріву води та її залежність від початкового паровмісту, при якій вода нагрівається до граничної температури в залежності від початкового паровмісту й витрати сухого повітря. Визначено параметричні границі ефективного використання відцентрової механічної форсунки без випаровування крапель нагрітої рідини. Експериментально досліджено інтенсивність тепло- і масоовіддачі в контактному апараті газокрапельного типу з відцентровою форсункою в умовах утилізації теплоти відхідних газів енергетичних агрегатів. Вперше отримано емпіричні залежності для розрахунку середніх коефіцієнтів тепловіддачі та масовіддачі, які відносяться до дійсної поверхні крапель розпиленої води. Встановлено особливості процесів переносу в газокрапельній системі та отримано узагальнювальні залежності для процесів тепло- і масовіддачі. На основі експериментальних досліджень характеристик розпилу та процесів тепломасообміну при конденсації пари з парогазової суміші на краплях розпиленої рідини розроблено методику розрахунку крапельного контактного утилізаційного апарату.
APA, Harvard, Vancouver, ISO, and other styles
4

Srzi´c, Vlajko. "Modeling of mixed-convection laminar film condensation from mixtures of a vapor and a lighter noncondensable gas." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23507.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

OUAJJI, HASSAN. "Etude de proprietes de transport d'un plasma de melange air-cuivre : modelisation de la colonne d'arc." Clermont-Ferrand 2, 1986. http://www.theses.fr/1986CLF21034.

Full text
Abstract:
Calcul des coefficients de conductivite thermique, de conductivite electrique et de viscosite du melange air-cuivre a la pression atmospherique pour des temperatures comprises entre 5000 k et 14000 k et differentes valeurs de la teneur en cuivre. Dans les memes conditions de temperature et de pression, la determination de la composition d'equilibre du melange met en evidence l'evolution de la population des differentes especes chimiques en presence en fonction de la teneur en cuivre. Les caracteristiques macroscopiques de la colonne (champ electrique, profil de temperature) sont obtenues a partir du modele energetique de elenbaas-heller
APA, Harvard, Vancouver, ISO, and other styles
6

高堉城. "Growth and Characterization of Carbon nanotubes by Thermal Chemical Vapor Deposition Using CH4-CO2 Gas Mixture." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46172007139665043544.

Full text
Abstract:
碩士
明新科技大學
化學工程研究所
94
Since carbon nanotubes (CNTs ) were discovered, relevant research fever and developments of commercial applications such as hydrogen storage, atomic force microscope probe, microelectronic transistor, electrical field emitter of flat panel display and scanning tunneling microscope tip have been stimulated tremendously. High-quality and well-aligned carbon nanotubes are essential to the potential applications in the field of microelectronic industries. Thermal chemical vapor deposition has been regarded as the potential method of mass production because of carbon nanotubes can grow at atmosphere, equipment simplicity.   The composition of gas reactants significantly affects the reaction mechanism of carbon nanotubes growth. In the thesis, carbon nanotubes were grown on the various substrates, such as Si substrate, carbon cloth and patterned Si substrate by thermal chemical vapor deposition using CH4 and CO2 gas mixtures. This is apparently different from the conventional reaction in gas mixtures of hydrogen and methane, ammonia and acetylene, hydrogen and acetylene, and hydrogen and benzene, etc. CH4-CO2 gas system can increase the amount of carbon. In the carbon-rich gas ambient will be beneficial to graphite deposition, and enhance carbon nanotubes synthesis on catalyst-deposited surface quality. A various growth condition of CNT. will be studied then a high quality, high growth rate, and low temperature process will be anticipated. An atomic C-H-O carbon nanotubes deposition phase diagram with the graphite domain have been investigated and compared with Bachmann model. FTIR was used to identify the functional groups of carbon nanotube.
APA, Harvard, Vancouver, ISO, and other styles
7

Klima, Tobias. "Quantitative insights into the transcritical mixture formation at diesel relevant conditions." 2019. https://tubaf.qucosa.de/id/qucosa%3A38667.

Full text
Abstract:
Wie vermischen sich Kraftstoff und Luft, wenn ein flüssiger Kraftstoff in einer Umgebung eingespritzt und zerstäubt wird, deren Parameter Druck und Temperatur den kritischen Druck und die kritische Temperatur des Kraftstoffs überschreiten? In dieser Arbeit wurden Experimente basierend auf Raman-spektoskopischen Methoden zur Gemischbildung unter eben solchen Bedingungen durchgeführt. Ziel der Arbeit war der experimentelle Nachweis der Möglichkeit einphasiger Gemischbildung, d.h. des Übergangs von eingespritztem Kraftstoff in das überkritische Regime, und von da Mischung mit der umgebenden initial überkritischen Stickstoffphase ohne Auftreten von Phasengrenzen. Dazu war es nötig, das Zweiphasengebiet der eingesetzten Stoffe exakt zu charakterisieren (die Gas-Flüssig-Gleichgewichte zu messen), und die Temperatur der Flüssigphase zuverlässig während der Gemischbildung zu messen. Mittels eines Mikrokapillar-Aufbaus wurden Daten zu Gas-Flüssig-Gleichgewichten (engl. Vapor-liquid-equilibria, VLE) bei hohen Drücken und Temperaturen erhoben. Dazu wurden unter kontrollierten Bedingungen phasenspezifische Raman-Spektren der Gas- und der Flüssigphase gemessen, aus denen sich in-situ die Gemischzusammensetzung der Phasen ermitteln ließ. Desweiteren wurden Methoden zur Bestimmung der Temperatur der Flüssigphase erarbeitet, sowie eine Methode zur Unterscheidung von Gas- und Flüssiganteil anhand der Raman-Spektren. Die letzten Methoden basieren auf einer Auswertung des Signals der Hydroxyl-Gruppe von Ethanol, welches in der vorliegenden Arbeit als Kraftstoff-Surrogat verwendet wurde. Danach wurden diese Methoden in einer Hochdruck-Hochtemperatur-Einspritzkammer eingesetzt. Hier wurde Kraftstoff unter realistischen Motorbedingungen eingespritzt, und Raman-Spektroskopie zeitlich und örtlich aufgelöst im entstehenden Spray angewandt. Dies erlaubte die Untersuchung der Gemischbildung ohne Beeinträchtigung des Systems, wie etwa durch Zugabe von Marker-Stoffen oder den Einsatz invasiver Messtechniken. Die gewonnenen VLE-Daten stellen eine erhebliche Verbesserung der Datengrundlage in diesem Druck- und Temperaturbereich dar, da Literaturdaten hier rar sind. Der realisierte Mikrokapillar-Aufbau benötigt nur minimale Volumina an Flüssigkeit und Gas, und lässt vielfältige weitere Einsatzmöglichkeiten wie etwa die Messung von VLE-Daten anderer Stoffe oder auch ternärer Gemische, oder die Untersuchung chemischer Reaktionen zu. Gleichgewichte stellen sich aufgrund des hohen Oberflächen-Volumen-Verhältnisses und der insgesamt kurzen Weglängen schnell ein. Die Zuverlässigkeit der gewonnenen Daten konnte durch Vergleich mit den wenigen vorhandenen Literaturdaten gezeigt werden. Bei Vorliegen von Wasserstoffbrückenbindungen konnte die Zuverlässigkeit und Überlegenheit der Raman-Thermometrie basierend auf der „integrated absolute difference spectroscopy“ gezeigt werden, außerdem erlaubt das charakteristische Raman-Signal der Hydroxyl-Gruppe in Wasserstoff-brückenbindung eine Unterscheidung von Gas- und Flüssigphase in überlagerten Spektren. Zum Nachweis der Durchführbarkeit einer solchen Unterscheidung wurde eine Methode entwickelt, um mittels unterschiedlicher Trigger-Signale phasenspezifische Messungen ohne Überlagerung durch eine alternierende Phase durchzuführen. Die gemessenen, örtlich und zeitlich aufgelösten Daten zur Gemischbildung im Spray erlauben die thermodynamische Charakterisierung der Gemischbildung anhand der ermittelten Parameter „globale Gemischzusammensetzung“, „Flüssigphasenanteil“ und „Flüssigphasentemperatur“. Die Ergebnisse zeigten für hohe Umgebungsdrücke und Temperaturen, dass die Flüssigphase Temperaturen jenseits ihrer kritischen Temperatur erreichen kann. Dies lieferte den Nachweis des Auftretens einphasiger Gemischbildung.:I Abbreviations and symbols II Figures III Tables 1. Introduction 2. State of the art 2.1.1. Objective of this thesis 3. Application-oriented fundamentals 3.1. Thermodynamic states 3.1.1. Single-component systems 3.1.2. Multi-compound systems 3.2. Micro-fluidic systems 3.3. Spray break-up 3.4. Raman spectroscopy 3.4.1. Fundamentals 3.4.2. Quantifiability of Raman signals 3.4.3. Liquid fraction determination 3.4.4. Raman thermometry 4. Vapor-Liquid-Equilibra – Experimental setup 4.1. Overview and auxiliary equipment 4.2. Heating system 4.3. Raman probe 4.4. Light guard technique 4.5. Materials and Experiments 5. Vapor-Liquid-Equilibria – Results and discussion 5.1. Data evaluation 5.2. Calibration 5.3. Liquid film correction 5.4. Results ethanol/nitrogen 5.5. Results decane/nitrogen 5.6. Raman thermometry 6. Sprays – Experimental Setup 6.1. Overview and auxiliary equipment 6.2. Calibration setup 6.3. Spray excitation and detection 6.4. Investigated conditions 7. Sprays – Results and discussion 7.1. Data evaluation 7.1.1. Fuel fraction determination 7.1.2. Liquid fraction determination 7.1.3. Liquid temperature determination 7.2. Calibration results 7.3. Spray results 8. Conclusion 9. References
How do fuel and air mix, when liquid fuel is injected and atomized in an environment with parameters pressure and temperature exceeding the respective critical ones of the fuel? In this work, experiments on mixture formation at such conditions based on methods of Raman spectroscopy were performed. Objective of the work was the experimental proof of single-phase mixing, i.e. the transition of injected fuel into the supercritical regime, and therein mixture with the surrounding initially supercritical nitrogen atmosphere without the formation of phase boundaries. To this end, the characterization of the two-phase regime was necessary (i.e. the measurement of the vapor-liquid-equlibria), and the reliable determination of the temperature of the liquid phase during mixture formation. Data on vapor-liquid-equilibria (VLE) were measured in a micro-capillary setup at high temperatures and pressures. To this end, phase-specific Raman spectra of the liquid and the vapor phase were measured at well-controlled conditions, from which the mixture composition of the respective phases was derived in-situ. Furthermore, Methods for the determination of the liquid phase temperature were developed, as well as an approach for the differentiation of the liquid phase signal from the vapor phase signal. The two latter methods exploit the specific signal of the hydroxyl-group of ethanol, which served as a fuel surrogate in this work. In the next step, these methods were applied in a high pressure, high temperature injection chamber. Here, fuel was injected at realistic engine-like conditions, and Raman spectroscopy was applied temporally and spatially resolved across the created spray cone. This approach allowed the Investigation of the mixture formation without affecting the system, compared to e.g. the addition of markers or the use of invasive measurement techniques. The gathered data are a significant addition to the scarce data base available in this pressure and temperature range. The realized micro-capillary setup needs only minimal volume of fluids, and allows various other operational Scenarios like the measurement of VLE data of other components, binary or ternary, or the Investigation of chemical reactions. Equilibria form very fast due to the high surface-to-volume ratio and the short path lenghts. The reliability of the gathered data were shown by comparison with literature. With the presence of hydrogen bonds, the reliability and superiority of the Raman thermometry based on the 'integrated absolute difference spectroscopy' was shown. Furthermore, the characteristic Raman signal of the hydroxyl-group allows for the differentiation of the vapor- and liquid-phase contributions in superimposed spectra from vapor- and liquid-phase. For the proof of feasibility of such a differentiation, a sophisticated method for the phase-specific measurements was developed by exploiting distinctive trigger Signals from the phases, allowing measurements in one phase without cross-talk from the alternating phase. The temporally and spatially resolved data measured during mixture formation in the spray lead to the thermodynamic characterization of the mixture formation with respect to the Parameters 'global mixture composition', 'liquid phase fraction', and 'liquid phase temperature'. The results for high pressures and temperatures inside the chamber show that the liquid or liquid-like phase can reach temperatures exceeding the critical temperature of the fuel. This provides the proof a the existance of single-phase mixing.:I Abbreviations and symbols II Figures III Tables 1. Introduction 2. State of the art 2.1.1. Objective of this thesis 3. Application-oriented fundamentals 3.1. Thermodynamic states 3.1.1. Single-component systems 3.1.2. Multi-compound systems 3.2. Micro-fluidic systems 3.3. Spray break-up 3.4. Raman spectroscopy 3.4.1. Fundamentals 3.4.2. Quantifiability of Raman signals 3.4.3. Liquid fraction determination 3.4.4. Raman thermometry 4. Vapor-Liquid-Equilibra – Experimental setup 4.1. Overview and auxiliary equipment 4.2. Heating system 4.3. Raman probe 4.4. Light guard technique 4.5. Materials and Experiments 5. Vapor-Liquid-Equilibria – Results and discussion 5.1. Data evaluation 5.2. Calibration 5.3. Liquid film correction 5.4. Results ethanol/nitrogen 5.5. Results decane/nitrogen 5.6. Raman thermometry 6. Sprays – Experimental Setup 6.1. Overview and auxiliary equipment 6.2. Calibration setup 6.3. Spray excitation and detection 6.4. Investigated conditions 7. Sprays – Results and discussion 7.1. Data evaluation 7.1.1. Fuel fraction determination 7.1.2. Liquid fraction determination 7.1.3. Liquid temperature determination 7.2. Calibration results 7.3. Spray results 8. Conclusion 9. References
APA, Harvard, Vancouver, ISO, and other styles
8

Basha, Omar 1988. "Modeling of LNG Pool Spreading and Vaporization." Thesis, 2012. http://hdl.handle.net/1969.1/148176.

Full text
Abstract:
In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.
APA, Harvard, Vancouver, ISO, and other styles
9

Groff, Meghan K. "Numerical solution for turbulent film condensation from vapor-gas mixtures in vertical tubes." 2005. http://hdl.handle.net/1993/20240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srzic, Vlajko. "Modeling of mixed-convection laminar film condensation from mixtures of a vapor and a lighter noncondensable gas." 1997. http://hdl.handle.net/1993/993.

Full text
Abstract:
The effects of a lighter noncondensable gas on laminar film condensation from moving vapor-gas mixtures was investigated. Condensation occurred on the top of an isothermal flat plate with an arbitrary inclination. The liquid film and the mixture boundary layers were described with the conservation equations for mass, momentum, energy, and gas species (for the mixture boundary layer only). A finite volume method was applied on a staggered grid in the numerical solution domain. The properties for both liquid and mixture were evaluated at the local temperature. The solution procedure was terminated either when the separation criteria were met or when the flow reached the transition to turbulence. The main objectives of the study were to investigate the mixture boundary layer separation distance and the reduction in heat transfer to the wall due to the presence of a lighter noncondensable gas. Three vapor-gas combinations were studied: steam-hydrogen, Freon12-air, and mercury-air. Applying two simple collapsing procedures, a set of graphs is presented for each vapor-gas combination which can be used to estimate the separation length for a given set of input parameters. For each mixture and for a given free stream temperature, the variation of Nusselt number (normalized by the square root of the local Reynolds number) along the plate is also presented for different values of gas concentration and wall temperature. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Vapor-gas mixture"

1

Hirahara, H., and M. Kawahashi. "Shock wave reflection in a gas-vapor mixture with condensation." In Shock Waves, 547–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onishi, Yoshimoto, and Hidekazu Tsuji. "Propagation of Waves in a Vapor-Gas Mixture due to Evaporation and Condensation." In IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems, 325–34. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0057-1_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shang, De-Yi. "Complete Similarity Mathematical Models on Laminar Free Convection Film Condensation from Vapor–Gas Mixture." In Heat and Mass Transfer, 367–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28983-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shang, De-Yi. "Heat and Mass Transfer of Laminar Free Convection Film Condensation of Vapor–Gas Mixture." In Heat and Mass Transfer, 419–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28983-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Yongsheng, JiaJia Wan, Litong Zhang, and Laifei Cheng. "Chemical Vapor Deposition of Boron-Doped Carbon Coating from BCl3-C3H6-H2-Ar Gas Mixture." In Ceramic Transactions Series, 357–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118932995.ch38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shang, De-Yi. "Velocity, Temperature, and Concentration Fields on Laminar Free Convection Film Condensation of Vapor–Gas Mixture." In Heat and Mass Transfer, 399–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28983-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kryukov, Alexei, Vladimir Levashov, and Yulia Puzina. "Evaporation and Condensation of Vapor–Gas Mixtures." In Non-Equilibrium Phenomena near Vapor-Liquid Interfaces, 9–23. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uragami, Tadashi. "Polymer Membranes for Separation of Organic Liquid Mixtures." In Materials Science of Membranes for Gas and Vapor Separation, 355–72. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/047002903x.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Onishi, Yoshimoto. "On the Macroscopic Boundary Conditions at the Interface for a Vapour-gas Mixture." In Adiabatic Waves in Liquid-Vapor Systems, 315–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83587-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smolders, H. J., E. M. J. Niessen, and M. E. H. van Dongen. "On the Similarity Character of an Unsteady Rarefaction Wave in a Gas-Vapour Mixture with Condensation." In Adiabatic Waves in Liquid-Vapor Systems, 197–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83587-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vapor-gas mixture"

1

Kortsenshteyn, N. M., and A. K. Yastrebov. "Bulk condensation in the dust-laden flow of vapor/gas mixture." In 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Kazumichi, Kiyofumi Sasaki, Misaki Kon, Hiroyuki Fujii, and Masao Watanabe. "Molecular dynamics simulation on kinetic boundary conditions of gas-vapor binary mixture." In 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD 30. Author(s), 2016. http://dx.doi.org/10.1063/1.4967622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jia, Li, and Xiaofeng Peng. "Vapor Condensation and Absorption of SO2 in Wet Flue Gas." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47134.

Full text
Abstract:
The convection-condensation heat transfer mechanism of the gas mixture and its influence on SO2 absorption were theoretically analyzed with vapor fraction of 8% to 28%. A modified film model of mass transfer in mixture gas and Nusselt theory were used to describe the characteristics of mass, momentum and energy transfer at the phase interface. The effects of the velocities induced by mass transfer (vapor condensation and SO2 absorption) were included in conducting governing equations. Vapor condensation improves the SO2 absorption in the wet flue gas. Vapor fraction in the gas mixture would alter the mechanism of heat transfer modes, single-phase convection or condensation. But for high mass fraction of vapor the SO2 absorption will be an important phenomenon in the condensation process. Another important factor influencing the SO2 absorption is the Re number of bulk flow of wet flue gas.
APA, Harvard, Vancouver, ISO, and other styles
4

Fisenko, Sergey P. "Statistical theory of high pressure nucleation kinetics in vapor-carrier gas mixture." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rebrov, A. K. "GAS-PHASE SYNTHESIS OF DIAMOND STRUCTURES." In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-01.

Full text
Abstract:
The diamond synthesis from vapor (gas) phase is realized under complex influence of nonequilibrium transfer processes in activated gas mixtures by formation of carbon structures on a nascent diamond surface. The microwave plasma generates an active gas mixture and fragments of building material are transported
APA, Harvard, Vancouver, ISO, and other styles
6

McConnell, Jeffrey J., Thomas A. Kircher, and Bruce G. McMordie. "Vapor-Phase Slurry Aluminide Coating for Gas Turbine Components." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68132.

Full text
Abstract:
Diffusion aluminide coatings have long been used to protect gas turbine components made of nickel, steel, and cobalt alloys from oxidation and corrosion at high temperatures. The most common method for producing aluminide coatings is to “pack” parts within a powdered mixture of aluminum metal, halide compounds and inert oxide. When this mixture is heated, the halide reacts with the aluminum to form aluminum-rich vapor that migrates to the part and forms protective intermetallic aluminide layers. Similar aluminide coatings can be produced from “vapor-phase” slurries that incorporate aluminum pigments and halide activators. Unlike slurries long used to locally repair pack aluminides via a liquid-phase reaction with molten (or semi-molten) aluminum, the thickness of an aluminide formed from a vapor-phase slurry depends primarily upon the diffusion cycle used, not upon the amount of slurry applied to the surface. By eliminating the need for a powder pack, the vapor-phase slurry reduces thermal mass of the furnace load, increases batch flexibility and simplifies masking. Examples of aluminide coatings that may be produced by this method are presented. It is also shown that the oxidation resistance of an aluminide produced from a vapor-phase slurry is comparable to that of a coating of similar composition formed by pack aluminization. Consequently, the properties and advantages of vapor-phase slurry aluminization make this method an attractive option for coating the entire gas path surfaces of many components.
APA, Harvard, Vancouver, ISO, and other styles
7

Dalili, Farnosh, Martin Andrén, Jinyue Yan, and Mats Westermark. "The Impact of Thermodynamic Properties of Air-Water Vapor Mixtures on Design of Evaporative Gas Turbine Cycles." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0098.

Full text
Abstract:
Reliable thermodynamic property data for air-water vapor mixtures are lacking for the design of evaporative gas turbine cycles (EvGT). Due to high working pressures and temperatures of gas turbines, considerable error would occur when applying the ideal models instead of the real gas mixture models. This paper presents an extensive literature study regarding models for computing thermodynamic property data of gas mixtures. The Hyland and Wexler model is found to be the best available despite the limited temperature range. However, experimental data are needed to verify the extrapolation. Furthermore, this paper evaluates the impact of thermodynamic properties of air-water vapor mixtures on the design of EvGT cycles. A suggested EvGT configuration, with results based on ideal gas mixture model and steam tables, is selected as a reference. The real properties of the working fluid mixture are recalculated by the means of the Hyland and Wexler model and applied in the cycle calculation. The results based on real data are compared to those based on ideal. The results show that the real gas model predicts higher saturation humidity at a given temperature. The higher volatility of water improves the humidification performance. In the case studied here, the flue gas temperature is lowered by about 3°C and the cycle efficiency is improved only marginally. The real gas model predicts higher heat duty for superheating of moist air by about 10 percent, or 2 MW. Finally, it can be concluded that thermodynamic property data mainly affect component sizing, especially the humid air superheater and to some extent the boiler.
APA, Harvard, Vancouver, ISO, and other styles
8

Kortsenshteyn, Naum Moiseevich, and Arseniy K. Yastrebov. "SIMULATION OF INTERPHASE HEAT TRANSFER DURING BULK CONDENSATION IN THE FLOW OF VAPOR-GAS MIXTURE." In Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.cht-12.610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gu, Hongfang, Haiyang Guo, Haijun Wang, and Yuqiang Gu. "Experimental Study of Shell-Side Fogging Condensation of a Mixture." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70467.

Full text
Abstract:
Fog formation occurs if the vapor pressure in the gas-phase is higher than the saturated vapor pressure and the bulk temperature is lower than its saturation temperature (supersaturated) for condensation in the presence of non-condensable gases. Generally, fogging is formation of entrained small droplets mixing in the vapor-gas stream, and the vapor condenses at the mist-flow and share-controlled flow regime. The phenomenon and mechanism of fogging need to be considered for determining condensation rate and separation of the condensate from vapor-gas phase for the down-stream process. The experimental study of shell-side condensation using steam mixing with non-condensable air was conducted in a shell-side horizontal baffled tube bundle. Experimental data has been obtained including visualization findings using high-speed photograph. The characteristics of fog formation related to the heat and mas transfer performance are analyzed based on experimental data and observation. The general equation for determining fog formation (degree of supersaturation) is evaluated with experimental data. Results confirm that the transition band of fogging formation is in the range of S = 1.0 to 1.75. This paper presents experimental data and visualization findings on fogging characteristics and heat transfer performance for condensation in the presence of non-condensable gas.
APA, Harvard, Vancouver, ISO, and other styles
10

Gu, Hongfang, Qiwei Guo, Changsong Li, and Qing Zhou. "Phenomenon of Fog Formation and Flow Characteristics of Droplet-Vapor-Gas Mixture in a Cooler-Condenser." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10260.

Full text
Abstract:
Abstract Fog formation occurs in the process of condensation in the presence of non-condensable gas if the bulk temperature is lower than its saturation temperature (supersaturated). The phenomena of fogging is the formation of small condensate particles mixing with the vapor/gas stream, which creates potential problems of the vapor/gas/condensate separation and environmental pollution. Therefore, understanding of fogging mechanism and prevention of fog droplet entrainment are one of technical concerns for design and operation of cooler-condensers in the process industry. This paper presents the experimental study and numerical simulation of shell-side condensation with fog formation using a mixture of steam/non-condensable gas. The experimental data were collected on the two tube bundles (modified plastic tubes and stainless steel tubes). Using a high-speed photograph technique, the phenomenon of fog formation and flow characteristics of vapor/droplet transport were recorded over a wide range of test conditions. The numerical analysis of film and dropwise condensation, fog formation and droplet particle transport were simulated using different tube geometry and material, and flow velocity of air/droplet mixture. Based on simulation results, a new droplet trapping parameter is proposed to assess the optimal parameters of heat exchanger structural and operation conditions. Comparisons show that the numerical analysis results have a good agreement with experimental data and observations. These findings provide fundamental approach to account for the effect of fog formation, film and dropwise condensation, and droplet transport crossflow in cooler-condensers.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vapor-gas mixture"

1

McKinnon, Mark, Sean DeCrane, and Steve Kerber. Four Firefighters Injured in Lithium-Ion Battery Energy Storage System Explosion -- Arizona. UL Firefighter Safety Research Institute, July 2020. http://dx.doi.org/10.54206/102376/tehs4612.

Full text
Abstract:
On April 19, 2019, one male career Fire Captain, one male career Fire Engineer, and two male career Firefighters received serious injuries as a result of cascading thermal runaway within a 2.16 MWh lithium-ion battery energy storage system (ESS) that led to a deflagration event. The smoke detector in the ESS signaled an alarm condition at approximately 16:55 hours and discharged a total flooding clean agent suppressant (Novec 1230). The injured firefighters were members of a hazardous materials (HAZMAT) team that arrived on the scene at approximately 18:28 hours. The HAZMAT team noted low-lying white clouds of a gas/vapor mixture issuing from the structure and nearby components and drifting through the desert. The team defined a hot zone and made several entries into the hot zone to conduct 360-degree size-ups around the ESS using multi-gas meters, colorimetric tubes, and thermal imaging cameras (TICs). The team detected dangerously elevated levels of hydrogen cyanide (HCN) and carbon monoxide (CO) during each entry. The team continued to monitor the ESS and noted the white gas/vapor mixture stopped flowing out of the container at approximately 19:50 hours. The HAZMAT leadership developed an incident action plan with input from a group of senior fire officers and information about the ESS provided by representatives from the companies that owned, designed, and maintained the ESS. The HAZMAT team made a final entry into the hot zone and found that HCN and CO concentrations in the vicinity of the ESS were below an acceptable threshold. In following with the incident action plan, the team opened the door to the ESS at approximately 20:01 hours. A deflagration event was observed by the firefighters outside the hot zone at approximately 20:04 hours. All HAZMAT team members received serious injuries in the deflagration and were quickly transported to nearby hospitals. Note: The lithium-ion battery ESS involved in this incident was commissioned prior to release of a first draft of the current consensus standard on ESS installations, NFPA 855 [1]; the design of the ESS complied with the pertinent codes and standards active at the time of its commissioning.
APA, Harvard, Vancouver, ISO, and other styles
2

Reucroft, P. J., K. B. Patel, W. C. Russell, and R. Sekhar. Modeling of Equilibrium Gas Adsorption for Multicomponent Vapor Mixtures. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada159632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reucroft, P. J., H. K. Patel, W. C. Russell, and W. M. Kim. Modeling of Equilibrium Gas Adsorption for Multicomponent Vapor Mixtures. Part 2. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada174058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yuann, R. Y., V. E. Schrock, and Xiang Chen. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography