Journal articles on the topic 'Van der Waals (vdW) heterostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Van der Waals (vdW) heterostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Albarakati, Sultan, Cheng Tan, Zhong-Jia Chen, James G. Partridge, Guolin Zheng, Lawrence Farrar, Edwin L. H. Mayes, et al. "Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures." Science Advances 5, no. 7 (July 2019): eaaw0409. http://dx.doi.org/10.1126/sciadv.aaw0409.
Full textRakib, Tawfiqur, Pascal Pochet, Elif Ertekin, and Harley T. Johnson. "Moiré engineering in van der Waals heterostructures." Journal of Applied Physics 132, no. 12 (September 28, 2022): 120901. http://dx.doi.org/10.1063/5.0105405.
Full textMa, Zechen, Ruifeng Li, Rui Xiong, Yinggan Zhang, Chao Xu, Cuilian Wen, and Baisheng Sa. "InSe/Te van der Waals Heterostructure as a High-Efficiency Solar Cell from Computational Screening." Materials 14, no. 14 (July 6, 2021): 3768. http://dx.doi.org/10.3390/ma14143768.
Full textHe, Junshan, Cong Wang, Bo Zhou, Yu Zhao, Lili Tao, and Han Zhang. "2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics." Materials Horizons 7, no. 11 (2020): 2903–21. http://dx.doi.org/10.1039/d0mh00340a.
Full textDegaga, Gemechis D., Sumandeep Kaur, Ravindra Pandey, and John A. Jaszczak. "First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite." Materials 14, no. 7 (March 27, 2021): 1649. http://dx.doi.org/10.3390/ma14071649.
Full textLiu, Zixiang, and Zhiguo Wang. "Electronic Properties of MTe2/AsI3(M=Mo and W) Van der Waals Heterostructures." MATEC Web of Conferences 380 (2023): 01011. http://dx.doi.org/10.1051/matecconf/202338001011.
Full textYou, Siwen, Xiao Guo, Junjie Jiang, Dingbang Yang, Mingjun Li, Fangping Ouyang, Haipeng Xie, Han Huang, and Yongli Gao. "Temperature−Dependent Raman Scattering Investigation on vdW Epitaxial PbI2/CrOCl Heterostructure." Crystals 13, no. 1 (January 6, 2023): 104. http://dx.doi.org/10.3390/cryst13010104.
Full textSun, Cuicui, and Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Full textLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy." Science Advances 2, no. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Full textSong, Tiancheng, Xinghan Cai, Matisse Wei-Yuan Tu, Xiaoou Zhang, Bevin Huang, Nathan P. Wilson, Kyle L. Seyler, et al. "Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures." Science 360, no. 6394 (May 3, 2018): 1214–18. http://dx.doi.org/10.1126/science.aar4851.
Full textLu, Yueheng, Xiao Sun, Huabin Zhou, Haojie Lai, Ran Liu, Pengyi Liu, Yang Zhou, and Weiguang Xie. "A high-performance and broadband two-dimensional perovskite-based photodetector via van der Waals integration." Applied Physics Letters 121, no. 16 (October 17, 2022): 161104. http://dx.doi.org/10.1063/5.0116505.
Full textSaini, Himanshu, M. V. Jyothirmai, Umesh V. Waghmare, and Ranjit Thapa. "Role of van der Waals interaction in enhancing the photon absorption capability of the MoS2/2D heterostructure." Physical Chemistry Chemical Physics 22, no. 5 (2020): 2775–82. http://dx.doi.org/10.1039/c9cp05782j.
Full textRen, Kai, Ruxin Zheng, Peng Xu, Dong Cheng, Wenyi Huo, Jin Yu, Zhuoran Zhang, and Qingyun Sun. "Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation." Nanomaterials 11, no. 9 (August 30, 2021): 2236. http://dx.doi.org/10.3390/nano11092236.
Full textEl-Sayed, Marwa A., Andrey P. Tselin, Georgy A. Ermolaev, Mikhail K. Tatmyshevskiy, Aleksandr S. Slavich, Dmitry I. Yakubovsky, Sergey M. Novikov, Andrey A. Vyshnevyy, Aleksey V. Arsenin, and Valentyn S. Volkov. "Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures." Nanomaterials 12, no. 24 (December 13, 2022): 4436. http://dx.doi.org/10.3390/nano12244436.
Full textLuo, Cai-Yun, Wei-Qing Huang, Liang Xu, Yin-Cai Yang, Xiaofan Li, Wangyu Hu, P. Peng, and Gui-Fang Huang. "Electronic properties and photoactivity of monolayer MoS2/fullerene van der Waals heterostructures." RSC Advances 6, no. 49 (2016): 43228–36. http://dx.doi.org/10.1039/c6ra05672e.
Full textKhan, Fawad, M. Idrees, C. Nguyen, Iftikhar Ahmad, and Bin Amin. "A first-principles study of electronic structure and photocatalytic performance of GaN–MX2 (M = Mo, W; X= S, Se) van der Waals heterostructures." RSC Advances 10, no. 41 (2020): 24683–90. http://dx.doi.org/10.1039/d0ra04082g.
Full textBarik, Gayatree, and Sourav Pal. "Strain-engineered BlueP–MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs." Physical Chemistry Chemical Physics 22, no. 3 (2020): 1701–14. http://dx.doi.org/10.1039/c9cp04349g.
Full textDeng, Yafeng, Yixiang Li, Pengfei Wang, Shuang Wang, Xuan Pan, and Dong Wang. "Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor." Journal of Semiconductors 43, no. 5 (May 1, 2022): 052003. http://dx.doi.org/10.1088/1674-4926/43/5/052003.
Full textLiu, Zhiyi, Xiaomei Hu, and Mingsheng Long. "High-performances ultraviolet photodetector based on vertical van der Waals heterostructures." Journal of Physics: Conference Series 2383, no. 1 (December 1, 2022): 012037. http://dx.doi.org/10.1088/1742-6596/2383/1/012037.
Full textYou, Baiqing, Xiaocha Wang, and Wenbo Mi. "Prediction of spin–orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures." Physical Chemistry Chemical Physics 17, no. 46 (2015): 31253–59. http://dx.doi.org/10.1039/c5cp05068e.
Full textGeng, Huijuan, Di Yuan, Zhi Yang, Zhenjie Tang, Xiwei Zhang, Kui Yang, and Yanjie Su. "Graphene van der Waals heterostructures for high-performance photodetectors." Journal of Materials Chemistry C 7, no. 36 (2019): 11056–67. http://dx.doi.org/10.1039/c9tc03213d.
Full textGuo, Hongli, Xu Zhang, and Gang Lu. "Moiré excitons in defective van der Waals heterostructures." Proceedings of the National Academy of Sciences 118, no. 32 (August 2, 2021): e2105468118. http://dx.doi.org/10.1073/pnas.2105468118.
Full textBlackstone, Chance, and Anna Ignaszak. "Van der Waals Heterostructures—Recent Progress in Electrode Materials for Clean Energy Applications." Materials 14, no. 13 (July 5, 2021): 3754. http://dx.doi.org/10.3390/ma14133754.
Full textAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen, and Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers." RSC Advances 11, no. 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Full textWang, Tao, Xiaoxing Tan, Yadong Wei, and Hao Jin. "Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning." Nanoscale 14, no. 6 (2022): 2511–20. http://dx.doi.org/10.1039/d1nr07747c.
Full textPierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell, et al. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy." Nanoscale 14, no. 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.
Full textZhang, Wei, and Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures." RSC Advances 7, no. 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.
Full textGuo, Zhonglu, Naihua Miao, Jian Zhou, Baisheng Sa, and Zhimei Sun. "Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices." Journal of Materials Chemistry C 5, no. 4 (2017): 978–84. http://dx.doi.org/10.1039/c6tc04349f.
Full textChaudhary, Kundan, Michele Tamagnone, Mehdi Rezaee, D. Kwabena Bediako, Antonio Ambrosio, Philip Kim, and Federico Capasso. "Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy." Science Advances 5, no. 4 (April 2019): eaau7171. http://dx.doi.org/10.1126/sciadv.aau7171.
Full textIdrees, M., Chuong V. Nguyen, H. D. Bui, Iftikhar Ahmad, and Bin Amin. "van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting." Physical Chemistry Chemical Physics 22, no. 36 (2020): 20704–11. http://dx.doi.org/10.1039/d0cp03434g.
Full textZhang, Zicheng, Tianlong Shi, Jingjing He, Chunsheng Liu, Lan Meng, and Xiaohong Yan. "Tunable Schottky barrier in a graphene/AlP van der Waals heterostructure." Semiconductor Science and Technology 38, no. 4 (March 3, 2023): 045009. http://dx.doi.org/10.1088/1361-6641/acbb1e.
Full textShin, Ki Hoon, Min-Kyu Seo, Sangyeon Pak, A.-Rang Jang, and Jung Inn Sohn. "Observation of Strong Interlayer Couplings in WS2/MoS2 Heterostructures via Low-Frequency Raman Spectroscopy." Nanomaterials 12, no. 9 (April 19, 2022): 1393. http://dx.doi.org/10.3390/nano12091393.
Full textDu, Juan, Congxin Xia, Wenqi Xiong, Tianxing Wang, Yu Jia, and Jingbo Li. "Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures." Nanoscale 9, no. 44 (2017): 17585–92. http://dx.doi.org/10.1039/c7nr06473j.
Full textZhang, W. X., Y. Yin, and C. He. "Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26231–40. http://dx.doi.org/10.1039/d0cp04474a.
Full textPham, Khang D., Lam V. Tan, M. Idrees, Bin Amin, Nguyen N. Hieu, Huynh V. Phuc, Le T. Hoa, and Nguyen V. Chuong. "Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures." New Journal of Chemistry 44, no. 35 (2020): 14964–69. http://dx.doi.org/10.1039/d0nj03236k.
Full textVasić, Borislav, Uroš Ralević, Sonja Aškrabić, Davor Čapeta, and Marko Kralj. "Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures." Nanotechnology 33, no. 15 (January 21, 2022): 155707. http://dx.doi.org/10.1088/1361-6528/ac475a.
Full textSantos, Elton J. G., Declan Scullion, Ximo S. Chu, Duo O. Li, Nathan P. Guisinger, and Qing Hua Wang. "Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface." Nanoscale 9, no. 35 (2017): 13245–56. http://dx.doi.org/10.1039/c7nr03951d.
Full textZhu, Yuanzhi, Wenchao Peng, Yang Li, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan. "Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications." Journal of Materials Chemistry A 7, no. 41 (2019): 23577–603. http://dx.doi.org/10.1039/c9ta06395a.
Full textCheng, Beitong, Yong Zhou, Ruomei Jiang, Xule Wang, Shuai Huang, Xingyong Huang, Wei Zhang, et al. "Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures." Nanomaterials 13, no. 9 (May 8, 2023): 1574. http://dx.doi.org/10.3390/nano13091574.
Full textTang, Kewei, Weihong Qi, Yejun Li, and Tianran Wang. "Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC." Physical Chemistry Chemical Physics 20, no. 46 (2018): 29333–40. http://dx.doi.org/10.1039/c8cp06170j.
Full textPham, Khang D., Cuong Q. Nguyen, C. V. Nguyen, Pham V. Cuong, and Nguyen V. Hieu. "Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices." New Journal of Chemistry 45, no. 12 (2021): 5509–16. http://dx.doi.org/10.1039/d1nj00374g.
Full textAres, Pablo, Yi Bo Wang, Colin R. Woods, James Dougherty, Laura Fumagalli, Francisco Guinea, Benny Davidovitch, and Kostya S. Novoselov. "Van der Waals interaction affects wrinkle formation in two-dimensional materials." Proceedings of the National Academy of Sciences 118, no. 14 (March 31, 2021): e2025870118. http://dx.doi.org/10.1073/pnas.2025870118.
Full textWu, Huihai, Xiaochuan Liu, Keyong Zhu, and Yong Huang. "Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures." Nanomaterials 13, no. 8 (April 20, 2023): 1425. http://dx.doi.org/10.3390/nano13081425.
Full textMaruyama, Shigeo. "(Invited) Synthesis and Application of One-Dimensional Van Der Waals Heterostrucures Based on Single-Walled Carbon Nanotubes." ECS Meeting Abstracts MA2022-01, no. 9 (July 7, 2022): 724. http://dx.doi.org/10.1149/ma2022-019724mtgabs.
Full textLu, Hao, Junfeng Gao, Ziyu Hu, and Xiaohong Shao. "Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures." RSC Advances 6, no. 104 (2016): 102724–32. http://dx.doi.org/10.1039/c6ra21781h.
Full textBehera, Sushant Kumar, and Pritam Deb. "Spin-transfer-torque mediated quantum magnetotransport in MoS2/phosphorene vdW heterostructure based MTJs." Physical Chemistry Chemical Physics 22, no. 34 (2020): 19139–46. http://dx.doi.org/10.1039/d0cp00836b.
Full textJiang, Pingping, Pascal Boulet, and Marie-Christine Record. "Structure-Property Relationships of 2D Ga/In Chalcogenides." Nanomaterials 10, no. 11 (November 2, 2020): 2188. http://dx.doi.org/10.3390/nano10112188.
Full textNiu, Xianghong, Shanshan Xiao, Dazhong Sun, Anqi Shi, Zhaobo Zhou, Wei Chen, Xing’ao Li, and Jinlan Wang. "Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures." Materials Horizons 8, no. 8 (2021): 2208–15. http://dx.doi.org/10.1039/d1mh00571e.
Full textZhao, Bing, Bogdan Karpiak, Md Anamul Md Hoque, Pallavi Dhagat, and Saroj Prasad Dash. "Strong perpendicular anisotropic ferromagnet Fe3GeTe2/graphene van der Waals heterostructure." Journal of Physics D: Applied Physics, February 1, 2023. http://dx.doi.org/10.1088/1361-6463/acb801.
Full textZheng, Z. Q., Zihao Huang, Yuchen Zhou, Zhongtong Luo, Yibin Yang, Mengmeng Yang, Wei Gao, et al. "Integration of Photovoltaic and Photogating Effects in WSe2/WS2/p-Si Dual Junction Photodetector Featuring High-Sensitivity and Fast-Response." Nanoscale Advances, 2023. http://dx.doi.org/10.1039/d2na00552b.
Full text