Journal articles on the topic 'Van der Waals heterojunctions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Van der Waals heterojunctions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lei, Xunyong. "Optimization of Mechanically Assembled Van Der Waals Heterostructure Based On Solution Immersion and Hot Plate Heating." Journal of Physics: Conference Series 2152, no. 1 (January 1, 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2152/1/012007.
Full textJiang, Xixi, Min Zhang, Liwei Liu, Xinyao Shi, Yafen Yang, Kai Zhang, Hao Zhu, et al. "Multifunctional black phosphorus/MoS2 van der Waals heterojunction." Nanophotonics 9, no. 8 (February 18, 2020): 2487–93. http://dx.doi.org/10.1515/nanoph-2019-0549.
Full textLuo, Hao, Bolun Wang, Enze Wang, Xuewen Wang, Yufei Sun, and Kai Liu. "High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions." Crystals 9, no. 6 (June 19, 2019): 315. http://dx.doi.org/10.3390/cryst9060315.
Full textYan, Y., Z. Zeng, M. Huang, and P. Chen. "Van der waals heterojunctions for catalysis." Materials Today Advances 6 (June 2020): 100059. http://dx.doi.org/10.1016/j.mtadv.2020.100059.
Full textYao, Jiandong, and Guowei Yang. "Van der Waals heterostructures based on 2D layered materials: Fabrication, characterization, and application in photodetection." Journal of Applied Physics 131, no. 16 (April 28, 2022): 161101. http://dx.doi.org/10.1063/5.0087503.
Full textYao, Jiandong, and Guowei Yang. "Van der Waals heterostructures based on 2D layered materials: Fabrication, characterization, and application in photodetection." Journal of Applied Physics 131, no. 16 (April 28, 2022): 161101. http://dx.doi.org/10.1063/5.0087503.
Full textKong, Xiangyuan, Longwen Cao, Yuxing Shi, Zhouze Chen, Weilong Shi, and Xin Du. "Construction of S-Scheme 2D/2D Crystalline Carbon Nitride/BiOIO3 van der Waals Heterojunction for Boosted Photocatalytic Degradation of Antibiotics." Molecules 28, no. 13 (June 29, 2023): 5098. http://dx.doi.org/10.3390/molecules28135098.
Full textXia, Wanshun, Liping Dai, Peng Yu, Xin Tong, Wenping Song, Guojun Zhang, and Zhiming Wang. "Recent progress in van der Waals heterojunctions." Nanoscale 9, no. 13 (2017): 4324–65. http://dx.doi.org/10.1039/c7nr00844a.
Full textChen, Xin, Wei-guo Pan, Rui-tang Guo, Xing Hu, Zhe-xu Bi, and Juan Wang. "Recent progress on van der Waals heterojunctions applied in photocatalysis." Journal of Materials Chemistry A 10, no. 14 (2022): 7604–25. http://dx.doi.org/10.1039/d2ta00500j.
Full textDi Bartolomeo, Antonio. "Emerging 2D Materials and Their Van Der Waals Heterostructures." Nanomaterials 10, no. 3 (March 22, 2020): 579. http://dx.doi.org/10.3390/nano10030579.
Full textSun, Yinchang, Liming Xie, Zhao Ma, Ziyue Qian, Junyi Liao, Sabir Hussain, Hongjun Liu, Hailong Qiu, Juanxia Wu, and Zhanggui Hu. "High-Performance Photodetectors Based on the 2D SiAs/SnS2 Heterojunction." Nanomaterials 12, no. 3 (January 24, 2022): 371. http://dx.doi.org/10.3390/nano12030371.
Full textYang, Yaxiao, and Zhiguo Wang. "A two-dimensional MoS2/C3N broken-gap heterostructure, a first principles study." RSC Advances 9, no. 34 (2019): 19837–43. http://dx.doi.org/10.1039/c9ra02935d.
Full textZhu, Yonghao, Wei-Hai Fang, Angel Rubio, Run Long, and Oleg V. Prezhdo. "The twist angle has weak influence on charge separation and strong influence on recombination in the MoS2/WS2 bilayer: ab initio quantum dynamics." Journal of Materials Chemistry A 10, no. 15 (2022): 8324–33. http://dx.doi.org/10.1039/d1ta10788g.
Full textKaterynchuk, V. M., O. S. Litvin, Z. R. Kudrynskyi, Z. D. Kovalyuk, I. G. Tkachuk, and B. V. Kushnir. "Topology and Photoelectric Properties of Heterostructure p-GaTe – n-InSe." Фізика і хімія твердого тіла 17, no. 4 (December 15, 2016): 507–10. http://dx.doi.org/10.15330/pcss.17.4.507-510.
Full textLiu, Bingtong, Jin Wang, Shuji Zhao, Cangyu Qu, Yuan Liu, Liran Ma, Zhihong Zhang, Kaihui Liu, Quanshui Zheng, and Ming Ma. "Negative friction coefficient in microscale graphite/mica layered heterojunctions." Science Advances 6, no. 16 (April 2020): eaaz6787. http://dx.doi.org/10.1126/sciadv.aaz6787.
Full textLi, Longhua, and Weidong Shi. "Tuning electronic structures of Sc2CO2/MoS2 polar–nonpolar van der Waals heterojunctions: interplay of internal and external electric fields." Journal of Materials Chemistry C 5, no. 32 (2017): 8128–34. http://dx.doi.org/10.1039/c7tc02384g.
Full textWang, Yong, Chengxin Zeng, Yichen Liu, Dingyi Yang, Yu Zhang, Zewei Ren, Qikun Li, et al. "Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation." Materials 15, no. 15 (August 5, 2022): 5390. http://dx.doi.org/10.3390/ma15155390.
Full textWang, Cong, Shengxue Yang, Wenqi Xiong, Congxin Xia, Hui Cai, Bin Chen, Xiaoting Wang, et al. "Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p–n heterojunctions." Physical Chemistry Chemical Physics 18, no. 40 (2016): 27750–53. http://dx.doi.org/10.1039/c6cp04752a.
Full textZhou, Hong-Jun, Dong-Hui Xu, Qing-Hong Yang, Xiang-Yang Liu, Ganglong Cui, and Laicai Li. "Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations." Dalton Transactions 50, no. 19 (2021): 6725–34. http://dx.doi.org/10.1039/d1dt00291k.
Full textLiu, B., X. X. Ren, Xian Zhang, Ping Li, Y. Dong, and Zhi-Xin Guo. "Electric field tunable multi-state tunnel magnetoresistances in 2D van der Waals magnetic heterojunctions." Applied Physics Letters 122, no. 15 (April 10, 2023): 152408. http://dx.doi.org/10.1063/5.0139076.
Full textWang, Biao, Xukai Luo, Junli Chang, Xiaorui Chen, Hongkuan Yuan, and Hong Chen. "Efficient charge separation and visible-light response in bilayer HfS2-based van der Waals heterostructures." RSC Advances 8, no. 34 (2018): 18889–95. http://dx.doi.org/10.1039/c8ra03047b.
Full textBrowning, Robert, Paul Plachinda, Prasanna Padigi, Raj Solanki, and Sergei Rouvimov. "Growth of multiple WS2/SnS layered semiconductor heterojunctions." Nanoscale 8, no. 4 (2016): 2143–48. http://dx.doi.org/10.1039/c5nr08006a.
Full textHu, Wei, and Jinlong Yang. "Two-dimensional van der Waals heterojunctions for functional materials and devices." Journal of Materials Chemistry C 5, no. 47 (2017): 12289–97. http://dx.doi.org/10.1039/c7tc04697a.
Full textSun, Cuicui, and Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Full textFukai, Masaya, Noriyuki Urakami, and Yoshio Hashimoto. "Electrical Properties in Ta2NiSe5 Film and van der Waals Heterojunction." Coatings 11, no. 12 (December 2, 2021): 1485. http://dx.doi.org/10.3390/coatings11121485.
Full textYeh, Chao-Hui, Zheng-Yong Liang, Yung-Chang Lin, Tien-Lin Wu, Ta Fan, Yu-Cheng Chu, Chun-Hao Ma, et al. "Scalable van der Waals Heterojunctions for High-Performance Photodetectors." ACS Applied Materials & Interfaces 9, no. 41 (October 5, 2017): 36181–88. http://dx.doi.org/10.1021/acsami.7b10892.
Full textMao, Yuliang, Zheng Guo, Jianmei Yuan, and Tao Sun. "1D/2D van der Waals Heterojunctions Composed of Carbon Nanotubes and a GeSe Monolayer." Nanomaterials 11, no. 6 (June 14, 2021): 1565. http://dx.doi.org/10.3390/nano11061565.
Full textMondal, Chiranjit, Sourabh Kumar, and Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions." Journal of Materials Chemistry C 6, no. 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.
Full textShi, Shun, Ya Feng, Bailing Li, Hongmei Zhang, Qiuqiu Li, Zhangxun Mo, Xinyun Zhou, et al. "Broadband and high-performance SnS2/FePS3/graphene van der Waals heterojunction photodetector." Applied Physics Letters 120, no. 8 (February 21, 2022): 081101. http://dx.doi.org/10.1063/5.0083272.
Full textLiu, Jie, Yaguang Guo, Fancy Qian Wang, and Qian Wang. "TiS3 sheet based van der Waals heterostructures with a tunable Schottky barrier." Nanoscale 10, no. 2 (2018): 807–15. http://dx.doi.org/10.1039/c7nr05606k.
Full textLi, Luji, Gaojie Zhang, Hao Wu, Li Yang, Pengfei Gao, Shanfei Zhang, Xiaokun Wen, Wenfeng Zhang, and Haixin Chang. "Tunable Photoresponse in 2D WTe2/MoS2 Van der Waals Heterojunctions." Journal of Physical Chemistry C 125, no. 19 (May 11, 2021): 10639–45. http://dx.doi.org/10.1021/acs.jpcc.1c01162.
Full textZhu, Wenkai, Hailong Lin, Faguang Yan, Ce Hu, Ziao Wang, Lixia Zhao, Yongcheng Deng, et al. "Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions." Advanced Materials 33, no. 51 (October 13, 2021): 2104658. http://dx.doi.org/10.1002/adma.202104658.
Full textLiu, Yuanda, Fengqiu Wang, Yujie Liu, Xizhang Wang, Yongbing Xu, and Rong Zhang. "Charge transfer at carbon nanotube–graphene van der Waals heterojunctions." Nanoscale 8, no. 26 (2016): 12883–86. http://dx.doi.org/10.1039/c6nr03965k.
Full textHu, Wei, and Jinlong Yang. "First-principles study of two-dimensional van der Waals heterojunctions." Computational Materials Science 112 (February 2016): 518–26. http://dx.doi.org/10.1016/j.commatsci.2015.06.033.
Full textBafekry, Asadollah, Daniela Gogova, Mohamed M. Fadlallah, Nguyen V. Chuong, Mitra Ghergherehchi, Mehrdad Faraji, Seyed Amir Hossein Feghhi, and Mohamad Oskoeian. "Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials." Physical Chemistry Chemical Physics 23, no. 8 (2021): 4865–73. http://dx.doi.org/10.1039/d0cp06213h.
Full textZhu, Junqiang, Xiaofei Yue, Jiajun Chen, Jing Wang, Jing Wan, Wenzhong Bao, Laigui Hu, Ran Liu, Chunxiao Cong, and Zhijun Qiu. "Ultrasensitive Phototransistor Based on Laser-Induced P-Type Doped WSe2/MoS2 Van der Waals Heterojunction." Applied Sciences 13, no. 10 (May 14, 2023): 6024. http://dx.doi.org/10.3390/app13106024.
Full textPeng, Bojun, Liang Xu, Jian Zeng, Xiaopeng Qi, Youwen Yang, Zongle Ma, Xin Huang, Ling-Ling Wang, and Cijun Shuai. "Layer-dependent photocatalysts of GaN/SiC-based multilayer van der Waals heterojunctions for hydrogen evolution." Catalysis Science & Technology 11, no. 9 (2021): 3059–69. http://dx.doi.org/10.1039/d0cy02251a.
Full textZhang, Qing, Zhou Zhen, Yongfei Yang, Gongwen Gan, Deep Jariwala, and Xudong Cui. "Negative refraction inspired polariton lens in van der Waals lateral heterojunctions." Applied Physics Letters 114, no. 22 (June 3, 2019): 221101. http://dx.doi.org/10.1063/1.5098346.
Full textMiao, Jinshui, Xiwen Liu, Kiyoung Jo, Kang He, Ravindra Saxena, Baokun Song, Huiqin Zhang, et al. "Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces." Nano Letters 20, no. 4 (March 20, 2020): 2907–15. http://dx.doi.org/10.1021/acs.nanolett.0c00741.
Full textLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy." Science Advances 2, no. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Full textOlmos-Asar, Jimena A., Cedric Rocha Leão, and Adalberto Fazzio. "Novel III-Te–graphene van der Waals heterojunctions for optoelectronic devices." RSC Advances 7, no. 51 (2017): 32383–90. http://dx.doi.org/10.1039/c7ra03369a.
Full textLi, Changli, Qi Cao, Faze Wang, Yequan Xiao, Yanbo Li, Jean-Jacques Delaunay, and Hongwei Zhu. "Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion." Chemical Society Reviews 47, no. 13 (2018): 4981–5037. http://dx.doi.org/10.1039/c8cs00067k.
Full textYan, Faguang, Ce Hu, Ziao Wang, Hailong Lin, and Kaiyou Wang. "Perspectives on photodetectors based on selenides and their van der Waals heterojunctions." Applied Physics Letters 118, no. 19 (May 10, 2021): 190501. http://dx.doi.org/10.1063/5.0045941.
Full textYu, Miaomiao, Yunxia Hu, Feng Gao, Mingjin Dai, Lifeng Wang, PingAn Hu, and Wei Feng. "High-Performance Devices Based on InSe–In1–xGaxSe Van der Waals Heterojunctions." ACS Applied Materials & Interfaces 12, no. 22 (May 7, 2020): 24978–83. http://dx.doi.org/10.1021/acsami.0c03206.
Full textLi, Xufan, Ming-Wei Lin, Alexander A. Puretzky, Leonardo Basile, Kai Wang, Juan C. Idrobo, Christopher M. Rouleau, David B. Geohegan, and Kai Xiao. "Persistent photoconductivity in two-dimensional Mo1−xWxSe2–MoSe2 van der Waals heterojunctions." Journal of Materials Research 31, no. 7 (February 16, 2016): 923–30. http://dx.doi.org/10.1557/jmr.2016.35.
Full textGuo, Jianhang, Sai Jiang, Mengjiao Pei, Yanling Xiao, Bowen Zhang, Qijing Wang, Ying Zhu, et al. "Few‐Layer Organic Crystalline van der Waals Heterojunctions for Ultrafast UV Phototransistors." Advanced Electronic Materials 6, no. 6 (May 11, 2020): 2000062. http://dx.doi.org/10.1002/aelm.202000062.
Full textLiang, Xiao, Longjiang Deng, Fei Huang, Tingting Tang, Chuangtang Wang, Yupeng Zhu, Jun Qin, Yan Zhang, Bo Peng, and Lei Bi. "The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions." Nanoscale 9, no. 27 (2017): 9502–9. http://dx.doi.org/10.1039/c7nr03317f.
Full textWang, Bin, Shengxue Yang, Cong Wang, Minghui Wu, Li Huang, Qian Liu, and Chengbao Jiang. "Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions." Nanoscale 9, no. 30 (2017): 10733–40. http://dx.doi.org/10.1039/c7nr03445h.
Full textChava, Phanish, Zahra Fekri, Yagnika Vekariya, Thomas Mikolajick, and Artur Erbe. "Band-to-band tunneling switches based on two-dimensional van der Waals heterojunctions." Applied Physics Reviews 10, no. 1 (March 2023): 011318. http://dx.doi.org/10.1063/5.0130930.
Full textTang, Qianying, Fang Zhong, Qing Li, Jialu Weng, Junzhe Li, Hangyu Lu, Haitao Wu, et al. "Infrared Photodetection from 2D/3D van der Waals Heterostructures." Nanomaterials 13, no. 7 (March 24, 2023): 1169. http://dx.doi.org/10.3390/nano13071169.
Full text