Academic literature on the topic 'Van Der Waals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Van Der Waals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Van Der Waals"

1

Arunan, E. "van der Waals." Resonance 15, no. 7 (July 2010): 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Jianing. "Two-Dimensional Six-Body van der Waals Interactions." Atoms 10, no. 1 (January 24, 2022): 12. http://dx.doi.org/10.3390/atoms10010012.

Full text
Abstract:
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
APA, Harvard, Vancouver, ISO, and other styles
3

Bernasek, Steven L. "Van der Waals rectifiers." Nature Nanotechnology 8, no. 2 (January 6, 2013): 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geim, A. K., and I. V. Grigorieva. "Van der Waals heterostructures." Nature 499, no. 7459 (July 2013): 419–25. http://dx.doi.org/10.1038/nature12385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Levitov, L. S. "Van Der Waals' Friction." Europhysics Letters (EPL) 8, no. 6 (March 15, 1989): 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Capozziello, S., S. De Martino, and M. Falanga. "Van der Waals quintessence." Physics Letters A 299, no. 5-6 (July 2002): 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bärwinkel, Klaus, and Jürgen Schnack. "van der Waals revisited." Physica A: Statistical Mechanics and its Applications 387, no. 18 (July 2008): 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thongyothee, Chawis, and Somchai Chucheepsakul. "Finite Element Modeling of van der Waals Interaction for Elastic Stability of Multi-Walled Carbon Nanotubes." Advanced Materials Research 55-57 (August 2008): 525–28. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.525.

Full text
Abstract:
The purpose of this study is to assess the effect of van der Waals interactions within multi-walled carbon nanotubes with the three dimensional finite element models. The elastic buckling behaviors of nanotubes are treated under axial compressive force acting on open both ends of nanotubes and considered with various boundary conditions. The analysis is based on the assumptions that the covalent bond of each wall is represented by an elastic beam element while the van der Waals force of adjacent walls are represented by a nonlinear truss element following the Lennard-Jones “6-12” theory. The models of double-walled carbon nanotubes are used to explain the characteristic of multi-walled carbon nanotubes and then results compared with the column theory. The results show that the critical load of nanotubes depends on atomic arrangement, tube length, and number of walls, while the van der Waals force has a small effect on the buckling load for multi-walled carbon nanotubes.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang, et al. "The fabrication and physical properties of two-dimensional van der Waals heterostructures." Acta Physica Sinica 71, no. 4 (2022): 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Full text
Abstract:
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
APA, Harvard, Vancouver, ISO, and other styles
10

Levelt Sengers, J. M. H., and J. V. Sengers. "van der Waals fund, van der Waals laboratory and Dutch high-pressure science." Physica A: Statistical Mechanics and its Applications 156, no. 1 (March 1989): 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Van Der Waals"

1

Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Dalla scoperta del grafene, molte ricerche sono state condotte sui cosiddetti “materiali 2D”. Questo elaborato si focalizza sulle proprietà strutturali, elettroniche, ottiche ed eccitoniche di due materiali bidimensionali, ossia il grafene il disolfuro di molibdeno (MoS2-1H), quest’ultimo un importante semiconduttore. Le proprietà di questi materiali sono diverse rispetto alla loro controparte massiva (bulk) grafite e MoS2-2H, e un loro confronto è stato preso in considerazione. Come metodo di indagine sono state scelte simulazioni quanto- meccaniche ab initio dei sistemi in esame, un approccio che, negli ultimi decenni, sta avendo un impatto sempre più importante sulla fisica, sulla chimica dello stato solido e sulla scienza dei materiali, promuovendo non solo una comprensione più profonda, ma anche la possibilità di contribuire in modo significativo alla progettazione di materiali per nuove tecnologie. Questo importante passo avanti è stato possibile grazie a: (i) una descrizione migliorata ed efficiente degli effetti elettronici a molti corpi (many-body) nella teoria del funzionale della densità (DFT), nonché lo sviluppo di metodi post-DFT per lo studio di proprietà specifiche; (ii) un’accurata implementazione di questi metodi in software altamente efficienti, stabili e versatili, capaci di sfruttare il potenziale delle architetture informatiche moderne. Tra i possibili software ab initio basati su DFT, abbiamo scelto il pacchetto di simulazione di Vienna ab initio VASP, considerato un gold standard per questo tipo di indagini. I risultati ottenuti per le varie proprietà di bulk e di superficie (bidimensionale) dei materiali scelti sono in ottimo accordo con dati ottenuti in precedenza, sia a livello teorico, sia sperimentale. Questo elaborato getta quindi le basi per futuri studi nel campo dei materiali 2D per comprendere, analizzare, ingegnerizzare nuovi materiali con proprietà desiderabili e per sviluppare nuove applicazioni degli stessi.
APA, Harvard, Vancouver, ISO, and other styles
2

Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.

Full text
Abstract:
The isolation of single layer graphene in 2004 by Geim and Novoselov introduced a method that researchers could extend to other van der Waals materials. Interesting and new properties arise when we reduce a crystal to two dimensions where they are often different from their bulk counterpart. Due to the van der Waals bonding between layers, these single sheets of crystal can be combined and stacked with diferent sheets to create novel materials. With the goal to study the interesting physics associated to these stacks, the focus of this work is on the fabrication and characterization of van der Waals heterostructures. In this work, we first present a brief history of 2D materials, the fabrication of heterostructures, and the various tools used to characterize these materials. We then give a description of the custom-built instrument that was used to assemble various 2D heterostructures followed by the findings associated with the optimization of the cleanliness of the stack's interface and surface. Finally, we discuss the results related to the twisting of adjacent layers of stacked MoS2 and its relation to the interlayer coupling between said layers.
APA, Harvard, Vancouver, ISO, and other styles
3

Tiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.

Full text
Abstract:
L’interazione spin-orbita (SOI) nel grafene è attualmente oggetto di intensa ricerca grazie alla recente scoperta di una nuova classe di materiali chiamati isolanti topologici. Questi materiali, la cui esistenza è strettamente legata alla presenza di una forte SOI, sono caratterizzati dall’interessante proprietà di avere un bulk isolante ed allo stesso tempo superfici conduttrici. La scoperta teorica degli isolanti topologici la si deve ad un lavoro nato con l’intento di studiare l’influenza dell’interazione spin-orbita sulle proprietà del grafene. Poichè questa interazione nel grafene è però intrinsecamente troppo piccola, non è mai stato possibile effettuare verifiche sperimentali. Per questa ragione, vari lavori di ricerca hanno recentemente proposto tecniche volte ad aumentare questa interazione. Sebbene alcuni di questi studi abbiano mostrato un effettivo aumento dell’interazione spin-orbita rispetto al piccolo valore intrinseco, sfortunatamente hanno anche evidenziato una consistente riduzione della qualità del grafene. L’obbiettivo che ci si pone in questa tesi è di determinare se sia possibile aumentare l’interazione spin-orbita nel grafene preservandone allo stesso tempo le qualità. La soluzione proposta in questo lavoro si basa sull’utilizzo di due materiali semiconduttori, diselenio di tungsteno WSe2 e solfuro di molibdeno MoS2, utilizzati da substrato su cui sopra verrà posizionato il grafene formando così un’eterostruttura -nota anche di “van der Waal” (vdW)-. Il motivo di questa scelta è dovuto al fatto che questi materiali, appartenenti alla famiglia dei metalli di transizione dicalcogenuri (TMDS), mostrano una struttura reticolare simile a quella del grafene, rendendoli ideali per formare eterostrutture e ancora più importante, presentano una SOI estremamente grande. Sostanzialmente l’idea è quindi di sfruttare questa grande interazione spin-orbita del substrato per indurla nel grafene aumentandone così il suo piccolo valore intrinseco.
APA, Harvard, Vancouver, ISO, and other styles
6

Odeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.

Full text
Abstract:
Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this study, we propose to use a Chebyshev pseudospectral method for solving the governing equations. A comparison of the results of this method with very high-order (up to tenth-order accurate) finite difference schemes is presented, which shows that the proposed method leads to a lower level of numerical oscillations than other high-order finite difference schemes, and also does not exhibit fast-traveling packages of short waves which are usually observed in high-order finite difference methods. The proposed method can thus successfully capture various complex regimes of waves and phase transitions in both elliptic and hyperbolic regimes
APA, Harvard, Vancouver, ISO, and other styles
7

Marsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.

Full text
Abstract:
Graphene — a two-dimensional sheet of carbon atoms — has surged into recent interest with its host of remarkable properties and its ultimate thinness. However, graphene combined with other materials is starting to attract more attention. These heterostructures can be important for production routes, incorporating graphene into existing technologies, or for modifying its intrinsic properties. This thesis aims to examine the role of van der Waals epitaxy within these heterostructures. First, the graphene-copper interaction during chemical vapour deposition of graphene is investigated. Graphene is found to grow with a mismatch epitaxy of 8 relative to the [001] direction of the Cu(100) surface, despite a mismatch in symmetry and lattice parameter between two. Further, the electronic structure of both graphene and copper is unchanged by the interaction. This highlights the weak interaction between the two, owing to its van der Waals nature. Functionalised graphene is another important heterostructure, and is intensively studied for both graphene production routes and for altering graphene’s properties. Here, it is the change to the homogeneous graphene surface that makes it interesting for van der Waals epitaxy. The effect of functionalisation of graphene with atomic oxygen and nitrogen is presented next. In both cases, only small amounts of functionalisation ( 5 at%) is sufficient to significantly deteriorate the -band structure of the graphene through localisation. For small amounts of nitrogen functionalisation, and greater amounts of oxygen functionalisation, extended topological defects are formed in the graphene lattice. Unlike epoxide oxygen groups, these disruptions to the pristine graphene are found to be irreversible by annealing. Next, the interaction between graphene and the organic semiconducting molecule vanadyl-phthalocyanine (VOPc) is presented. As a result of the van der Waals nature of the graphene surface, VOPc molecules can form crystals microns in size when deposited onto a substrate with an elevated temperature of 155 C; at ambient temperatures, the crystals are only tens of nanometres across. In contrast, the functionalised graphene oxide surface prevents large crystal growth, even at elevated temperatures, because surface functionalities inhibit molecule diffusion. This highlights the importance of graphene as a substrate for molecular crystal growth, even when the growth is not epitaxial. Finally, the supramolecular assembly of trimesic acid (TMA) and terephthalic acid (TPA) is presented. Despite their chemical similarity they display different behaviour as they transition from monolayers to three-dimensional structures: for TMA, the epitaxial chicken wire structure seen at a monolayer templates up through the layers as molecules stack, until a thickness of 20 nm, when random in-plane orientations appear; on the other hand, TPA forms a brickwork structure at the monolayer, which quickly transitions to fibre-like crystals with a bulk structure for the thin films. However, the TPA orientation is still determined by the epitaxy with the graphene substrate, although this is significantly weaker than for TMA.
APA, Harvard, Vancouver, ISO, and other styles
8

Connelly, James Patrick. "Microwave studies of Van der Waals complexes." Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.

Full text
Abstract:
This thesis describes the commissioning and development of a pulsed supersonic nozzle, Fourier-transform microwave spectrometer and its application to the study of several weakly bound van der Waals complexes. A pulsed supersonic expansion, Fourier-transform microwave spectrometer based on the Flygare design with a number of modifications has been constructed with an operating range of 6-18 GHz. A homodyne detection circuit mixing signals to modulus values between dc and 1 MHz is used, requiring two measurements to determine absolute transition frequencies. Transition frequencies are measured from the power spectrum by determining the first derivative zero crossing point in a least squares fitting procedure. Semiautomation of many of the spectrometer operations has been achieved allowing unattended data collection over scans of up to 300 MHz. The microwave spectrum of Ar2-OCS and Ar2-OC34S has been observed and analysed using conventional Watson S reduction hamiltonian parameters. Effective structural parameters are derived and used in a harmonic force field analysis, based on the centrifugal distortion constants, to compare the trimer interations with a model based on the sum of dimer interactions. A series of complexes containing the nitrogen molecule undergoing tunnelling motions have been studied. Hyperfine matrix elements for the first order nuclear quadrupole interaction are derived for the coupled identical nuclei case appropriate to the rapid tunnelling motions observed. The microwave spectrum of N2-OCS is described. Tunnelling and nuclear spin statistical effects for two symmetry states are observed arising from the interchange of nitrogen nuclei. Rotational and quadrupole constants are derived; an accidental near degeneracy of two rotational levels allows the off-diagonal quadrupole coupling constant to be determined from second order effects. A tunnelling hamiltonian fitting the quadrupole coupling constants to an angular potential has been used to calculate the tunnelling frequency and barrier to N2 rotation. The microwave spectrum of N2-O3 and a preliminary spectrum of N2-SO3 have been observed. Rotation-inversion motions of the O3 and SO2 moieties must be considered in addition to the N2 tunnelling to fit the spectrum. Tunnelling frequencies for the O3/SO2 and geared motions with the N2 are derived as well as structural parameters. Modifications for production of refractory molecules and complexes by laser ablation have been made. A modified nozzle employing rods of material is used with the ablation process taking place in the nozzle throat. Modifications to obtain an expansion along the axis of the microwave cavity employ a hemispherical Fabry-Perot cavity configuration. The system has been tested on a number of diatomic molecules including PbS and CuCl.
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, Nicholas J. "Bound states of Van der Waals trimers." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.

Full text
Abstract:
A method for calculating the energy levels and wave functions of floppy tri- atomic systems such as rare-gas trimers has been developed. It is based upon a potential-optimized discrete variable representation and takes into account the wide-amplitude vibrations that occur in such systems. The quadrature error that occurs in DVR calculations is analysed and a method of correction implemented. The diagonalisation procedure is based upon a combination of successive diagonalisation and truncation and a Lanczos diagonaliser. Using this method the wave functions of the Ar(_3) Van der Waals trimer have been calculated. The wave functions for the low-lying states show very regular behaviour. Above the barrier to linearity, most of the wave functions are irregular but some have simple nodal patterns that suggest localization along periodic orbits. In addition to the "horseshoe" states previously described for H(^+)(_3), localized features corresponding to symmetric and antisym metric stretching vibrations around a linear configuration have been identified. The different localized modes can be combined to form more complex states in a manner analogous to normal modes. A preliminary study of the rotational states of Ar(_3) has also been performed. The rotational constants for the low lying states of Ar(_3) reflect the increasing average size of Ar(_3) with increasing vibrational excitation. The rotational constants are obtained from two methods, expectation values and energy level differences. The results for the levels above the barrier to isomerisation reveal that the simple models used for obtaining the rotational constants are no longer valid and indicate that a more sophisticated treatment is necessary.
APA, Harvard, Vancouver, ISO, and other styles
10

Bryan, Robert. "Theoretical studies of Van der Waals clusters." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4712/.

Full text
Abstract:
The vibrational energy levels of various rare gas trimers, Ar(_3), Ne(_3), He(_3), Ar(_2)Ne and Ne(_2)Ar, have been calculated using a coupled channel approach. We have compared results obtained with previous calculations. The existence of Efi-mov states in He(_3) has been investigated, and no evidence of their existence has been found. The affect of the Eckart conditions on embedding axis into a rotating-vibrating system has been investigated for several rare gas systems. A wide range of rare gas trimers have been studied, Ar(_3), He(_2)Ar, Ar(_2)He, Ar(_2)Ne and Ne(_2)Ar. For each trimer the full range of molecular motion is investigated. The low energy minima for the Ar(_n)N(_2) and Ne(_n)N(_2) systems have been found using simulated annealing search, and a gradient based minimisation technique, of a pairwise potential energy surface. Clusters with n ≥ 12 have been studied, and first solvation shells for both systems have been proposed. For each value of n, for n = 1 - 12, the first few low energy minima of the potential energy surface have been found. From these studies, we have gained a detailed understanding of the interplay of forces that determine the low energy structures for these systems. The affect of three-body interactions on the low energy minima both rare gas-N(_2) systems has been studied. In both system, rare gas-rare gas and rare gas- threebody interactions have been taken into account. This study has shown that the three-body forces have a small affect on the low energy structures of each system.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Van Der Waals"

1

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kok, Auke. De verrader: Leven en dood van Anton van der Waals. 2nd ed. Amsterdam: Arbeiderspers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Van Der Waals"

1

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bruylants, Gilles. "Van Der Waals Forces." In Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xiang-Jun. "Van der Waals Forces." In Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arndt, T. "Van-der-Waals-Kräfte." In Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gooch, Jan W. "Van der Waals Forces." In Encyclopedic Dictionary of Polymers, 788. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bruylants, Gilles. "Van der Waals Forces." In Encyclopedia of Astrobiology, 2583–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tadros, Tharwat. "Van der Waals Attraction." In Encyclopedia of Colloid and Interface Science, 1395–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arndt, T. "Van-der-Waals-Kräfte." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3207-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thompson, M. L. "Van Der Waals Complexes." In Inorganic Reactions and Methods, 196. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch142.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Van Der Waals"

1

CAPOZZIELLO, S., V. F. CARDONE, S. CARLONI, and A. TROISI. "VAN DER WAALS QUINTESSENCE." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neundorf, Dörte. "Van-der-Waals-interaction constant." In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davoyan, Artur R. "All-van der Waals metadevices." In Active Photonic Platforms (APP) 2023, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2678158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Chang-Hua. "van der Waals materials integrated nanophotonics." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2020. http://dx.doi.org/10.1117/12.2567598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shtabovenko, Vladyslav. "Van der Waals forces in pNRQED." In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Majumdar, Arka. "Van der Waals material integrated nanophotonics." In 2D Photonic Materials and Devices IV, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2021. http://dx.doi.org/10.1117/12.2581864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davoyan, Artur. "Nanophotonics with Van der Waals metastructures." In Active Photonic Platforms (APP) 2022, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2022. http://dx.doi.org/10.1117/12.2632814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mockensturm, Eric, and Arash Mahdavi. "Van Der Waal’s Elastica." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82991.

Full text
Abstract:
Experimental investigations of carbon nanotubes have revealed that they can collapse into nanoribbons that have a dumb-bell shape cross-section. Due to the extreme exibility of single-atom thick graphene sheets, if the tube is large enough self-induced Van der Waals forces acting on the at surfaces of the ribbon will be large enough to hold the nanotube in the collapsed (ribbon) configuration. Energetically, the additional strain (bending) energy stored in the collapsed state is offset by the decrease in energy of the Van der Waals interactions. Because Van der Waals forces are short ranged, one nds that tubes of great enough diameter are bistable. Here we investigate the natural of this bistability by investigating how the energy stored in the tube changes as it is compressed by at rigid indenters of various widths. The nanotube is assumed to deform uniformly along its length and the cross-section is modeled using inextensible, non-linear beam theory (Euler’s Elastica). We nd that the in ated (tube) conguration is always stable but that the energy barrier against decreases with increasing tube radius. Additionally, the energy difference between the in ated and collapsed states decreases nearly linear with increasing radius and for tubes with radius greater than 26 A the collapsed state is energetically favored.
APA, Harvard, Vancouver, ISO, and other styles
9

Heinz, Tony F. "Optical Properties of van der Waals Heterostructures." In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lw4h.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roy, T., M. Tosun, M. Amani, D. H. Lien, D. Kiriya, P. Zhao, S. Desai, A. Sachid, S. R. Madhvapathy, and A. Javey. "Van der Waals heterostructures for tunnel transistors." In 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336791.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Van Der Waals"

1

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography