Academic literature on the topic 'Van der Waal materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Van der Waal materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Van der Waal materials"
Lado, Jose L. "Putting a twist on spintronics." Science 374, no. 6571 (November 26, 2021): 1048–49. http://dx.doi.org/10.1126/science.abm0091.
Full textVersteegh, Kees. "“A River Runs Through It”: Crossing the Meuse in Batenburg (The Netherlands)." Roczniki Humanistyczne 71, no. 6sp (July 24, 2023): 273–95. http://dx.doi.org/10.18290/rh237106.13s.
Full textJiandong Qiao, Jiandong Qiao, Fuhong Mei Fuhong Mei, and Yu Ye Yu Ye. "Single-photon emitters in van der Waals materials." Chinese Optics Letters 17, no. 2 (2019): 020011. http://dx.doi.org/10.3788/col201917.020011.
Full textWang, Xu, and Peter Schiavone. "Green’s functions for an anisotropic half-space and bimaterial incorporating anisotropic surface elasticity and surface van der Waals forces." Mathematics and Mechanics of Solids 22, no. 3 (August 6, 2016): 557–72. http://dx.doi.org/10.1177/1081286515598826.
Full textHan, Xiaodong. "Ductile van der Waals materials." Science 369, no. 6503 (July 30, 2020): 509. http://dx.doi.org/10.1126/science.abd4527.
Full textLei, Yuxin, Qiaoling Lin, Sanshui Xiao, Juntao Li, and Hanlin Fang. "Optically Active Telecom Defects in MoTe2 Fewlayers at Room Temperature." Nanomaterials 13, no. 9 (April 27, 2023): 1501. http://dx.doi.org/10.3390/nano13091501.
Full textAjayan, Pulickel, Philip Kim, and Kaustav Banerjee. "Two-dimensional van der Waals materials." Physics Today 69, no. 9 (September 2016): 38–44. http://dx.doi.org/10.1063/pt.3.3297.
Full textBasov, D. N., M. M. Fogler, and F. J. Garcia de Abajo. "Polaritons in van der Waals materials." Science 354, no. 6309 (October 13, 2016): aag1992. http://dx.doi.org/10.1126/science.aag1992.
Full textNejad, Marjan A., and Herbert M. Urbassek. "Adsorption and Diffusion of Cisplatin Molecules in Nanoporous Materials: A Molecular Dynamics Study." Biomolecules 9, no. 5 (May 27, 2019): 204. http://dx.doi.org/10.3390/biom9050204.
Full textJia-lu, ZHENG, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, and BAO Qiao-liang. "Twisted van der Waals materials for photonics." Chinese Optics 14, no. 4 (2021): 812–22. http://dx.doi.org/10.37188/co.2021-0023.
Full textDissertations / Theses on the topic "Van der Waal materials"
Boddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Full textSchofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.
Full textZheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser, and Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188567.
Full textHadland, Erik. "Thin Film van der Waals Heterostructures containing MoSe2 from Modulated Elemental Precursors." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24520.
Full text2021-04-30
Rajter, Richard F. "Chirality-dependent, van der Waals-London dispersion interactions of carbon nanotube systems." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46670.
Full textIncludes bibliographical references (p. 185-192).
The Lifshitz formulation is a quantum electrodynamic, first principals formulation used to determine van der Waals - London dispersion interactions in the continuum limit. It has many advantages over crude, pairwise potential models. Most notably, it can solve for complex interactions (e.g. repulsive and multi-body effects) and determine the vdW-Ld interaction magnitude and sign a priori from the optical properties rather than by parameterization. Single wall carbon nanotubes (SWCNTs) represent an ideal class of materials to study vdW-Ld interactions because very small changes in their geometrical construction, via the chirality vector [n,m], can result in vastly different electronic and optical properties. These chirality-dependent optical properties ultimately lead to experimentally exploitable vdW-Ld interactions, which already exist in the literature.Proper use of the Lifshitz formulation requires 1) An analytical extension for the geometry being studied 2) The optical properties of all materials present and 3) A method to incorporate spatially varying properties. This infrastructure needed to be developed to study the vdW-Ld interactions of SWCNTs systems because they were unavailable at the onset. The biggest shortfall was the lack of the E" optical properties out to 30+ eV.
(cont.) This was solved by using an ab initio method to obtain this data for 63 SWCNTs and a few MWCNTs. The results showed a clear chirality AND direction dependence that is unique to each [n,m]. Lifshitz and spectral mixing formulations were then derived and introduced respectively for obtaining accurate Hamaker coefficients and vdW-Ld total energies for these optically anisotropic SWCNTs at both the near and far-limits. With the infrastructure in place, it was now possible to study the trends and breakdowns over a large population as a function of SWCNT class and chirality. A thorough analysis of all these properties at all levels of abstraction yielded a new classification system specific to the vdW-Ld properties of SWCNTs. Additionally, the use of this data and an understanding of the qualitative trends makes it straightforward to design experiments that target, trap, and/or separate specific SWCNTs as a function of SWCNT class, radius, etc.
by Richard F. Rajter.
Ph.D.
Wood, Cody. "A Continuum Model for the van der Waals Interaction Energy of Carbon Nanotubes." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1493376354522434.
Full textYankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.
Full textCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Full textHenck, Hugo. "Hétérostructures de van der Waals à base de Nitrure." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Full textThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Froehlicher, Guillaume. "Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE033/document.
Full textIn this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications
Books on the topic "Van der Waal materials"
Telford, Evan James. Magnetotransport Studies of Correlated Electronic Phases in Van der Waals Materials. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textHybridization of Van Der Waals Materials and Close-Packed Nanoparticle Monolayers. [New York, N.Y.?]: [publisher not identified], 2016.
Find full textYeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textHua, Xiang. Processing and Properties of Encapsulated van der Waals Materials at Elevated Temperature. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textBuhmann, Stefan Yoshi. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textWang, Dennis. Optical and Electronic Studies of Air-Sensitive van der Waals Materials Encapsulated by Hexagonal Boron Nitride. [New York, N.Y.?]: [publisher not identified], 2018.
Find full textHeijden, Paul van der. Romeins Nijmegen: Luxe en ondergang van Rome aan de Waal. [Nijmegen, Netherlands]: BnM uitgevers, 2008.
Find full textHeijden, Paul van der. Romeins Nijmegen: Luxe en ondergang van Rome aan de Waal. [Nijmegen, Netherlands]: BnM uitgevers, 2008.
Find full textHenri van de Waal: Bundel ter gelegenheid van zijn honderdste geboortedag 3 maart 1910/3 maart 2010. Leiden: Coördesign, 2010.
Find full textOosten, Frits van. De stad en de wethouder: Hoe Cees Waal de binnenstad van Leiden vernieuwde. Leiden: Ginkgo Uitgeverij, 2017.
Find full textBook chapters on the topic "Van der Waal materials"
Hermann, Jan, and Alexandre Tkatchenko. "Van der Waals Interactions in Material Modelling." In Handbook of Materials Modeling, 259–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_6.
Full textHermann, Jan, and Alexandre Tkatchenko. "van der Waals Interactions in Material Modelling." In Handbook of Materials Modeling, 1–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_6-1.
Full textWang, Guorui. "Interfacial Mechanics Between van der Waals Materials." In Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior, 97–134. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8029-1_5.
Full textHolwill, Matthew. "Properties of Two-Dimensional Materials." In Nanomechanics in van der Waals Heterostructures, 7–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9_2.
Full textLui, C. H. "Raman Spectroscopy of van der Waals Heterostructures." In Raman Spectroscopy of Two-Dimensional Materials, 81–98. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1828-3_4.
Full textRoy, Kallol. "Review: Optoelectronic Response and van der Waals Materials." In Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 37–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_3.
Full textTsukada, M., N. Shima, S. Tsuneyuki, and H. Kageshima. "Theory of Electron Attachment of Van der Waals Microclusters." In Springer Series in Materials Science, 174–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83064-8_23.
Full textWang, Shuang, Shi-Jun Liang, and Feng Miao. "Neuromorphic Vision Based on van der Waals Heterostructure Materials." In Near-sensor and In-sensor Computing, 67–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11506-6_4.
Full textJaegermann, Wolfram, Andreas Klein, and Christian Pettenkofer. "Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces." In Electron Spectroscopies Applied to Low-Dimensional Materials, 317–402. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47126-4_7.
Full textKim, Hyunseok, Wei Kong, and Jeehwan Kim. "Advanced Epitaxial Growth of LEDs on Van Der Waals Materials." In Series in Display Science and Technology, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5505-0_5.
Full textConference papers on the topic "Van der Waal materials"
Liu, Chang-Hua. "van der Waals materials integrated nanophotonics." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, edited by Takuo Tanaka and Din Ping Tsai. SPIE, 2020. http://dx.doi.org/10.1117/12.2567598.
Full textMajumdar, Arka. "Van der Waals material integrated nanophotonics." In 2D Photonic Materials and Devices IV, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2021. http://dx.doi.org/10.1117/12.2581864.
Full textKhanikaev, Alexander B. "Topological polaritonics with Van der Waals materials." In Metamaterials, Metadevices, and Metasystems 2022, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2022. http://dx.doi.org/10.1117/12.2633470.
Full textYe, P. "1D van der Waals Materials in 2D Form." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.c-6-01.
Full textBalandin, Alexander A. "Quasi 2D and 1D van der Waals quantum materials." In Low-Dimensional Materials and Devices 2021, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2021. http://dx.doi.org/10.1117/12.2601790.
Full textLaw, Stephanie. "Growth of van der Waals topological insulator thin films." In Low-Dimensional Materials and Devices 2021, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2021. http://dx.doi.org/10.1117/12.2596181.
Full textLiu, Chang-Hua, Tian-Yun Chang, Po-Liang Chen, Wei-Qing Li, Yueyang Chen, Jiajiu Zheng, and Arka Majumdar. "Novel optoelectronics and nanophotonics based on van der Waals materials." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2552177.
Full textLi, Peining. "Infrared hyperbolic metasurface based on nanostructured van der Waals materials." In Optoelectronic Devices and Integration. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oedi.2019.oth3b.3.
Full textLado, Jose, and Adolfo Fumega. "Artificial van der Waals multiferroics with twisted two-dimensional materials." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.050.
Full textMenon, Vinod M. "Strong light-matter interaction in Van der Waals materials (Conference Presentation)." In 2D Photonic Materials and Devices, edited by Arka Majumdar, Xiaodong Xu, and Joshua R. Hendrickson. SPIE, 2018. http://dx.doi.org/10.1117/12.2295227.
Full textReports on the topic "Van der Waal materials"
Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.
Full textMohideen, Umar. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1319578.
Full textDuring, R., M. Pleijte, and J. Vreke. Legitimatie van de nevengeul voor de Waal langs Varik : constructies van risico’s uit onzekerheden die redenen geven voor voorzorg : achtergrondrapport. Wageningen: Wageningen UR, Wetenschapswinkel, 2016. http://dx.doi.org/10.18174/381623.
Full textDuring, R., M. Pleijte, and J. Vreke. Legitimatie van de nevengeul voor de Waal langs Varik : constructies van risico’s uit onzekerheden die redenen geven voor voorzorg : publieksrapport. Wageningen: Wageningen UR, Wetenschapswinkel, 2016. http://dx.doi.org/10.18174/381631.
Full textQuigley, Kevin, Sergey Chemerisov, Peter Tkac, and George F. Vandegrift. Van de Graaff Irradiation of Materials. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1335678.
Full textWildschut, Jeroen. 24-uurs Opslag van het Warmteoverschot van een Zonnedak : Phase Change Materials als alternatief voor Water. Bleiswijk: Wageningen University & Research, BU Glastuinbouw - Bloembollen, 2018. http://dx.doi.org/10.18174/464369.
Full textSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full text