Academic literature on the topic 'Valorisation de la biomasse lignocellulosique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Valorisation de la biomasse lignocellulosique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Valorisation de la biomasse lignocellulosique"
Djeddou, Souhaib, Khalida Boutemak, Benamar Cheknane, Amel Hadj-Ziane, and Fkair Mohamed Ayoub. "Etude de la production de bioéthanol de deuxième génération à partir d'un déchet agroalimentaire." Journal of Renewable Energies 21, no. 3 (September 30, 2018): 385–90. http://dx.doi.org/10.54966/jreen.v21i3.697.
Full textHERNANDEZ-SHEK, M. A., P. PEULTIER, A. PAUSS, and T. RIBEIRO. "Une revue des instruments de caractérisation rhéologique de biomasses appliqués à la méthanisation en voie solide continue." Techniques Sciences Méthodes 5 (May 22, 2023): 48–81. http://dx.doi.org/10.36904/tsm/202305048.
Full textBESLE, J. M., and J. P. JOUANY. "La biomasse pariétale des fourrages et sa valorisation par les herbivores." INRAE Productions Animales 3, no. 1 (February 3, 1990): 39–50. http://dx.doi.org/10.20870/productions-animales.1990.3.1.4359.
Full textOgier, J. C., J. P. Leygue, D. Ballerini, J. Pourquie, and L. Rigal. "Production d'éthanol a partir de biomasse lignocellulosique." Oil & Gas Science and Technology 54, no. 1 (January 1999): 67–94. http://dx.doi.org/10.2516/ogst:1999004.
Full textChérif, Hadj-Ahmed, Faical Larachi, Alain Adnot, and Amin Sarvaramini. "Torréfaction de la biomasse lignocellulosique dans les liquides ioniques: Analyse comparative par spectroscopies de surface." Canadian Journal of Chemical Engineering 92, no. 11 (August 27, 2014): 1839–58. http://dx.doi.org/10.1002/cjce.21998.
Full textChérif, Hadj-Ahmed, Abdelkader Chaala, Denis Rodrigue, and Faical Larachi. "Traitement solvothermique superficiel de la biomasse lignocellulosique dans les liquides ioniques-hygroscopicité, morphologie et propriétés mécaniques." Canadian Journal of Chemical Engineering 93, no. 1 (October 30, 2014): 29–36. http://dx.doi.org/10.1002/cjce.22095.
Full textO’Donohue, Michael J. "La production de carburants à partir de biomasse lignocellulosique par voie biologique : état de l’art et perspectives." Oléagineux, Corps gras, Lipides 15, no. 3 (May 2008): 172–77. http://dx.doi.org/10.1051/ocl.2008.0190.
Full textBonin, Frédéric, Maxence Arnould, Pierre Duval, Aristide Robic, Marie-Loréa Tapie-Petit, Mehdi El Hrizi, Theresia Euler, et al. "Perspectives d'émergence d'une filière forêt-chimie des extractibles Points de vue des acteurs du Nord-Est de la France et du Sud-Ouest de l'Allemagne." Revue forestière française 72, no. 1 (February 28, 2020): 71–84. http://dx.doi.org/10.20870/revforfr.2020.5304.
Full textMugeniwabagara, Epiphanie. "La valorisation énergétique de la biomasse : une solution durable pour l’Afrique ?" Hegel N° 3, no. 3 (2015): 244. http://dx.doi.org/10.3917/heg.053.0244.
Full textTritz, Yvan. "Valorisation locale de la biomasse dans l'Orne : le projet Bois Bocage Énergie." Pour 212, no. 5 (2011): 67. http://dx.doi.org/10.3917/pour.212.0067.
Full textDissertations / Theses on the topic "Valorisation de la biomasse lignocellulosique"
Liu, Xun. "Valorisation énergétique de la biomasse lignocellulosique par digestion anaérobie : Prétraitement fongique aérobie." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0099/document.
Full textBioconversion to methane lignocellulosic biomass is one of the most promising alternatives for the production of methane from anaerobic digestion. However, lignocellulosic biomass has various bio-physicochemical characteristics due to their biochemical composition and diverse structural organization. Moreover, their low biodegradability in anaerobic condition requires pretreatment before methanation to optimize methane production. This work aims to evaluate the influence of the characteristics of a wide range of lignocellulosic substrates on their anaerobic biodegradability and correlations between their bio-physical-chemical characteristics and biomethane potential, and study the effects of fungal pretreatment in the presence of Ceriporiopsis subvermispora on the biogas potential of lignocellulosic biomass selected in this study and characterize their changes of their characteristics before and after the fungal pretreatment. The characterization of 36 representative lignocellulosic biomass of a wide range of potentially mobilized deposits allowed to highlight the linear correlations between biomethane potential of biomass and some of their bio-physical-chemical characteristics, of which the lignin content and biochemical oxygen demand. The forest and agricultural biomass exhibited distinct characteristics of the aerobic and anaerobic biodegradability. The results of fungal pretreatment of the 5 biomass indicated that the white rot fungus Ceriporiopsis subvermispora reacts distinctly depending on the pretreated biomass. For some biomass, fungal pretreatment leads to significant increase of methane production and the bioconversion rate of methane. This species presents the ability to selectively degrade lignin on some biomasses, in others, the ability to non-selectively degrade polysaccharides and lignins. In addition, for both strains of Ceriporiopsis subvermispora tested, different metabolisms were highlighted on the same biomass. The results of compositions and those of the structural analysis of biomass (initials, autoclaved, controls, and pretreated with Ceriporiopsis subvermispora) showed that their structure can be modified without observing a significant transformation of their biochemical composition
El, Hage Roland. "Prétraitement du miscanthus x giganteus : vers une valorisation optimale de la biomasse lignocellulosique." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10063/document.
Full textMiscanthus x giganteus (MxG) is, because of its composition, a source of renewable lignocellulosic material that can be of great interest for the production of high added value molecules. MxG used in this work comes from the agricultural high school of Courcelles-Chaussy, Metz-France. Its high content of hemicelluloses (26 %), lignin (26 %) and cellulose (36 %) makes it a good source of polymers and renewable fuel. In the present study we have characterized the straw of MxG and optimized the process of delignification in a single step (1) by an ethanol organosolv treatment and in a two steps (2) including an autohydrolysis pretreatment with water / organosolv. The ethanol organosolv process permits a good separation of the three constituents of our biomass (lignin, cellulose and hemicelluloses). The two steps treatment process, involving an autohydrolysis with water (in the presence or absence of 2-naphthol) before the pretreatment organosolv has facilitated the later stage of delignification in destructurizing the lignin. An investigation of the physico-chemical properties was performed on the structure of the milled wood lignin and organosolv lignin of MxG extracted with different treatment severities. A way of valorization for the organosolv lignin has been proposed by their incorporation in the formulation of an adhesive for wood in which a non volatile and low toxic aldehyde (glyoxal) is used instead of formaldehyde. A formulation consisting in 100 % of natural resins (60 % tannins of mimosa and 40 % of glyoxalated lignin) was used for the production of particle board and gave promising results with internal bond strength of 0.41 MPa, higher than the value of the current European standard. Finally, a study was conducted on the antioxidant properties of organosolv lignin extracted at different severities. The results have shown a correlation between the antioxidant activity and the operating conditions of treatment organosolv, the average molecular weight, the polydispersity index and the phenolic hydroxyl groups of lignin
Ligner, Emmanuelle. "Valorisation de la biomasse lignocellulosique en carburant : étude de catalyseurs hétérogènes pour la réaction d’aldolisation." Caen, 2013. http://www.theses.fr/2013CAEN2050.
Full textThe utilization of lignocellulosic biomass for fuel production requires the upgrading of the various oxygen-containing compounds from which it is formed. Following biomass depolymerization, these C5 and C6-building units include organic carbonyl groups, which can be condensed into compounds of more suitable molecular weights by aldolisation. The present work aimed at understanding the structure-activity relationship of heterogeneous catalysts used for the gas-phase aldol condensation of acetone, which was used as a model carbonyl-containing compound, in the presence of dihydrogen. Most efforts were devoted to the discovery of bifunctional systems (metallic + basic characters) exhibiting stable activity for the formation of linear oligomers. Alkali-substituted zeolites were first investigated but only displayed low activity. Several key parameters were shown to determine the activity, such as the nature of the alkali counter-cation, the residual sample acidity and the zeolite structure through the diffusivity of reaction products. Basic oxides derived from spinel structures (comprising Al, Na, Zn, Co or Cu) exhibited significantly greater acetone aldolisation activities than the basic zeolites aformentioned. Higher densities of basic sites lead to an increased formation of heavy products, resulting in the inhibition of the activity. The vicinity of metallic and aldolisation sites favored the formation of linear trimers, limiting the extent of cyclization. Cu-aluminate catalysts were shown to be instable under reductive atmospheres, and it is proposed that the active catalyst was formed of metallic copper particles supported onto an aluminium-rich oxide. The Na-content of the catalyst was shown to be crucial to obtain a solid with a stable catalytic activity and selective for the formation of linear trimers. The main role of Na was to limit dehydration of reaction intermediates and to favor the formation of oligomers
Thiebaud-Roux, Sophie Borredon Marie-Elisabeth. "Valorisation chimique de composés lignocellulosiques obtention de nouveaux matériaux /." Toulouse : INP Toulouse, 2004. http://ethesis.inp-toulouse.fr/archive/00000045.
Full textGatt, Etienne. "Etude de la déconstruction de résidus agricoles lignocellulosiques par extrusion biocatalytique." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0006/document.
Full textBiocatalytic extrusion, also named bioextrusion, is a reactive extrusion technique using enzymes as catalysts. Bioextrusion is considered as a link between the previous physico-chemical pretreatment (like alkaline extrusion) and the subsequent enzymatic hydrolysis in batch conditions. The extrusion allows a continuous, flexible and versatile process for high consistency media, easily transferable to the industrial level. However, complexity of both lignocellulosic biomass and lignocellulolytic enzymes and their interactions during the extrusion process are underlined by the literature. Numerous response surface methodology experiments with starchy biomass indicate that bioextrusion efficiency is mainly influenced by substrate and enzymes loading. Enzymatic activity during the bioextrusion process of lignocellulosic biomass is confirmed by the experiments despite the mechanical constraints and the limited residence time. During bioextrusion, best holocellulosic fraction hydrolysis results were obtained with high substrate and enzymes loadings. Significant modifications of the solid fraction like particule size reduction, visual deconstruction of the biomass structure, increased sensibility to thermal decomposition and the evolution of the surface exposure of crystalline and amorphous cellulose were observed. Enzymatic hydrolysis of the bioextrdates is prolonged in batch conditions. Clear improvements of speeds and rates of sugars conversion up to 48 h indicate a long term influence of the bioextrusion. Gain observed are steady for the pretreated wheat straw whereas it increases with time for corn residues and birch barks. Post-extrusion, a negative influence of the substrate loading is measured. However, best enhancements for the glucose conversion of pretreated wheat straw are detected for high substrate and enzymes loadings. From 4 to 48 h, significant losses in xylose conversion are measured with previous bioextrusion. Indicators of the solid fraction deconstruction, observed during the bioextrusion step, indicate a stronger biomass degradation after 48 h. Improvements of glucose conversion rates can be associated with good mixing conditions of the extruder, especially due to the use of kneading elements. Enzymes are probably more homogeneously distributed (distributive mixing) and can access more catalytic sites available. Moreover, dispersive mixing limits the enzyme jamming due to the biocatalysts concentration. Extrusion process permits an better agitation efficiency, good mass transfer conditions and probably a higher contact between substrate and enzymes. Lower xylose conversion results may be attributed to non-specific adsorptions or inactivation phenomena due to mechanical constraints and lignin residues. Good deconstruction results on the solid fraction may be associable with a synergetic action between mechanical and biochemical constraints. Autofluorescent signal analysis of the lignin fraction show its evolution during the deconstruction of the solid residue. During the hydrolysis, a progressive production of very small particles, appearing to be associated with the lignin fraction is observed. Lignin-carbohydrate complexes are also detected in the liquid fraction. These heteropolymeric complexes, difficult or even impossible for the enzymes to hydrolyze, are an obstacle to the biomass valorization. If lignin deconstruction is mainly due to the alkaline pretreatment, bioextrusion process seems to reduce the proportion of these heteropylymers with high molecular weights
Thiebaud-Roux, Sophie. "Valorisation chimique de composés lignocellulosiques : obtention de nouveaux matériaux." Phd thesis, Toulouse, INPT, 1995. http://oatao.univ-toulouse.fr/7362/1/thiebaud.pdf.
Full textYu, Xiaoxi. "Valorisation de la biomasse lignocellulosique humide par la mise en place de procédés d'extraction et de séparation des polyphénols et des protéines : cas des tiges de colza." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2246.
Full textThis thesis work concerns the study and the evaluation of the extraction and the separation of valuable compounds from rapeseed residues. The impact of different treatments (grinding, pulsed electric fields, high voltage electrical discharges and ultrasound) on the enhancement of the extraction of polyphenols and proteins from rapeseed stems was compared. These treatments can damage cell membranes and 1 or cell walls mechanically, electrically or acoustically, thus facilitating the release of intracellular compounds to the surroundings. The extraction kinetics, yield of total polyphenols and proteins and energy consumption were mainly studied. In addition, influences of plant maturity on the efficiency of studied treatments for the extraction of polyphenols and proteins have been studied. The methods tested for the separation of extractives (polyphenols and proteins) include coagulation, membrane filtration and the combination of these two methods in order to reduce the consumption of organic solvents and the retention ofpolyphenols during separation. The separation of extractives was evaluated by means of analysis of purity and relative removal. Finally, positive effects of electrical treatment on the extractive separation step such as the increase ofpermeate flux and the decrease of membrane fouling have been observed
Nonviho, Guévara. "Valorisation chimique de la biomasse oléagineuse d’origine béninoise : Lophira lanceolata et Carapa procera." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0052/document.
Full textThe chemical composition of wild oilseeds, such as Lophira lanceolata (Ll) and Carapa procera (Cp) of Benin is mostly unknown. Yet they undergo crafted transformations for food, cosmetic and therapeutic purposes. This study aims to characterize their seeds, hulls and woods. From these crops, different oils have been extracted. One of them has been produced in rural area according to aqueous ancestral method. On the whole, oils of Ll have presented an interesting nutritional profile. They are rich in polyunsaturated fatty acids (> 50% m/m: mass for mass), especially that extracted by artisanal process. Beyond its good chemical properties, it provides essential fatty acids, phytosterols such as lupeol and more tocols compounds. Roasting and the use of enzymes have also assessed the impact of these methods on the chemical composition of LI seeds. Differently, Cp oil’s has an abundant presence of MUFA, tocotrienols (85.56% w/w) and the richest composition in lanosterol (28.03%, m/m). The seeds cakes, hulls and wood of both species showed various distributions on chemical components (extractives, hemicellulose, cellulose and lignin). The characterization of hemicelluloses from different parts of plants has shown that they are essentially glucuronoxylans type. Extractives also offered a wide range of compounds mostly appreciated for industrial and pharmaceutical purposes. The chemical composition of the shells of Lophira was rich in organic compounds such as lignin (32.13%, dry weight) so their biosorbent capacity was evaluated. They showed methylene blue good adsorption capacity in aqueous solution, which highlighted their potential use in the purification of wastewater
Dubuis, Alexis. "Déformulation de matrices complexes : vers une méthodologie raisonnée adaptée aux matrices issues des procédés de valorisation de la biomasse." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1228/document.
Full textThe conversion of lignocellulosic biomass into biofuels and biosourced molecules produces complex thermosensitive liquid matrices which cover a wide range of polarity and molecular weight. Analytical tools developed in the literature only give a partial description of these oxygenated matrices. To understand the reactivity of these samples and optimize the development of conversion processes, a better characterization is required. The objective of this thesis is to demonstrate the interest of a relevant fractionation step prior to separation techniques to help the molecular characterization of biomass samples. The reverse engineering proposed for the sample is desired complete and chemically controlled (without loss or sample modification). Two fractionation pathways were investigated: (1) solubility fractionation with liquid-liquid extraction (LLE) and centrifugal partition chromatography (CPC) and (2) size fractionation with size exclusion chromatography (SEC). These techniques intend to be complementary to reversed-phase liquid chromatography hyphenated to ultraviolet-visible spectroscopy detection and high resolution mass spectrometry (RPLC-UV/HRMS). LLE, CPC and SEC methods were developed on model molecules to understand mechanisms involved and control the chemical selectivity. 2D contour plots were obtained, improving the resolving power and structuring chromatograms in comparison with RPLC-UV/HRMS. Then, SECxRPLC-UV/MS and CPCxRPLC-UV/MS hyphenations were applied to describe two complex samples from different substrates produced on experimental pilot units from two possible conversion pathways of lignocellulosic biomass (biochemical and thermochemical). The complementarity of separation modes allows to double the number of peaks detected, benefiting from the chemical organization of compounds. This constitute a support to identification also enhanced by multi-detection which provide additional structural information on compound detected, especially HRMS. Chemical organization in 2D contour plots were presented and discussed to propose the most adapted strategy to fully fractionate a sample based on the measurement of relevant descriptors. Finally, one of the fractionation approach developed in this thesis was used to isolate and structurally elucidate key molecules of a complex sample through MS fragmentation experiments and nuclear magnetic resonance spectroscopy (NMR)
Di, Menno Di Bucchianico Daniele. "Development of processes for the valorization of lignocellulosic biomass based on renewable energies." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR27.
Full textThe world is facing the impacts of climate change due to its long dependence on fossil fuels, and specifically Europe, which is facing an energy crisis, has recognized the fragility of its fossil fuel-dependent energy system and has moved strongly towards renewable energy resources. Among renewables, biomass not only powers bio-energy production but also serves as a vital source of bio-carbon, used to create high-value molecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, particularly stand out for their potential as bio-additives and bio-fuels. Acid solvolysis of hexose sugars from biomass appears to be a promising and cost-effective production route, which requires further investigation not yet found in the literature. The potential of alkyl levulinate extends to its conversion into γ-valerolactone (GVL), a promising bio-solvent, commonly obtained by hydrogenation through molecular-hydrogen. Besides being a key reagent, hydrogen is also a promising energy carrier, facilitating the integration of renewable energy sources into the market. Hydrogen energy storage systems support this integration, promoting 'green' industrial transformation. This thesis focuses on technological investigation and sustainability assessment of a potential biorefinery system, integrating lignocellulosic biomass valorization, energy production, and hydrogen generation. The study encompasses experimental investigations, optimizing technologies for the production of butyl levulinate and its subsequent hydrogenation to GVL. Sustainability considerations are fundamental to the process configuration, aligning with the global shift towards renewable and carbon bio-resources. In order to answer the question of sustainability, the research presents a first section focused on the experimental investigation of the optimal technology for the production of butyl levulinate. The solvolysis of the biomass-derived hexose Fructose to butyl levulinate was investigated, in terms of optimal process conditions and kinetic modelling. Selected an effective heterogeneous catalyst, the effect of the solvent was investigated, showing the benefits of using GVL as co-solvent, together with butanol, on the conversion and dissolution kinetics of fructose. In these conditions, the solvolysis to butyl levulinate was studied in depth from a kinetic point of view, first by proposing a model for the solvolysis of 5-HMF, an intermediate in the fructose pathway, and then extending the modelling from fructose itself. A robust kinetic model, describing the reaction mechanism of solvolysis, was defined and validated, particularly under conditions of high initial fructose concentration (applying the concept of High-gravity), and including in the modelling the kinetics of dissolution, and degradation of fructose, under acidic conditions.In the second part of the research, the technological perspective was extended to the hydrogenation of butyl levulinate to GVL. Starting from a conceptual design phase, the overall fructose-to-GVL process scheme was defined, simulated, and optimized on the basis of the process intensification concept. In the third part, the process was then dropped into a real case study in Normandy, France, adapting the analysis to the local availability of lignocellulosic biomass and wind energy. The study defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. The sustainability assessment, based on key performance indicators spanning economic, environmental, and social dimensions, culminates in an aggregated overall sustainability index. The results highlight scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising, demonstrating high economic profitability and reduced environmental impact. Finally, sensitivity analyses validate the robustness and reliability of the methodology, generally extendable also to other technological systems
Come previsto, il mondo sta affrontando gli effetti tangibili del cambiamento climatico come conseguenza di un'economia basata sui combustibili fossili per centinaia di anni. Oltre a dover affrontare e adottare misure correttive per limitare gli effetti del riscaldamento globale, l'Europa sta affrontando una grave crisi energetica, che rivela la fragilità del sistema energetico europeo, prevalentemente dipendente dalle importazioni di combustibili fossili. La geopolitica delle risorse fossili ha innescato la necessaria rimodulazione dell'economia energetica europea, che si sta spostando "forzatamente" verso le risorse energetiche rinnovabili per diventare un'economia fossile e a zero emissioni di carbonio. Nel panorama delle rinnovabili, le risorse più sfruttate sono l'energia solare, eolica e da biomassa. Oltre alla produzione di bioenergia, la biomassa è una fonte inestimabile di biocarbonio, che può essere sfruttata e valorizzata per la produzione di molecole ad alto valore aggiunto che possono essere utilizzate in vari settori industriali, per la produzione di carburanti, prodotti chimici, materiali e sostituendo i corrispondenti prodotti di origine fossile. In questo contesto, sono stati sviluppati sistemi innovativi di bioraffinazione della biomassa di seconda generazione per trasformare e decostruire la complessa struttura della biomassa in molecole piattaforma più semplici, che possono poi essere trasformate in molecole ad alto potenziale. Tra queste, gli alchil levulinati sono stati identificati per il loro notevole potenziale come bioadditivi e biocarburanti. Esteri dell'acido levulinico, questi composti possono essere ottenuti da derivati della biomassa, come i monosaccaridi dello zucchero, secondo diverse vie di reazione; tra queste, la solvolisi acida degli zuccheri esosi può essere una via di produzione promettente ed economicamente vantaggiosa, che richiede ulteriori indagini non ancora presenti in letteratura. Il potenziale degli alchil levulinati risiede anche nella possibilità di un ulteriore trasformazione mediante idrogenazione per produrre γ-valerolattone (GVL), una molecola con un mercato promettente come bio-solvente, grazie alle sue proprietà di stabilità, ecotossicità e biodegradabilità. L'uso dell'idrogeno gassoso è la via più comune per l'idrogenazione del GVL, ma, oltre a essere un reagente chimico fondamentale, l'idrogeno è anche uno dei principali protagonisti della transizione energetica. Infatti, come vettore energetico, l'idrogeno può portare alla piena penetrazione delle fonti energetiche rinnovabili nel mercato dell'energia, costituendo un complemento-tampone per lo stoccaggio delle energie rinnovabili intermittenti, attraverso la progettazione di sistemi di stoccaggio dell'energia dell'idrogeno (HydESS). L'accumulo di energia a idrogeno a lungo termine può consentire l'autosufficienza dei sistemi di energia rinnovabile, in quanto agisce da ponte tra le funzionalità dei sistemi Power-to-Hydrogen, in grado di assorbire i surplus energetici delle energie rinnovabili e di immagazzinarli, e quelle dei sistemi Hydrogen-to-Power, che restituiscono energia rinnovabile quando le fonti di energia primaria non sono disponibili. In quest'ottica, lo sviluppo di tali sistemi può portare all'integrazione completa e stabile delle fonti di energia rinnovabile in asset industriali già esistenti, così come in nuovi mercati industriali, come le bioraffinerie di biomassa lignocellulosica, promuovendo lo sviluppo di realtà industriali "verdi" in termini di trasformazione di materiali ed energia. Il mercato industriale globale si sta evolvendo verso la decarbonizzazione e la riqualificazione di diversi asset, attraverso investimenti in efficienza energetica e l'introduzione di processi green per la valorizzazione delle fonti rinnovabili, ma l'implementazione su larga scala di queste iniziative richiede un'analisi completa e approfondita della loro sostenibilità
Books on the topic "Valorisation de la biomasse lignocellulosique"
P, Alphandéry. Développement local et société rurale dans l'isthme du Cotentin: Les aspects sociologiques de la valorisation énergétique de la biomasse. Paris: Institut national de la recherche agronomique, Economie et sociologie rurales, 1985.
Find full textGarneau, G. X., and G. Collin. Valorisation de la Biomasse Végétale par les Produits Naturels. Stylus Pub, 1995.
Find full textValorisation de la biomasse forestière: Étude industrielle préliminaire à la mise en place d'une unité de distillation d'huiles essentielles et de fabrication de compost et de biocombustible en Auvergne. [Clermont-Ferrand]: Université de Clermont II, Groupe de recherche chimie organique 2, Equipe chimie des résineux, 1985.
Find full textBook chapters on the topic "Valorisation de la biomasse lignocellulosique"
"13 - LA VALORISATION ÉNERGÉTIQUE DE LA BIOMASSE." In L'énergie de demain, 295–318. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0129-9-014.
Full text"13 - LA VALORISATION ÉNERGÉTIQUE DE LA BIOMASSE." In L'énergie de demain, 295–318. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0129-9.c014.
Full text