Dissertations / Theses on the topic 'Valorisation chaleur basse température'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 dissertations / theses for your research on the topic 'Valorisation chaleur basse température.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wakim, Michel. "Etude des machines à absorption pour la valorisation de la chaleur fatale basse température." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM037/document.
Full textThis thesis aims at studying the low temperature waste heat recovery (less than 100°C) by the use of absorption machines, mainly absorption heat transformers (AHT) to generate heat at a higher temperature, and absorption refrigeration cycles (ARC) to generate chilling power. The performances of absorption machines are expressed according to the temperatures and the COPs which they can reach. These two parameters depend on the cycle configuration, the components used and the refrigerant-absorbent pair of fluids circulating in the machine. The main objective of this work is a new generation of AHT which can produce heat with a difference in temperature compared to the available heat source (heat rejection) of at least 50°C. For the ARC, a new generation of cycles capable of producing chilling power at temperatures lower than -20°C is aimed.The results obtained represent a major progress in the absorption cycles field. The objectives set for this work of low temperature heat recovery, up to 45°C, by making available high temperature heat (above 120°C) and low temperature (below -20°C) have been achieved. This represents a minimal temperature difference between the waste heat and the useful heat of 75°C. The use of ejectors with specific working fluids allowed the development of a new generation of absorption cycles
Poirier, Rémy. "Analyses énergétiques, exergétiques, économiques et environnementales de systèmes de valorisation de chaleur à basse température." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/10162.
Full textIdir, Anis. "Procédé thermochimique de production/stockage de froid pour le refroidissement et la valorisation de chaleur basse température de panneaux photovoltaïques." Thesis, Perpignan, 2022. http://www.theses.fr/2022PERP0016.
Full textPhotovoltaic technology (PV) is one of the most widely used renewable electricity generation techniques. However, the photoelectric conversion process generates a large amount of heat in the solar cells, causing a significant increase in their operating temperature, which has a significant impact on the conversion efficiency. When the panels operate in areas with high solar irradiation and arid climatic conditions, the operating temperatures can reach 80°C to 100°C, which also impacts their durability. Thus, the objective of this thesis work is to improve the global solar energy conversion by limiting the operating temperature increase of PV modules through an active cooling in order to increase their electrical performance and to valorize in cold the thermal energy generated by a gas sorption thermal process. The aim is to demonstrate the technical feasibility of such a coupling and to evaluate its energy relevance. A gas sorption process exploiting a saturated solution, allowing to exploit the low temperature heat extracted from the PV panels and to valorize it in cold has thus been defined, designed, experimented and analyzed. A simulation tool has been developed to evaluate under realistic operating conditions the electrical performance a PV solar power plant and cooling performance of the thermally coupled sorption process. Such a coupling, which allows for electricity/cooling cogeneration, shows that it is possible to improve the overall energy gain by 10.5 % compared to that of standard PV panels, while resulting in a small overall energy loss of 1.3 % due to the additional conversion of heat to cold
Segond, Guillaume. "Etudes des couplages thermohydrauliques en régime variable d'un système thermique avec stockage : application à la production d'eau chaude sanitaire à partir de la valorisation d'une source de chaleur basse température." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4722.
Full textThe work presented here aims to study and optimize the energy efficiency of a heat pump water heater coupled with a sensible heat storage. The resource used consists of heat recovery from exhaust air of a collective type of housing. The challenge is to characterize the conditions in which the system is capable of ensuring the needs with performance required when the boundary conditions are very volatile. Functionally, the system should be as simple as possible from the viewpoint of its hydraulic configuration and its control strategy.For this study, we developed a TRNSYS numerical model to simulate and analyze different scenarios and thermal hydraulic couplings between the system components. In parallel with this modeling approach, we designed and implemented an experimental set up with realistic scale to validate the model over a wide range of operating conditions.The analysis of the results, including the nature of flows within the storage tank, highlighted the major influence on a number of parameters on the system performance. In particular, the robust performance in the face of significant fluctuations of the boundary conditions can be ensured through appropriate control strategy.This study eventually led to propose a model for the design of the system that takes into account the most relevant parameters for the control strategy
Maalouf, Samer. "Étude et conception d'un système thermodynamique producteur du travail mécanique à partir d'une source chaude à 120°C." Thesis, Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0074/document.
Full textLow-temperature waste-gas heat sources (< 120-150°C) exiting several industrial processes could be recovered for electricity production and constitute an effective mean to reduce primary energy consumption and carbon dioxide emissions. However, technical barriers such as low conversion efficiency, large needed heat transfer area, and the presence of chemically corrosive substances associated with high moisture content when operating in harsh environment impede their wider application. This thesis focuses on particularly energy-hungry industrial sectors characterized by presently unsolved challenges in terms of environmentally hostile low-temperature heat sources. Existing thermodynamic cycles based on Organic Rankine Cycle (ORC) are adapted and optimized for this temperature level. Two conventional heat recovery methods are studied more particularly: indirect and direct contact dehumidification. Optimized design methods for heat exchangers are elaborated and experimentally validated. For the indirect contact dehumidification, advanced anti-corrosion coated materials are proposed and laboratory tested. For the direct contact dehumidification, the effects of packing material and geometry on the corresponding hydraulic performances are underlined. Innovative thermodynamic cycles based on the liquid desiccant technology are investigated. An improved regeneration cycle (IRC) is developed. Compared to the conventional heat recovery technologies, the proposed “IRC” improves both net power and turbine expansion ratio besides preventing faced corrosions problems
Girod, Clément. "Chaleur spécifique à basse température dans l'état normal des cuprates supraconducteurs." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY029.
Full textSince their discovery in 1986, cuprate superconductors are still a puzzle, mainly because of their record-breaking superconducting critical temperatures and the complexity of their phase diagram, which still holds its share of mysteries. My thesis is about the study of these materials, upon which I give a literature survey in the first chapter. During my PhD, I studied the specific heat of these materials. This experimental technique is a powerful tool for harvesting electronic properties and is at the same time sensitive to phase transitions, as I explain in the second chapter. The calorimetric setup I used, detailed in the third chapter, was designed to allow for the measurement of specific heat in a high magnetic field environment up to 35 T, for temperatures down to 0.3 K, which allowed me to study the normal state of cuprates down to the lowest temperatures, when superconductivity is quenched by the magnetic field. My PhD work is mainly focused on the study of two regions of the phase diagram of cuprates that are the subject of the fourth and fifth chapters of this thesis. Firstly, in the pseudogap phase, where I looked for thermodynamic signatures of the transition at the doping p* where this phase ends. Secondly, in the charge order phase, aiming to bring elements to better determine the nature of the Fermi surface after reconstruction by this order. In the fourth chapter, I present the results of the study on the transition at p* in compounds Nd-LSCO and Eu-LSCO, that I extended to LSCO, Bi2201 and Tl2201. In these five compounds, we observe an increase in the electronic specific heat when approaching p*, associated with a logarithmic temperature dependence close to p*. These signatures are commonly observed around quantum critical points and bring out new properties of the pseudogap phase. In the fifth chapter, I present my study of the charge order phase of Hg1201, a model system for studying the Fermi surface reconstruction. We observe that the electronic density of states measured by calorimetry is three times larger than the one obtained from quantum oscillations measurements. This leads us to question the hypothesis that the reconstructed Fermi surface of Hg1201 by the charge order would consist in a single electron pocket
Ayachi, Mohamed Fadhel. "Intégration des cycles de Rankine organiques dans la valorisation de la chaleur fatale industrielle à basses et moyennes températures." Perpignan, 2013. http://www.theses.fr/2013PERP0002.
Full textNowadays, the gradual depletion of fossil fuels combined with constraints on emissions of greenhouse gases have radically modified the research paradigms and led to increasingly restrictive standards for heavy industry in terms of energy consumption and environmental impact. In that context, this PhD has been performed in the framework of the ANR - EESI - ENERCO_LT project. It is structured around two main axes. The first axis consists of the exergy analysis and the optimization of Organic Rankine Cycles for waste heat recovery from dry and wet flue gases available at low and medium temperatures. By thermodynamic optimization, the recovery potential of a wide range of pure fluids and blends are assessed for various designs and have allowed to indicate how we can meet high efficiency, acceptable operating conditions and environmental friendly objectives. Subsequently, a technical and economic optimization method is developed. This later is based on the equivalent system concept. The second axis regards the retrofitting at the pilot scale (5 kW), the experimental study and the modeling of two expander types: a positive displacement scroll machine and a dynamic radial-inflow turbine
Mourad, Mahmoud Mahmoud. "Application des solvants eutectiques à basse température pour la valorisation du cuivre par sonoélectrochimie." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2022.
Full textThe copper is actually an essential element in the industrial world; its consumption and purchase continue to growth because of its major component of printed circuits board and the electronics equipment. It's recycled from the electronic waste; this is the only way to avoid shortage risk. If the copper is easily recycled in aqueous solution, the commercial baths currently in use (cyanide and acid solution) present important environmental risk during their use and their treatments. Several research orientate to a new electrolytes from an ionic liquid, which offer an alternative ecologically viable to the actual solution. In this study we were interested in a recent class of ionic liquid, the eutectic solvent in a low temperature so called Deep eutectic solvent (DES). In fact the DES presents an easy use because there are less sensitive to the water and has a compatible cost for the industrial application in a large scale. If the characteristics physico-chemicals of DES (conductivity, solubilisation of a metallic salt, electrochemical window...) are satisfied to consider the copper recovery, the major inconvenient of these solvent are their higher viscosities which lead to an important reduce of the electrodeposition kinetics and in consequent for lesser efficient process. To avoid this problem the use of ultrasound is a solution to consider. The ultrasound is known to be an effective stirring method to promote mass transport to the electrode and thus the rate of recovery in the DES. It has also an advantage for the metal dissolution. In the first time, our studies were about the characterization of physic-chemical and electrochemical properties of three DES. After this preliminary studies, the mixture of choline chloride (ChCI) and ethylene glycol (EG) appears to be the most appropriate because the whole physic-chemical and electrochemical proprieties will make an electrolyte solution adapted to the recovery of the copper. The second part of this thesis consist of the electrochemical study of the reduction of ions copper (I) and (II) in a Deep Eutectic Solvent (ChCl+EG). To complete this part a comparison with the obtained results in aqueous solvent (Ha 0,01 M) is performed. The mechanism reduction of Cu (II) seems to be in two steps within the DES, but an important modification of the kinetic parameters of these two steps has been seen. During the chemical dissolution of the copper chip in the DES, in addition we discovered that this solvent allowed to stabilize a soluble form Cu(I), which present a considerable advantage in term of Faradic yield for next stage of redeposition. Finally we have determined the kinetic parameters of reaction when we combine an ultrasonic stirring and an increase of the temperature. Rising the temperature at 50c, which allowed reducing the viscosity of the solution, will make more efficient the ultrasonic stirring and the measured coefficient of mass transport are optimum. This study has also allowed us to determine the best experiments conditions elaboration coating of copper and its recovery. To respond to these requirements of global process of copper recovery, we have proceeded in dissolution of metal copper experiments within the DES using the ultrasound to accelerate this step. The leaching of the copper intervenes by corrosion mechanism kinetically limited by the diffusion of the oxidant in the solution, which is accelerated by the ultrasound. In this part of the copper electrodeposition, the deposits elaborated under ultrasound present a thin morphology with a decrease of the grain size. Finally the first recovery experiments, made in a pilot reactor, have been done. The use of ultrasound (20 kHz) permitted to reduce the electrolysis time of 30% to a recovery rate of 90 %
Meffre, Antoine. "Matériaux de stockage thermique haute température issus de la valorisation de matières premières secondaires inorganiques." Perpignan, 2013. http://www.theses.fr/2013PERP1238.
Full textDeslauriers, Mark-André. "Retrofit de systèmes de revalorisation de chaleur industrielle à basse température par optimisation exergo-économique." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9730.
Full textBourdeau, Marc. "Étude des pompes à chaleur chimiques solides-gaz pour le stockage thermique à basse température." Châtenay-Malabry, Ecole centrale de Paris, 1985. http://www.theses.fr/1985ECAP0011.
Full textDavid, Benjamin. "Amélioration de l'efficacité énergétique d'une solution innovante de chauffage basse température et de rafraîchissement." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENA029/document.
Full textIn the current context of improvement of the housing energy efficiency, new heating devices have to be foreseen. We have developed an innovative heating and cooling generator. This device is based on the use of thermoelectric modules working as a heat pump via a power supply. This thesis aims to improve the energy efficiency of the whole system including a low temperature heat floor (global coefficient of performance). This work is based on different analytical and numerical models validated experimentally. These models help to design an optimized device configuration and to develop an optimal management strategy in order to meet the variable power and temperature demands. Multifunctional heat sinks for the generator are designed and studied experimentally in order to maximize the system performances. By coupling the system to housing, a significant improvement of the device performances is shown compared to thermoelectric heat pumps with a classical configuration
David, Benjamin, and Benjamin David. "Amélioration de l'efficacité énergétique d'une solution innovante de chauffage basse température et de rafraîchissement." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00734021.
Full textDubarry, Marie-Bernard. "Etude des chaleurs de vaporisation du mélange ternaire azote-éthane-propane et des mélanges binaires correspondants à basse température." Lyon, INSA, 1989. http://www.theses.fr/1989ISAL0082.
Full textLe, Pierrès Nolwenn. "Procédé solaire de production de froid basse température (-28°C) par sorption solide-gaz." Phd thesis, Université de Perpignan, 2005. http://tel.archives-ouvertes.fr/tel-00011253.
Full textDubacq, Benoît. "Thermodynamique des phyllosilicates de basse température : de l'approche macroscopique à la simulation atomistique." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00411810.
Full textNous proposons deux modèles thermodynamiques pour les smectites, illites, interstratifiés illites / smectites et micas. Ces modèles permettent respectivement de calculer la composition des phases stables à basse température, incluant les argiles, et l'estimation thermobarométrique de leurs conditions de cristallisation. Ils prennent tous deux en compte l'hydratation des phyllosilicates, variable en fonction de la composition, la pression, la température et l'activité d'eau. L'évaluation des propriétés thermodynamiques des équivalents hydratés des pôles purs des micas et des paramètres de solution solide nécessaires a été réalisée pour reproduire au mieux les contraintes expérimentales de déshydratation, nature des phases stables, calorimétrie ainsi que les estimations des conditions de cristallisation d'une compilation d'analyses, dont la gamme s'étend de la diagenèse à la haute pression - haute température. Ces modèles sont appliqués au calcul de diagramme de phase dans des systèmes chimiques simples et à l'estimation des conditions de cristallisation de phyllosilicates de nombreux échantillons naturels, y compris à partir de cartographies élémentaires.
Nous avons testé plusieurs méthodes d'estimation des propriétés thermodynamiques des phases pour lesquelles les contraintes expérimentales et / ou du milieu naturel sont insuffisantes. Aucune d'entre elles ne permet une estimation de l'enthalpie standard de formation directement utilisable à des fins thermobarométriques. Nous proposons cependant une approche pour améliorer cette situation. De plus, nous avons utilisé une méthode de simulation atomistique pour évaluer l'enthalpie de mélange le long de deux solutions solides d'intérêt pour la pétrologie de basse température. Les résultats sont compatibles avec les observations du milieu naturel, et le calcul du solvus entre les pôles muscovite et pyrophyllite confirme l'importance de l'hydratation pour la stabilité des argiles.
Durance, Loïc. "Développement d'une méthode de stérilisation par la chaleur de solutions injectables conditionnées en polyéthylène basse densité." Amiens, 2003. http://www.theses.fr/2003AMIED003.
Full textThe solutions for injection are usually packaged in glass flasks and sterilised by moist steam. Is the current tendency to substitute glass by the plastic because it reduce the obstruction of conditioning while increasing its shock-proofness and allows a board elimination of the wastes by incineration. Only some plastics meet both public health regulations and ecological requirements. Among them, low density polyethylene (LDPE) offers various advantages. It possesses virtually no additive, which limits the interaction hazards between plastic and chemical substances used in injection preparations. Its destruction does not bring chlorine-containing waste or other toxic matter into the atmosphere. Moreover, it is fully adapted to the various manufacturing technologies for large-scale production as the blow-fill-an-seal. However, the temperature value admitted for sterilisation is 121°C, whereas LDPE exhibits a melting point at about 117°C. Therfore, we have developped an alternative cycle of sterilisation based on F0 concept at a temperature lower than 121°C and such as it respected the LDPE containers integrity. The efficiency on the micro-organisms destruction have been calculated aid of stocks spores of Bacillus Stearothermophilus introduced into the recipients which contained water for injection as base solution. The sterilised products have been followed throughout this period. The information obtained by this work have the aim of documenting a manufacturing authorization file about products for injection for its recording with the benefit of a pharmaceutical industry of Amiens
Rigal, Sacha. "Stockage par matériaux à changement de phase de l’énergie thermique rejetée par l’industrie à basse température." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3003/document.
Full textA large amount of energy is rejected by the industry at low temperature level, below a temperature of 200 °C. In order to improve the overall energy efficiency of industrial processes, it is possible to re-use this waste heat. However, this energy recovery is often made difficult because of the time difference between the process step at which the energy is lost and the process step at which this energy could be reused. Combining high energy storage capabilities and a possible energy recovery at constant temperature, thermal storage solution by phase change materials (PCM) is particularly attractive. However, this storage systems implementation faces scientific and technologic obstacles concerning both the storage material and system but also its command system and its integration into industrial processes.This thesis aims to develop a thermal energy storage system using a solid-liquid PCM technology in two temperature ranges: 70-85 °C and 120-155 °C. The first one corresponds to temperatures of heating networks or domestic heating systems, while the second one could directly preheat existing industrial processes. The thesis aims to demonstrate the technical feasibility of the storage system. The purpose is divided into different tasks such as PCMs selection and characterization, PCM implementation in a storage system but also numerical simulation of the storage solution.PCM documented in the literature at those temperature ranges were characterized by Differential Scanning Calorimetry (DSC) in order to determine thermo physical properties on laboratory grade samples. Stearic acid for the 70-85 °C temperature range and sebacic acid for the 120-155 °C temperature range were selected. Deeper differential scanning calorimetry analyses were carried out on those industrial grade materials including material ageing process analyses and their compliance with their respective encapsulation within an experimental test bench.Thermal storage experimental prototype was designed in order to meet the demands simulating the rejects and needs of industrial processes. The test bench is mainly composed of two storage systems : a cylindrical tank, a multitubular exchanger and a thermoregulator used to simulate industrial process functioning. The PCM, while in the multitubular exchanger, fills up the whole volume of the shell whereas the heat transfer fluid flows in tubes. The tank, for its part, contains polyolefin spherical capsules in which the PCM is contained. The tank is crossed by the heat transfer fluid conducting heat exchanges. Those spherical capsules called nodules cannot be exposed to temperatures exceeding 100 °C and are exclusively reserved for the low temperatures range. Thus, stearic acid was confined in nodules so as to fill the storage tank. The sebacic acid was incorporated in the multitubular exchanger shell. Experimental campaigns carried out have demonstrated the feasibility of those storage types
Roget, Fabien. "Définition, modélisation et validation expérimentale d’une capacité de stockage thermique par chaleur latente adaptée à une centrale thermodynamique solaire à basse température." Thesis, Toulon, 2012. http://www.theses.fr/2012TOUL0004/document.
Full textThis work of thesis is done within the framework of industrial agreements research training, between the company Sophia Antipolis Energie Développement (SAED) in Valbonne, and the Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) – CNRS – University Sud Toulon-Var.The aim of this collaboration is to investigate the technical and economic potential of various materials for thermal energy storage by latent heat, suitable for temperature levels of the solar collectors developed by SAED. Indeed, energy storage is a major technological barrier to the process resorting to intermittent renewable energies and especially for thermodynamic solar power plants.After an introduction on the potential and interest of solar power plants working at low temperature, a brief state of art of the main types of energy storage is presented. The second chapter addresses in detail the principle of thermal storage by latent heat and identifies a hundred of selected materials from the literature for phase change in the temperature range 343 - 413 K. The selection criteria are exposed.Thermal analyses by differential scanning calorimetry are carried out systematically on the various selected Phase Change Materials (PCMs). The results of these measurements, presented in chapter III, accurately characterize the material behavior when heated. The transformation on cooling is studied using a device specifically designed in order to be more representative of conditions found in an industrial enclosure. This study, presented in chapter IV, allows refining the selection of PCMs retaining only those whose phase change reversibility is compatible with an industrial use as medium for thermal energy storage. Chapters V and VI are used to study in further detail the specifics of two types of MCP, respectively polyols and eutectic mixtures of nitrates.Final chapter deals with the modeling of heat transfer into a storage tank containing encapsulated PCM. The aim is to provide a tool for predicting the performance of a latent heat storage unit, in order to analyze the influence of different options on the solar power plant energy yield and their impact on the kWh cost
Chater, Rabah. "Etude des antimonites MeSb 2 O 4 à basse température : évolution structurale, thermodynamique, propriétés élastiques et magnétiques anisotropes ; modélisation." Paris 6, 1986. http://www.theses.fr/1986PA066219.
Full textPetit, Gautier. "Analyses thermochimiques et cinétiques de l'auto-inflammation en mode HCCI des isomères du butane : développement et instrumentation d'un banc moteur dédié aux études de basse température." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-Petit.pdf.
Full textBlanc, Christophe. "Nanoscale structuration effects on phonon transport at low temperatures." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY079/document.
Full textThis PhD entitled "Nanoscale structuration effect on the phonon transport at low temperature" take place for three years in the Thermodynamique et Biophysique des Petits Systèmes of the Institut Néel.The context of this PhD is to understand and control the heat transport in samples with variations at the nanoscale. These samples were mostly suspended silicon nanowires. The production was performed in the Néel Institute. During these three years, three important results have been demonstrated.First, we verify that heat transport is not dominated by an effect due to the contact between the suspended nanowire and the thermal bath. This has been demonstrated by the agreement between the measurements and the model called Casimir-Ziman. It was also mainly verified with wires whose junction to the thermal bath has been adapted to allow transmission close to unity. These profiles nanowires have the same thermal conductance as a nanowire with abrupt junction to the thermal bath. This proves that the transmission is always close to 1.Then measurements on nanowires whose section is corrugated have shown a reduction in thermal conductance. This reduction is explained by the presence of backscatter phonons at the surface, resulting in a large reduction of their mean free path. Thus, the phonons in a smooth nanowire have a mean free path up to 9 times greater than in these corrugated nanowires. Simulations with the Monte-Carlo method also demonstrate this effect.If these first results were achieved for monocrystalline silicon nanowires, my last work has focused on the study sample of silicon nitride. This material is an amorphous one. Physics of heat transport in amorphous materials is not yet fully understood. However, measurements on these materials show a similar behavior, both qualitatively and quantitatively, for almost all amorphous materials. We have measured samples of different kinds, to see if this behavior was still valid when the sample size is reduced. The result of our measurements is that the size plays a role in transport. As in crystalline materials, the small sample size will limit the heat transport. However transport in low-dimensional samples shows the same behavior qualitatively as in bulk amorphous materials. This can help provide clues for understanding the heat transport in amorphous materials.In conclusion, this work has allowed me to make and measure the heat transport in different types of samples. The results allow a better knowledge of the phonon transport, thus helping to pave the way towards a better control of heat transport
Borgogno, Remy. "Procédé thermo-hydraulique solaire appliqué à la trigénération dans le secteur résidentiel." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0025/document.
Full textA new process based on thermal-hydraulic conversion actuated by low-grade thermal energy (80–110 °C) is investigated and aims at providing trigeneration energy features for the residential sector. "Thermo-hydraulic" term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems allowing to improve the efficiency of the energy conversion chain. A model, assuming steady-state operations, is developed to assess the energy performances of different variants of this thermo-hydraulic process as well as various pairs of working fluids. These calculations were completed by a quasi-dynamic and dynamic models allowing a better sizing of the process. Finally, an annual study was realized from the quasi-static model in order to estimate the evolution of the performances as well as its power production over a complete year of functioning. For instance, in the frame of a single-family home, located in the Mediterranean region, the working fluid pair (R1234yf/R1233zd) is investigated in detail in order to estimate the annual performances. For domestic houses, the process aims at amplifying the solar energy collected by a factor of 1.32 for heating purpose, provides a cold production with a solar COP of 0.24 and generates electricity from the remaining solar energy with an efficiency of 4.2%
Castro, Flores Jose Fiacro. "Low-temperature based thermal micro-grids : operation and performance assessments." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0084/document.
Full textEnergy use in the urban environment is vital for the proper functioning of our society, and in particular, comfort heating –and cooling– is a central element of our energy system that is often taken for granted. Within this context, district energy systems and especially, district heating (DH) systems must evolve to adapt to the upcoming decades-long transition towards a sustainable energy system. This dissertation seeks to introduce, discuss, and asses from a techno-economic perspective, the concept of low-temperature based thermal micro-grids (subnets) as active distribution thermal networks. For this purpose, a mixed methodological approach based on analytical simulation for the assessment of alternatives is developed and discussed to evaluate a set of technologies. Key findings of this research include: an updated and improved model of aggregated heat loads; the identification of differences in load and temperature patterns for certain LT subnets; the analysis of benefits and drawbacks of active substations with distributed heat sources and/or storage; and the impact of the reduction of the primary network return temperature, which leads to lower generation & operating costs. These outcomes reveal that the integrated design and operation of the active thermal micro-grid have the potential to improve the performance of the entire system, to address the matter of providing comfort heating in an effective and cost-efficient manner. This work advances the current DH knowledge by identifying synergies and challenges that arise with these new developments, in order for DH to play a key role in the future smart and sustainable energy system
Lopez, Ferber Nicolas. "Validation expérimentale d'un système de stockage thermocline air/céramique à échelle pilote - développement d'un matériau céramique issu de sous-produits industriels." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0041/document.
Full textThe recovery and valorization of high-temperature gaseous waste heat streams can benefit from the development of thermocline thermal energy storage, based on the use of a ceramic material as a solid filler and gases (including air) as heat transfer fluid. The wide diversity of waste heat streams implies developping a versatile and robust system, able to operate in such various conditions.This thesis aims at supporting the development of the company Eco-Tech Ceram, which focuses on developing a compact thermocline air/ceramic thermal storage unit (named EcoStock), and developing ceramics produced from industrial inorganic byproducts, designed to be used as thermal energy storage material. Regarding the « thermal storage » topic, this thesis is focused on the experimental validation of the EcoStock concept, through experimental campaigns on a representative pilot-scale system, especially regarding the influence of operating conditions over performances, and the sensitiviy of the system’s efficiency when discharged at different power level, or charged with low-quality heat streams (varying mass flow rate and inlet temperature during charging phase). Regarding the « ceramic » topic, this thesis is focused on developing a sintered ceramic based on municipal waste incinerator bottom ashes compatible with high temperature thermocline system, with an experimental approach, taking in consideration industrial potential of such ceramics by making industrial mass production of such material realistic, using already widely available industrial processes from the bricks and tiles industries.Keywords: thermal storage, thermocline, experimental validation, waste heat, high temperature, sintered ceramics, incinerator bottom ash valorization
Krausova, Rambure Katerina. "Vers de nouvelles matrices minérales pour l’immobilisation et la valorisation des déchets ultimes de l’incinération des déchets ménagers." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1118/document.
Full textThe overall objective of this thesis is to transform ultimate and hazardous waste containing heavy metals, into chemically stable mineral materials. The increasing municipal solid waste (MSW) generation is a problem ranging to global concern. Among various MSW treatment methods, incineration is a technology, which may provide an efficient and environmental friendly solution. Problem of this treatment is the production of fly ash. Fly ash may contain large amounts of toxic metal compounds and is considered as hazardous waste with obligation of final disposal into specialized landfills. Three types of materials for immobilization of lead and cadmium have been investigated: glass ceramics, sintered ceramics and geopolymers. We manage to synthetize a glass-ceramic based purely on the incinerated ashes and to decrease the volatilization during its production. Promising results have been obtained for Ca-Mg-Si-O bearing glass-ceramic with high sustainable incorporation of cadmium into crystalline structures and lead into an amorphous structure. Crystalline structure was evaluated being more resistant against acid attack because of its embedding into a glass matrix that generates a double protection. The future research should be done on possibility obtaining this phase by addition of commercial oxides into fly ash. Sintered ceramic investigated was based on Ba-Mg-Ti-O system. We obtained three mineral phases presented in SYNROC (hollandite, perovskite and rutile) where cadmium substituted the site of magnesium while lead occupied the site belonging to barium. The sintered ceramic is satisfactory in terms of toxic elements incorporation and of chemical and mechanical resistance. For production of resistant geopolymer from fly ashes, it is favorable to use ratio L/S =1.2 and drying at room temperature. It was observed that sintering affects the rate of structural reorganization with apparition of sodalite phase (Na4Si3Al3O12Cl), which consists of tunnels where heavy metals can be incorporated. Lead and cadmium stay mainly below the limit of TCLP standards. The heat treatment over 500°C increases density of the sample. When fly ash mixed with other types of waste such as bottom ash or waste glass powder, it is possible to obtain a more resistant. It was found that all three matrices are a good prospect for a stabilization technique with respect to the major pollutants lead (Pb) and cadmium (Cd)
Gondre, Damien. "Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank : Influences of material properties, operating conditions and system design on storage performances." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI022/document.
Full textThe development of energy storage solutions is a key challenge to enable the energy transition from fossil resources to renewable energies. The need to store energy actually comes from a dissociation between energy sources and energy demand. Storing energy meets two principal expectations: have energy available where and when it is required. Low temperature heat, for dwellings and offices heating, represents a high share of overall energy consumption (i.e. about 35 %). The development of heat storage solutions is then of great importance for energy management, especially in the context of the growing part of renewable energies. Adsorption heat storage appears to be the best trade off among available storage technologies in terms of heat storage density and performances over several cycles. Then, this PhD thesis focuses on adsorption heat storage and addresses the enhancement of storage performances and system integration. The approach developed to address these issues is numerical. Then, a model of an adsorption heat storage tank is developed, and validated using experimental data. The influence of material thermophysical properties on output power but also on storage density and system autonomy is investigated. This analysis enables a selection of particularly influencing material properties and a better understanding of heat and mass transfers. The influence of operating conditions is also underlined. It shows the importance of inlet humidity on both storage capacity and outlet power and the great influence of discharge flowrate on outlet power. Finally, it is shown heat storage capacity depends on the storage tank volume, while outlet power depends on cross section area and system autonomy on bed length. Besides, the conversion efficiency from absorbed energy (charge) to released energy (discharge) is 70 %. But during the charging process, about 60 % of incoming heat is not absorbed by the material and directly released. The overall conversion efficiency from energy provided to energy released is as low as 25 %. This demonstrates that an adsorption heat storage system cannot be thought of as a self-standing component but must be integrated into the building systems and control strategy. A clever use of heat losses for heating applications (in winter) or inlet fluid preheating (in summer) enhances global performances. Using available solar heat for system preheating is an interesting option since a part is instantly retrieved at the outlet of the storage tank and can be used for direct heating. Another part is stored as sensible heat and can be retrieved a few hours later. At least, it has the advantage of turning the adsorption storage tank into a combined sensible-adsorption storage tank that offers short-term and long-term storage solutions. Then, it may differ avoidable discharges of the sorption potential and increase the overall autonomy (or coverage fraction), in addition to optimizing chances of partial system recharge
Diyadi, Jaouad. "Contribution à l'étude de propriétés thermophysiques de composés amorphes Ni1-xPx." Nancy 1, 1989. http://www.theses.fr/1989NAN10147.
Full textLandelle, Arnaud. "Experimental and numerical study of transcritical Organic Rankine Cycles for low-grade heat conversion into electricity from various sources." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI090/document.
Full textThe Organic Rankine Cycle (ORC) is a technology used for low-grade thermal energy conversion into electricity. Transcritical ORC has been identified as a solution for efficient waste heat recovery. However, few experimental tests have been conducted to confirm the interest of transcritical ORC and investigate its operational behaviors. The work presented focuses on the operation and the optimization of subcritical and transcritical Organic Rankine Cycles for low-grade heat conversion into electricity from various heat sources (solar, industrial waste heat). First, the thermodynamic framework of ORC technology is presented. Energetic and exergetic performance criteria, appropriate to each type of input source, are introduced and selected. The criteria are later applied to a database of ORC prototypes, in order to objectively analyze the state-of-the-art. In a second step, the experimental and numerical tools, specifically developed or used in the present thesis, are presented. Three subcritical and transcritical ORC test benches (hosted by CEA and AUA) provided experimental data. Numerical models were developed under different environments: Matlab for steady-state modeling, data processing and energy/exergy analysis. The Modelica/Dymola environment for system dynamics and transient operations. Lastly, the different tools are exploited to investigate four different topics: - The ORC pump operation is investigated, both under an energetic and volumetric standpoint, while semi-empirical models and correlations are exposed. - Supercritical heat transfers are explored. Global and local heat transfer coefficients are estimated and analyzed under supercritical conditions, while literature correlations are introduced for comparison. - Working fluid charge influence over the ORC performance and behavior is investigated. Optimal fluid charge is estimated under various operating conditions and mechanisms for charge active regulation are exposed. - ORC system performances and behavior are discussed. Through both an energetic and exergetic standpoint, performances are compared with the state-of-the-art, while optimization opportunities are identified through an exergetic analysis
Bennani, Faïçal. "Contribution à l'étude des solutions solides ternaires antiferromagnétiques." Nancy 1, 1987. http://www.theses.fr/1987NAN10039.
Full textTaupin, Mathieu. "Etude des fermions lourds magnétiques UCoGe et YbRh2Si2 par mesures de transport." Phd thesis, Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01026388.
Full textPinazzi, Pietro Matteo. "Potential of ozone to enable the low load operation of a Gasoline Compression Ignition engine." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2011.
Full textGasoline Compression Ignition (GCI) engine, relying on Gasoline Partially Premixed Combustion (GPPC) has potential for efficient and clean operations. GCI engine showed to be effective at high load, however, the highoctane number of gasoline dramatically limits low load operations. The present work investigates the potential of using ozone, a strong oxidizing agent, to improve gasoline reactivity and enabling low load GCI operation.Ozone can be produced in-situ and on-demand by equipping the engine with an ozone generator, without a dramatic impact on the engine cost and the engine control complexity. Experiments in a single cylinder engine showed that ozone promotes gasoline HCCI combustion, making possible to extend the lean limit and reducing the minimum temperature needed for autoignition. Optical diagnostics showed that these properties are related to an increased radical proliferation related to ozone-induced low temperature reactions. In parallel, GCI combustion process was investigated under low load conditions. Without ozone, the intake temperature should be considerable increased to enable auto ignition of lean gasoline-air mixtures. Moreover, results indicated that the NO contained into residual burnt gases can strongly promote GCI low load combustion. Finally, the effect of ozone was investigated under GCI direct-injection conditions, demonstrating that low load GCI operation with low NOx and Soot emission can be achieved by seeding the intake of the engine with ozone without needing of increasing the intake charge temperature or boosting the intake pressure
Bouzar, Khalida. "Approche thermodynamique de l'organisation moléculaire de la phase liquide du toluène sous pression : détermination des expansivités et compressibilités sivities." Paris 6, 1986. http://www.theses.fr/1986PA066312.
Full text