Academic literature on the topic 'Vaccine discovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vaccine discovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vaccine discovery"
Rappuoli, Rino, Steven Black, and Paul Henri Lambert. "Vaccine discovery and translation of new vaccine technology." Lancet 378, no. 9788 (July 2011): 360–68. http://dx.doi.org/10.1016/s0140-6736(11)60440-6.
Full text&NA;. "Vaccine Discovery and Translation of New Vaccine Technology." Pediatric Infectious Disease Journal 30, no. 12 (December 2011): 1051. http://dx.doi.org/10.1097/inf.0b013e31822ec698.
Full textRappuoli, Rino, Matthew J. Bottomley, Ugo D’Oro, Oretta Finco, and Ennio De Gregorio. "Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design." Journal of Experimental Medicine 213, no. 4 (March 28, 2016): 469–81. http://dx.doi.org/10.1084/jem.20151960.
Full textGautam, Manish, Sunil Gairola, Suresh Jadhav, and Bhushan Patwardhan. "Ethnopharmacology in vaccine adjuvant discovery." Vaccine 26, no. 41 (September 2008): 5239–40. http://dx.doi.org/10.1016/j.vaccine.2008.07.045.
Full textWeil, Alan R. "Vaccine Discovery, Production, And Delivery." Health Affairs 35, no. 2 (February 2016): 187. http://dx.doi.org/10.1377/hlthaff.2016.0051.
Full textDriguez, Patrick, Denise L. Doolan, Alex Loukas, Philip L. Felgner, and Donald P. McManus. "Schistosomiasis vaccine discovery using immunomics." Parasites & Vectors 3, no. 1 (2010): 4. http://dx.doi.org/10.1186/1756-3305-3-4.
Full textTan, Swan, Andres Hazaet Gutiérrez, Phillip Charles Gauger, Tanja Opriessnig, Justin Bahl, Leonard Moise, and Anne Searls De Groot. "Quantifying the Persistence of Vaccine-Related T Cell Epitopes in Circulating Swine Influenza A Strains from 2013–2017." Vaccines 9, no. 5 (May 6, 2021): 468. http://dx.doi.org/10.3390/vaccines9050468.
Full textTuju, James, Gathoni Kamuyu, Linda M. Murungi, and Faith H. A. Osier. "Vaccine candidate discovery for the next generation of malaria vaccines." Immunology 152, no. 2 (July 24, 2017): 195–206. http://dx.doi.org/10.1111/imm.12780.
Full textKocourkova, Aneta, Jan Honegr, Kamil Kuca, and Jana Danova. "Vaccine Ingredients: Components that Influence Vaccine Efficacy." Mini-Reviews in Medicinal Chemistry 17, no. 5 (February 1, 2017): 451–66. http://dx.doi.org/10.2174/1389557516666160801103303.
Full textLi, Lu, Jian Wang, Stephen Nicholas, Elizabeth Maitland, Anli Leng, and Rugang Liu. "The Intention to Receive the COVID-19 Vaccine in China: Insights from Protection Motivation Theory." Vaccines 9, no. 5 (May 2, 2021): 445. http://dx.doi.org/10.3390/vaccines9050445.
Full textDissertations / Theses on the topic "Vaccine discovery"
Huynh, Wally Chau. "Tumor antigens: From discovery to vaccine." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290456.
Full textAltindis, Emrah <1982>. "MetaVaccinology: a new vaccine discovery tool." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3908/.
Full textau, ngiles@anhb uwa edu, and Natalie Giles. "Exploitation of the Protein Tubulin For Controlling African Trypanosomiasis." Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060315.191003.
Full textRomero, Saavedra Luis Félipe. "Systematic analysis of surface proteins in Enterococci : discovery of potential targets for vaccine development." Caen, 2015. http://www.theses.fr/2015CAEN2013.
Full textEnterococci, most commonly regarded as members of the microbial flora of the gastro intestinal tract, have emerged as human pathogens of significant concern in the last decades. Principally due to their innate and acquired resistance to antibiotics, the research for new therapeutic alternatives is needed. Surface proteins play important roles in bacterial interactions between the cell and its environment, making them ideal targets for drugs and vaccine development, mainly because of their ability to interact with the host immune system. In this study, we identified and characterized some of the immunogenic surface-related proteins present in a vancomycin-resistant Enterococcus faecium clinical isolate. The identified proteins were evaluated as potential targets for vaccine development. The protein candidates were identified either by three different surface protein extraction methods or by analysis of transcriptomic data from a mouse peritonitis model. We selected for this study eight surface related-proteins, six from the proteomic approaches (BML, DdcP, LysM, PBP5, PpiC and SCP) and two (AdcAfm and PsaAfm) from the transcriptomic analysis. We were able to demonstrate that rabbit polyclonal antibodies raised against the purified recombinant proteins induced specific opsonic antibodies that mediated killing of five enterococcal clinical strains. Furthermore, we showed that passive immunization with seven of the anti-protein sera significantly reduced the bacterial load of E. Faecium E155 in mice. Altogether, our results demonstrate the effectiveness of these protein antigens as promising vaccine candidates against enterococcal infections as well as the feasibility of these proteomic and transcriptomic approaches to identify novel protein antigens
Jilesen, Zachary Keavin. "Discovery and Application of Neoepitopes in an Oncolytic Rhabdovirus Vaccine Approach to Treat Glioblastoma Multiforme." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39688.
Full textPandya, Mital. "Definition of Bovine Leukocyte Antigen Diversity and Peptide Binding Profiles for Epitope Discovery." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/474.
Full textDíaz, Varela Míriam. "Exploration of Extracellular Vesicles as a Novel Approach for Antigen Discovery and Vaccine Development against Plasmodium vivax Malaria." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668981.
Full textPlasmodium vivax es el parásito que causa malaria humana más extendido geográficamente. Se ha de ampliar la investigación sobre este parásito para desarrollar herramientas adecuadas para su control, entre ellas, una vacuna altamente efectiva. Una característica particular de P. vivax es su preferencia por invadir glóbulos rojos inmaduros, también conocidos como reticulocitos. Curiosamente, estudios ultraestructurales realizados en reticulocitos permitieron el descubrimiento de exosomas, vesículas extracelulares (VEs) de origen endocítico. Los exosomas y otras vesículas extracelulares, fueron vistos inicialmente como una vía selectiva de eliminación de proteínas obsoletas, pero en la actualidad, se sabe que participan en una gran variedad de procesos biológicos. Los exosomas derivados de reticulocitos infectados con P. yoelii, un parásito propenso a invadir reticulocitos murinos que se asemeja a P. vivax, contienen proteínas parasitarias. Cuando estos exosomas se usan en inmunizaciones con adyuvante de CpG son capaces de provocar respuestas protectoras duraderas. Esta tesis plantea la hipótesis de que los exosomas derivados de reticulocitos infectados con P. vivax contienen antígenos del parásito y pueden estimular respuestas inmunes. Evaluamos el potencial de las VEs circulantes en infecciones de P. vivax como fuente de antígenos y como activadoras de respuestas de células T. Además, exploramos los exosomas derivados de reticulocitos humanos como una plataforma de vacunación contra la malaria vivax. Aislamos VEs del plasma de pacientes infectados con P. vivax y determinamos su composición proteica mediante proteómica basada en espectrometría de masas para investigar su potencial uso en el descubrimiento de antígenos. Encontramos proteínas del parásito asociadas a estas vesículas, las cuales podrían actuar como antígenos. De hecho, el análisis in silico de dos de estas proteínas reveló prometedores epítopos citotóxicos de células T. Además, detectamos moléculas HLA clase I y observamos un alterado contenido de proteínas en las vesículas de pacientes con vivax en comparación con donantes sanos, lo que sugiere que los VEs circulantes podrían afectar el curso de la infección por P. vivax. A continuación, evaluamos la interacción in vitro de estas vesículas con poblaciones leucocitarias del bazo humano, dada la importancia de este órgano en la inducción de respuestas inmunes adaptativas. Observamos una interacción significativamente elevada de monocitos, células B y células T con vesículas de pacientes en comparación con VEs de individuos sanos. Estudiamos la capacidad de estas vesículas para activar las células T, y los resultados preliminares indican que las vesículas circulantes de infecciones de vivax podrían estimular las respuestas de las células T CD8+. Recientes estudios han destacado el posible papel de las respuestas citotóxicas de las células T contra los parásitos de la etapa sanguínea de P. vivax. Paralelamente, analizamos la composición proteómica de los exosomas derivados de reticulocitos humanos y determinamos su capacidad para interactuar con células presentadoras de antígenos. Identificamos más de 300 proteínas en estas vesículas, incluidas las moléculas HLA de clase I, y descubrimos que estos exosomas podían ser internalizados por células presentadoras de antígenos, lo que sugiere su contribución a la presentación antigénica. En conjunto, nuestros resultados indican que las VEs de las infecciones por vivax pueden usarse en el descubrimiento de antígenos y pueden contribuir a respuestas inmunes mediadas por células que podrían ser críticas para el control de vivax. En particular, los exosomas derivados de reticulocitos representan una potencial plataforma de vacuna. Creemos que este trabajo ha proporcionado nuevas ideas para el desarrollo de vacunas contra la malaria por P. vivax.
Di, Meo Giovanni. "Analisi delle comunità Twitter legate al tema dei vaccini." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textYu, Chi Wang. "Discovery and characterization of the mechanisms of a vaccinia viral Bcl-2 homolog, F1L, on Inhibition of caspase-9 and NLRP1." Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3398745.
Full textTitle from first page of PDF file (viewed May 5, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Ali, Rashid Majid Yousif. "Fragment-screening by X-ray crystallography of human vaccinia related kinase 1." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166811.
Full textBooks on the topic "Vaccine discovery"
Institute of Medicine (U.S.). Committee on the Review of Priorities in the National Vaccine Plan. Priorities for the national vaccine plan. Washington, DC: National Academies Press, 2010.
Find full textHargrove, Jim. The story of Jonas Salk and the discovery of the polio vaccine. Chicago: Childrens Press, 1990.
Find full textN, Denoncourt Rena, and Warner Anjli C, eds. U.S. vaccine markets: Overview and four case studies. Washington, D.C: AEI Press, 2009.
Find full textBredeson, Carmen. Jonas Salk: Discoverer of the polio vaccine. Hillside, N.J: Enslow Publishers, 1993.
Find full textDevelopment of vaccines: From discovery to clinical testing. Hoboken, N.J: John Wiley & Sons, 2011.
Find full textFlower, Darren R., and Yvonne Perrie, eds. Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5070-2.
Full textNew York Academy of Sciences. Pharmaceutical science to improve the human condition: Prix Galien 2011 : winners and finalist candidate of the Prix Galien USA Awards 2011. Malden, MA: Wiley Periodicals, 2012.
Find full textHarris, Duchess. The Discovery of the Polio Vaccine. Core Library, 2018.
Find full textPalatnik-de-Sousa, Clarisa Beatriz, Irene da Silva Soares, and Daniela Santoro Rosa, eds. Epitope Discovery and Synthetic Vaccine Design. Frontiers Media SA, 2018. http://dx.doi.org/10.3389/978-2-88945-522-5.
Full textJonas Salk and the Polio Vaccine (Inventions and Discovery). Capstone Press, 2006.
Find full textBook chapters on the topic "Vaccine discovery"
Yero, Daniel, Oscar Conchillo-Solé, and Xavier Daura. "Antigen Discovery in Bacterial Panproteomes." In Vaccine Delivery Technology, 43–62. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_5.
Full textKrishna, Sri, and Karen S. Anderson. "T-Cell Epitope Discovery for Therapeutic Cancer Vaccines." In Vaccine Design, 779–96. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3387-7_45.
Full textKangueane, Pandjassarame. "MHC Informatics to Peptide Vaccine Design." In Bioinformation Discovery, 131–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95327-4_7.
Full textKangueane, Pandjassarame. "Cholera Toxin Analysis to Vaccine Design." In Bioinformation Discovery, 163–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95327-4_8.
Full textBeutler, Bruce. "Microbial Pathogenesis and the Discovery of Toll-Like Receptor Function." In Vaccine Adjuvants, 1–24. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-970-7_1.
Full textGamazo, Carlos, and Juan M. Irache*. "Chapter 2.3. Nanostructures for Oral Vaccine Delivery." In Drug Discovery, 91–113. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735292-00091.
Full textSlütter, Bram, and Wim Jiskoot*. "Chapter 3.3. Nanostructures for Nasal Vaccine Delivery." In Drug Discovery, 156–70. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735292-00156.
Full textGoodswen, Stephen J., Paul J. Kennedy, and John T. Ellis. "Computational Antigen Discovery for Eukaryotic Pathogens Using Vacceed." In Vaccine Delivery Technology, 29–42. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_4.
Full textBennet, Jillian K. "From Scientific Discovery to Clinical Trial: Overcoming the Regulatory Hurdles — A Guide for Academic Researchers." In Vaccine Design, 187–96. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0062-3_19.
Full textGreen, Luke R., Joseph Eiden, Li Hao, Tom Jones, John Perez, Lisa K. McNeil, Kathrin U. Jansen, and Annaliesa S. Anderson. "Approach to the Discovery, Development, and Evaluation of a Novel Neisseria meningitidis Serogroup B Vaccine." In Vaccine Design, 445–69. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3387-7_25.
Full textConference papers on the topic "Vaccine discovery"
King, B., JD Campbell, H. Salamon, RL Coffman, and EM Hessel. "Discovery of Novel Plasma Biomarkers for Monitoring Therapeutic Efficacy of Tolamba™, an Immunotherapeutic Vaccine for Ragweed Allergic Rhinitis." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2534.
Full textMayer-Mokler, Andrea, Roberto Accolla, Yuk T. Ma, Regina Heidenreich, Francesco Izzo, Alfred Koenigsrainer, Markus Loeffler, et al. "Abstract A043: Discovery to first-in-man studies of a multi-peptide-based hepatocellular carcinoma vaccine adjuvanted with CV8102 (RNAdjuvant®): HEPAVAC." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-a043.
Full textEbeling, Régis, Carlos Córdova Sáenz, Jeferson Campos Nobre, and Karin Becker. "Quarenteners vs. Cloroquiners: a framework to analyze the effect of political polarization on social distance stances." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/kdmile.2020.11963.
Full textStafford, Phillip, Josh Richer, Stephen Albert Johnston, and Luhui Shen. "Abstract B35: Use of random peptide array to discover cancer neo-antigens for vaccines and diagnostics." In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b35.
Full textStafford, Phillip, Josh Richer, Stephen Albert Johnston, and Luhui Shen. "Abstract PR10: Use of random peptide array to discover cancer neo-antigens for vaccines and diagnostics." In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-pr10.
Full textSingh-Jasuja, Harpreet, Steffen Walter, Toni Weinschenk, Alexandra Kirner, Andrea Mayer-Mokler, Norbert Hilf, Oliver Schoor, et al. "Abstract SY27-03: Biomarker-guided development of novel multi-peptide cancer vaccines - from discovery to phase lll trials." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-sy27-03.
Full textHuzayyin, O. A., M. S. El Morsi, M. A. Serag-Eldin, and M. F. El-Bedaiwy. "Prototype for Solar Powered Chip-Ice Production Facility." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72510.
Full textReports on the topic "Vaccine discovery"
Altindis, E., R. Cozzi, B. Di Palo, F. Necchi, R. P. Mishra, M. R. Fontana, M. Soriani, et al. Protectome analysis: a new selective bioinformatics tool for bacterial vaccine candidate discovery. Cold Spring Harbor Laboratory, January 2014. http://dx.doi.org/10.1101/002089.
Full text