Academic literature on the topic 'V. cholerae sialidase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'V. cholerae sialidase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "V. cholerae sialidase"

1

Dhanushkodi, Anandh, and Michael P. McDonald. "Intracranial V. cholerae Sialidase Protects against Excitotoxic Neurodegeneration." PLoS ONE 6, no. 12 (December 15, 2011): e29285. http://dx.doi.org/10.1371/journal.pone.0029285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khedri, Zahra, Yanhong Li, Hongzhi Cao, Jingyao Qu, Hai Yu, Musleh M. Muthana, and Xi Chen. "Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2." Organic & Biomolecular Chemistry 10, no. 30 (2012): 6112. http://dx.doi.org/10.1039/c2ob25335f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watson, Jacqueline N., Tara L. Knoll, Johnny H. Chen, Doug T. H. Chou, Thor J. Borgford, and Andrew J. Bennet. "Use of conformationally restricted pyridinium α-D-N-acetylneuraminides to probe specificity in bacterial and viral sialidases." Biochemistry and Cell Biology 83, no. 2 (April 1, 2005): 115–22. http://dx.doi.org/10.1139/o04-126.

Full text
Abstract:
Investigations into subtle changes in the catalytic activity of sialidases have been performed using enzymes from several different origins, and their results have been compared. This work highlights the potential pitfalls encountered when extending conclusions derived from mechanistic studies on a single enzyme even to those with high-sequence homology. Specifically, a panel of 5 pyridinium N-acetylneuraminides were used as substrates in a study that revealed subtle differences in the catalytic mechanisms used by 4 different sialidase enzymes. The lowest reactivity towards the artificial (pyridinium) substrates was displayed by the Newcastle disease virus hemagglutinin-neuraminidase. Moreover, in reactions involving aryl N-acetylneuraminides, the activity of the Newcastle enzyme was competitively inhibited by the 3,4-dihydro-2H-pyrano[3,2-c]pyridinium compound with a Ki = 58 µmol/L. Alternatively, the 3 bacterial enzymes tested, from Salmonella typhimurium, Clostridium perfringens, and Vibrio cholerae, were catalytically active against all members of the panel of substrates. Based on the observed effect of leaving-group ability, it is proposed that the rate-determining step for kcat (and likely for kcat/Km as well) with each bacterial enzyme is as follows: sialylation, which is concerted with conformational change for V. cholerae; and conformational change for S. typhimurium and C. perfringens.Key words: sialidases, neuraminidases, sialic acids, glycosidase, mechanism.
APA, Harvard, Vancouver, ISO, and other styles
4

Slack, Teri J., Wanqing Li, Dashuang Shi, John B. McArthur, Gengxiang Zhao, Yanhong Li, An Xiao, et al. "Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase." Bioorganic & Medicinal Chemistry 26, no. 21 (November 2018): 5751–57. http://dx.doi.org/10.1016/j.bmc.2018.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Upadhyay, Ipshita, Siqi Li, Galen Ptacek, Hyesuk Seo, David A. Sack, and Weiping Zhang. "A polyvalent multiepitope protein cross-protects against Vibrio cholerae infection in rabbit colonization and passive protection models." Proceedings of the National Academy of Sciences 119, no. 50 (December 5, 2022). http://dx.doi.org/10.1073/pnas.2202938119.

Full text
Abstract:
Using epitope- and structure-based multiepitope fusion antigen vaccinology platform, we constructed a polyvalent protein immunogen that presents antigenic domains (epitopes) of Vibrio cholerae toxin-coregulated pilus A, cholera toxin (CT), sialidase, hemolysin A, flagellins (B, C, and D), and peptides mimicking lipopolysaccharide O-antigen on a flagellin B backbone. Mice and rabbits immunized intramuscularly with this polyvalent protein immunogen developed antibodies to all of the virulence factors targeted by the immunogen except lipopolysaccharide. Mouse and rabbit antibodies exhibited functional activities against CT enterotoxicity, CT binding to GM 1 ganglioside, bacterial motility, and in vitro adherence of V. cholerae O1, O139, and non-O1/non-O139 serogroup strains. When challenged orogastrically with V. cholerae O1 El Tor N16961 or a non-O1/non-O139 strain, rabbits IM immunized with the immunogen showed a 2-log (99%) reduction in V. cholerae colonization of small intestines. Moreover, infant rabbits born to the mother immunized with the protein immunogen acquired antibodies passively and were protected from bacterial intestinal colonization (>2-log reduction), severe diarrhea (100%), and mild diarrhea (88%) after infection with V. cholerae O1 El Tor (N16961), O1 classical (O395), O139 (Bengal), or a non-O1/non-O139 strain. This study demonstrated that this polyvalent cholera protein is broadly immunogenic and cross-protective, and an adult rabbit colonization model and an infant rabbit passive protection model fill a gap in preclinical efficacy assessment in cholera vaccine development.
APA, Harvard, Vancouver, ISO, and other styles
6

Kauffman, Robert C., Taufiqur R. Bhuiyan, Rie Nakajima, Leslie M. Mayo-Smith, Rasheduzzaman Rashu, Mohammad Rubel Hoq, Fahima Chowdhury, et al. "Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells." mBio 7, no. 6 (December 20, 2016). http://dx.doi.org/10.1128/mbio.02021-16.

Full text
Abstract:
ABSTRACT We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs) generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT) or lipopolysaccharide (LPS). Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera. IMPORTANCE Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae . Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "V. cholerae sialidase"

1

Mann, Maretta Clare, and n/a. "Sialylmimetics as Potential Inhibitors fo Vibrio Cholerae Sialidase." Griffith University. Institute for Glycomics, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061006.083947.

Full text
Abstract:
Cholera is an epidemic infectious diarrhoeal disease that for centuries has proven its frightening ability to cause rapid and widespread loss of human life. All symptoms associated with cholera are a result of rapid dehydration due to infection by pathogenic strains of the bacterium Vibrio cholerae. The damaging effects associated with cholera are mainly attributed to the toxin, which is secreted by the bacterium and infects cells lining the gastrointestinal tract. A sialidase, also secreted by the bacterium, is believed to facilitate toxin uptake by the gastrointestinal epithelium. V. cholerae sialidase is therefore a potential target for therapeutic intervention. A survey of the literature reveals that sialidases from different species share common features with respect to their structure, substrate specificity and catalytic mechanism. The unsaturated sialic acid, Neu5Ac2en, inhibits most exosialidases with a dissociation constant of inhibitor of -10-4 to-10-6 M and has frequently been used as a template in the design of more potent sialidase inhibitors. In the case of V. cholerae sialidase, there have been no inhibitors reported to date that are significantly more potent than Neu5Ac2en itself The present research aimed to develop a range of mimics of Neu5Ac2en, which contain various substituents to replace the C-6 glycerol side chain, as potential inhibitors of V cholerae sialidase. The x-ray crystal structure of V cholerae sialidase was used to explore potential interactions between active site residues and C-6 modified Neu5Ac2en mimetics of known inhibitory potency. Opportunities for interactions within the glycerol side chain pocket in the active site of V cholerae sialidase are discussed. A novel synthetic strategy was developed for the synthesis of a series of glucuronidebased Neu5Ac2en mimetics starting from readily available GIcNAc. This approach was employed for the preparation of Neu5Ac2en mimetics that contained an ether or thioether substituent as replacement of the glycerol side chain of Neu5Ac2en. Progress was also made towards the synthesis of a series of C-6 acylamino Neu5Ac2en mimetics. Analysis by 1H NMR spectroscopy showed that the acylamino derivatives adopted a half-chair conformation that was similar to the conformation of Neu5Ac2en but different to the conformation adopted by the ether and thioether derivatives prepared. The inhibitory activity of the C-6 ether and thioether Neu5Ac2en mimetics prepared was evaluated in vitro using an enzyme assay. It was found that most of the derivatives inhibited V. cholerae sialidase with a K1 of approximately 1O-4 M. The derivatives containing a hydrophobic side chain were found to be slightly more potent compared to derivatives with more hydrophilic side chains. A more detailed study of binding interactions between the C-6 thioether Neu5Ac2en mimetics and V cholerae sialdiase was carried out using STD 1H NMR spectroscopy and computational molecular modelling.
APA, Harvard, Vancouver, ISO, and other styles
2

Mann, Maretta Clare. "Sialylmimetics as Potential Inhibitors fo Vibrio Cholerae Sialidase." Thesis, Griffith University, 2004. http://hdl.handle.net/10072/367187.

Full text
Abstract:
Cholera is an epidemic infectious diarrhoeal disease that for centuries has proven its frightening ability to cause rapid and widespread loss of human life. All symptoms associated with cholera are a result of rapid dehydration due to infection by pathogenic strains of the bacterium Vibrio cholerae. The damaging effects associated with cholera are mainly attributed to the toxin, which is secreted by the bacterium and infects cells lining the gastrointestinal tract. A sialidase, also secreted by the bacterium, is believed to facilitate toxin uptake by the gastrointestinal epithelium. V. cholerae sialidase is therefore a potential target for therapeutic intervention. A survey of the literature reveals that sialidases from different species share common features with respect to their structure, substrate specificity and catalytic mechanism. The unsaturated sialic acid, Neu5Ac2en, inhibits most exosialidases with a dissociation constant of inhibitor of -10-4 to-10-6 M and has frequently been used as a template in the design of more potent sialidase inhibitors. In the case of V. cholerae sialidase, there have been no inhibitors reported to date that are significantly more potent than Neu5Ac2en itself The present research aimed to develop a range of mimics of Neu5Ac2en, which contain various substituents to replace the C-6 glycerol side chain, as potential inhibitors of V cholerae sialidase. The x-ray crystal structure of V cholerae sialidase was used to explore potential interactions between active site residues and C-6 modified Neu5Ac2en mimetics of known inhibitory potency. Opportunities for interactions within the glycerol side chain pocket in the active site of V cholerae sialidase are discussed. A novel synthetic strategy was developed for the synthesis of a series of glucuronidebased Neu5Ac2en mimetics starting from readily available GIcNAc. This approach was employed for the preparation of Neu5Ac2en mimetics that contained an ether or thioether substituent as replacement of the glycerol side chain of Neu5Ac2en. Progress was also made towards the synthesis of a series of C-6 acylamino Neu5Ac2en mimetics. Analysis by 1H NMR spectroscopy showed that the acylamino derivatives adopted a half-chair conformation that was similar to the conformation of Neu5Ac2en but different to the conformation adopted by the ether and thioether derivatives prepared. The inhibitory activity of the C-6 ether and thioether Neu5Ac2en mimetics prepared was evaluated in vitro using an enzyme assay. It was found that most of the derivatives inhibited V. cholerae sialidase with a K1 of approximately 1O-4 M. The derivatives containing a hydrophobic side chain were found to be slightly more potent compared to derivatives with more hydrophilic side chains. A more detailed study of binding interactions between the C-6 thioether Neu5Ac2en mimetics and V cholerae sialdiase was carried out using STD 1H NMR spectroscopy and computational molecular modelling.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Full Text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography