Dissertations / Theses on the topic 'Usher, Syndrome d' – Génétique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Usher, Syndrome d' – Génétique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Besnard, Thomas. "Syndrome de Usher : outils innovants pour une exploration moléculaire exhaustive." Thesis, Montpellier 1, 2012. http://www.theses.fr/2012MON13512/document.
Full textUsher syndrome is a genetic disorder combining sensorineural hearing loss (HL) and retinitis pigmentosa (RP). Some patients will also exhibit vestibular areflexia (VA). Clinical and genetic heterogeneity is recognized as the 3 clinical subgroups, defined mainly on the degree of HL and VA, can be caused by mutations in one of the 10 known genes. It is important to use all accessible genetic tools to identify and characterize molecular origin in order to improve the knowledge of the physiopathological mechanisms causing Usher Syndrome.In this context, we have developed an exhaustive approach. In a first step, we have implemented the analysis and established the mutational spectrum of the 2 minor USH2 genes (GPR98 and DFNB31). In addition, we have developed several tools, in particular to study variants susceptible to alter splicing or lying in the promoter regions of the USH2 genes.Thanks to this work, the USH2 mutation detection rate has now been raised to 90%, similar to that of USH1.We have then designed a targeted exome of the Usher genes to be sequenced using the GS Junior system (Roche 454). The aim of the study was to test the feasibility of this new technics for a possible transfer to diagnostic facilities. Quality criteria and variant priorization were set up on a control cohort (previously studied in one of the USH gene). The study has then been extended on a patient cohort. Our results indicate that NGS Usher-exome can be used in molecular diagnostics but improvement of the reliability of the sequencing technology, bioinformatics tools and dedicated databases is essential
Liquori, Alessandro. "Deciphering molecular mechanisms of unusual variants in Usher Syndrome." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT016.
Full textUsher syndrome (USH) is an autosomal recessive disorder characterized by the association of sensorineural hearing loss (HL) and retinitis pigmentosa (RP), and in some cases, vestibular areflexia. Clinical and genetic heterogeneity are recognised. Indeed, three clinical types can be caused by mutations in one of the 10 known genes and USH2A represents the most frequently involved gene.Approximately 10 % of the USH cases remain genetically unsolved after extensive molecular analysis of the different genes, which includes sequencing of the exons and their intronic boundaries, combined to large rearrangements screening by array CGH. These unsolved cases include patients who do not carry any mutation in any of the known USH genes and patients who carry a single USH mutation. During this thesis we focalised on the study of patients carrying a single mutation in USH2A and PCDH15 gene.First, we have analysed a cohort of well-defined USH2A patients: five patients, for whom a single USH2A heterozygous mutation had been identified and one patient carrying a silent variant in trans to a nonsense mutation. For the 5 patients, we supposed that the second mutation remaining to be found could be localised deep in the introns. Indeed, a deep intronic mutation resulting in the inclusion of a pseudoexon (PE 40) in USH2A transcripts had been identified, following RNA analysis from nasal cells. Unfortunately, analysing USH2A transcripts still represent a challenging approach in a diagnostic settings and it is not always possible. To circumvent this issue, we have developed a DNA-Next Generation Sequencing (NGS) approach to identify deep intronic variants in USH2A and evaluate their consequences on splicing. As a proof of concept and to validate this approach, including the bioinformatics pipeline and the assessment of splicing predictor tools, the patient carrying the PE 40 was analysed at first. Then, the 5 patients were studied using the defined pipeline, which led to the identification of 3 distinct novel deep intronic variants in 4 of them. All were predicted to affect splicing and resulted in the insertion of PEs, as shown by minigene assays. Through this study, we present a new and attractive strategy to identify deep intronic mutations, when RNA analyses are not possible. In addition, the bioinformatics pipeline developed is independent of the gene size, implying the possible application of this approach to any disease-linked gene. Moreover, an antisense morpholino oligonucleotide (AMO) tested in vitro for its ability to restore the splicing alterations caused by one of the identified mutation provided high inhibition rates. These results are indicative of a potential application for molecular therapy.In the second case, we have performed studies on the USH2A c.1377T>A silent variant to investigate its effect on splicing. Analysis of RNA from nasal cells of patients showed that this variant led to the skipping of exon 8 in USH2A transcripts. This was confirmed by minigene assay. Moreover, preliminary studies have been performed using prediction tools and minigene assays to assess the involvement of cis-acting elements in causing the aberrant splicing.In the second part of the thesis, we have analysed an USH1 patient, for whom only one mutation had been identified in the PCDH15 gene. In this case, we combined nasal epithelial cells culture with the analysis of the PCDH15 transcripts. This was performed by sequencing five overlapping RT-PCRs. Through this analysis, we were able to delimit a region within the transcript, which failed to be amplified exclusively in the allele carrying the unidentified mutation. Further analyses have been performed in the corresponding genomic region by NGS-target capture and LongRange PCR associated with Sanger sequencing. However, no evident mutation has been identified so far. Therefore, we suggest the involvement of complex molecular mechanisms that remain to be characterised
Lahlou, Ghizlène. "Thérapie génique translationnelle des surdités et troubles vestibulaires d'origine génétique." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS090.pdf.
Full textDeafness and vestibular disorders are frequent pathologies, and sources of disability and impaired quality of life. Deafness is the most common sensory disorder in humans, and 1 child is born deaf for every 700 births. Currently, there is no cure for these disorders. A promising therapeutic alternative is gene therapy using rAAV, and numerous preclinical studies have provided proof of its efficacy in the treatment of deafness and vestibular disorders of genetic origin. However, many challenges remain to be overcome before considering application in humans. In this work, we sought to identify the key steps to be taken for a clinical application of gene therapy for 2 human genetic causes of deafness, USH1G syndrome and DFNB9 deafness. We used the corresponding mouse models for this, as well as studies in non-human primates and an in vitro human vestibular organ explant model. We were able to show that the therapeutic window was a major factor to take into account in a translational objective. The stage of maturation of the inner ear greatly influences the effectiveness of therapy, especially when the pathology involves developmental abnormalities such as in USH1 syndrome. However, we were able to provide evidence of an extension of the therapeutic window in Ush1g-/- mice, and to show that viral gene therapy performed at a mature stage allowed vestibular function to be restored to a level close to normal, and to a lesser extent a restauration of hearing function. In DFNB9 deafness for which there is no developmental abnormality, we were able to show that gene therapy allowed a complete restoration of hearing, and laid the foundations for a future therapy in humans
Cortese, Matteo. "Cellular and molecular mechanisms of Usher syndrome pathogenesis." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066390/document.
Full textUsher syndrome (USH) causes a combined deafness-blindness in humans. At least nine causative genes are known. While the analysis of USH knockout mice has shed light on the origin of the auditory deficit, the causes of vision loss are still unclear. Nevertheless, USH1B protein, myosin VIIa, appears to contribute to intracellular traffic in photoreceptor cells. To better understand the role of this myosin in the retina, I studied the functions of its interacting partner, spectrin βV. We found that spectrin V, along with USH1 proteins, participates in intracellular transport by coupling motor proteins (myosin VIIa, kinesin II, dynein/dynactin complex) to the cargoes en route towards the outer segment of photoreceptor cells. Evidence from comparative studies in frog and mouse inner ear, biochemical assays and phylogenetic analyses point to cargo trafficking to and from the apical cell region, as the likely ancestral function of this spectrin. Our analyses also suggest that evolutionary pressures in the mammalian lineage drove the recruitment of spectrin βV to the lateral wall of auditory outer hair cells, probably to support a new function: electromotility. Finally, I explored the origin of hearing loss in Usher syndrome of type III (USH3). So far, the only causal gene known is CLRN1, which codes for clarin-1. The comparative characterization of two Clrn1 mouse mutants revealed that clarin-1 is required for the maturation and maintenance of the hair bundle in the hair cells. Moreover, our results indicate that clarin-1 is also essential to cluster the voltage-gated Ca2+ channels in close proximity to the exocytotic machinery of the ribbon synapse of inner hair cells
Trouillet, Alix. "Cone photoreceptor degeneration in models of HANAC and Usher syndrome." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066521.
Full textPhotoreceptors are very specific neurons dedicated to phototransduction, which relies on very complex machinery. The maintained depolarization in darkness triggers a constant and thus very specific type of synaptic transmission. These require high energy need. As a consequence, photoreceptors can degenerate in various hereditary retinal diseases when phototransduction or energy consumption are altered. The Usher syndrome is such a hereditary disease leading to both deafness and blindness. If Usher proteins are involved in the mechanotransduction in hair cells, investigating their role in photoreceptors has been hamperedby the lack of a retinal phenotype in murine models. Similarly, understanding themolecular mechanisms of cone dysfunction in diabetic retinopathy has beenhampered by the lack of vascular and neuronal symptoms and neuronal models. During my PhD, I have developed animal models of Usher and HANAC syndromes both leading to cone photoreceptor dysfunction and damage. Cone dysfunction was demonstrated by electroretinogram recording and by morphological changes, retinal gliosis and microglial activation. In the Usher models, I also demonstrated photoreceptor neuroprotection by different strategies. In the HANAC model, neuronal dysfunction was associated as in diabetic retinopathy to blood vessel tortuosity, blood vessel permeability and incresead VEGF expression levels. These phenotypic evaluations of mouse models provide new insights into the physiopathology of cone photoreceptor degeneration in Usher syndrome and in complex vascular diseases. It also open the way for the development and assessment of new therapeutic strategies for these diseases leading to blindness
Delhommel, Florent. "Etude structurale de la Whirline, protéine modulaire cruciale dans les mécanismes de la vision et de l'audition." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066151/document.
Full textVision and hearing rely on the capacity of cells to rapidly transduce electromagnetic waves or sound waves into chemical messages that are transmissible to the brain. The function of these sensory cells requires unique morphologies. The mutations of eleven genes are responsible for Usher syndromes, associating blindness and deafness. The Usher proteins are pivotal to the architecture of the photoreceptor and hearing cells. They form complexes in which the critical interactions are mainly maintained by PDZ domains. One of these central proteins is Whirlin, a multi-domain protein encompassing three PDZ domains. To understand the molecular basis of the Usher syndromes, we focused our project on the biochemical and biophysical characterization of Whirlin. We identified a new HHD2 domain on Whirlin, for which we solved the structure at high resolution and determined the behavior in solution, isolated or with adjacent domains. We then identified a transient supramodule between two PDZ domains, maintained by PDZ structured extensions. We determined the structure of the compact and unique conformation of this tandem and we characterized its equilibrium with an ensemble of more extended conformations. Finally, we characterized in vitro the network of interaction of the PDZ domains of Whirlin, with the majority of the Usher proteins. Our results on the modular structure and the interactome of Whirlin get insight into the role of Whirlin in the numerous complexes formed by the Usher proteins and allow to better explain the consequences of its mutation on the molecular mechanisms of hearing and vision
Papal, Samantha. "La spectrine βv, une spectrine géante dans les cellules sensorielles visuelles et auditives, ses fonctions et son évolution." Paris 6, 2013. http://www.theses.fr/2013PA066139.
Full textUsher syndrome is the most frequent cause of deaf-blindness in Humans. Defects in myosin VIIa causes the USH1B syndrome. To understand the role of this actin-based motor in the retinal pathology, we identified and characterized its interaction with a non-conventional spectrin, spectrin βV, in the retinal photoreceptor cells. We found that spectrin βV associates also with other USH1 proteins, opsin and some other phototransduction proteins, as well as to the microtubule-based motors. Together our data led us suggest that spectrin βV contribute to protein transport towards the photoreceptor outer disks, site of phototransduction. Moreover, we found that βV spectrin has been submitted to a positive selection in mammalian lineage, which could explain the differences we observed in the localization and the function of the protein in different cell types and species
Boëda, Batiste. "Formation de la touffe ciliaire des cellules sensorielles auditives : approche génétique fondée sur l'étude de surdités héréditaires humaines et murines." Paris 6, 2003. http://www.theses.fr/2003PA066027.
Full textLegendre, Kirian. "La βV spectrine, quand une spectrine défie les conventions dans les cellules ciliées auditives et visuelles." Paris 6, 2010. http://www.theses.fr/2010PA066580.
Full textPatni, Pranav. "Disease mechanism and functional redundancy in clarin-mediated hearing and balance disorders." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS002.
Full textUsher Syndrome (USH) is the first cause of deafness blindness in humans. 3 USH clinical types (USH1-3) are defined. Type III clinical form patients hearing loss is not congenital, but progressive, usually occurring during or after adolescence, and the presence of vestibular defects and age of onset of retinitis pigmentosa is variable. I studied the role of clarin-1, causing USH3A. CLRN1 gene encodes clarin-1. The characterization of Clrn1 mutant mice revealed that clarin-1 is essential for the structural organization and function of the presynaptic channels Cav1.3 Ca2+ at the inner hair cell ribbon synapse and for the distribution of postsynaptic AMPA receptors. The viral-mediated transfer of the intact Clrn1 into the clarin-1 mutant mice in cochlea durably prevented synaptic defects and occurrence of the hearing loss. I also explored the role of clarin-2 another member of the clarin family, the absence of which leads to hearing loss. The clarin-2 mutant mice have a progressive, early-onset hearing loss. Our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance. Finally, I studied the compensatory mechanisms involving the two clarins which might conceal important functions in the inner ear. The inactivation of both Clrn1 and Clrn2 impairs prematurely the vestibular function, total loss of mechano-electrical transduction & extreme disruptions of the hair bundle stereocilia. Further elucidation of the mechanisms through which the two clarins interact, and the importance of such interactions in the vestibular and cochlear systems is underway
Pepermans, Elise. "The auditory mechano-electrical transduction machinery : components and interactions." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066477.
Full textProtocadherin-15 (Pcdh15 is located in the stereociliary hair bundles of inner and outer hair cells (IHCs and OHCs) of the cochlea, where it forms fibrous links between different stereocilia. Absence of Pcdh15 leads to deafness due to the disorganization of hair bundles and absence of mechano-electrical transduction. The latter is explained as Pcdh15 forms the lower component of the tip-link, that gate hair cell mechano-electrical transduction channels. There are three different splice isoforms of Pcdh15 (CD1, CD2 and CD3), I studied their distribution in the developing and mature auditory hair cells. Different conditional Pcdh15 knockout mouse models were generated, permitting analysis of the absence of each of the different Pcdh15 isoforms individually, of the combined absence of Pcdh15-CD2 and Pcdh15-CD3, and of the absence of all isoforms. I was able to conclude that Pcdh15-CD2 is essential for the formation of tip-links in mature hair cells. In mature hair bundles Pcdh15 also plays a role in the coupling of the hair bundles to the tectorial membrane, in the control of the size of the stereocilia, and in the formation of apical links between stereocilia. The different Pcdh15 isoforms present in mature hair bundles (Pcdh15-CD1 and Pcdh15-CD2) are functionally redundant for these functions, but not for tip-link formation. In immature hair bundles, the different Pcdh15 isoforms are functionally redundant, although Pcdh15-CD1 can only partially compensate the absence of Pcdh15-CD2 and Pcdh15-CD3. To discover how Pcdh15 interacts with other proteins implicated in Usher syndrome, interactions with harmonin and whirlin were analyzed by biophysical techniques
Labbe, Ménélik. "Caractérisation fonctionnelle du complexe de transduction mécano-électrique des cellules ciliées du système auditif." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066543/document.
Full textUsher syndrome (USH) is characterised by a sensorineural congenital deafness and a progressive loss of vision by retinitis pigmentosa. During my PhD, my main focus of study was a gene responsible for Usher syndrome type 2, USH2A. This gene codes for usherin, a protein associated with the fibrous links located at the base of the hair bundle of cochlear, and vestibular hair cells. In mice, these transitory links start to disappear as of postnatal day 9 (P9), and the molecular complex with which they are associated is composed of usherin, adgrv1 (an adhesion G protein coupled receptor), whirlin, and pdzd7 (two submembranous PDZ domain-containing scaffold proteins). Previous work has shown that the interaction in between these 4 proteins is essential for the development of the hair bundle, the structure responsible for the initiation of the mechano-electrical transduction (MET) process in the hair cells. During my thesis, I studied the short term and long term effects of the absence of the longest of the 2 usherin isoforms, the transmembrane b-isoform, in mice carrying a mutation in the Ush2a gene (Ush2aΔTM/ΔTM). In these mice, I measured mechano-electrical currents, auditory brainstem responses, undertook auditory masking tests, and analysed scanning electron micrographs of cochlear hair bundles. Through this work, I showed that basal lateral links similar to ankle links could be observed on P4, and that MET currents were normal on P7. The absence of the long b-isoform of usherin actually has very little effect on the morphology or the function of the cochlear hair bundle in mice, until 3 or 4 months of age. As of 4 months old however, Ush2aΔTM/ΔTM mice suffer from a progressive hearing loss, and frequency selectivity defects, mainly cause by a dysfunction of outer hair cells. These results will further add to the debate on whether the hearing loss in Usher syndrome type 2A is progressive or not. Hearing loss in USH2A patients is generally considered non progressive, but several studies have given indication to the contrary. My work has shown that in mice, deafness caused by mutations to the Ush2a gene can also follow a progressive pattern. The potential existence of this temporal window in USH2A patients whose hearing impairment is less severe at birth, but gets worse over time, could allow clinicians to use gene therapy as curative treatment for patients who fall into this category
Pang, Xiaomeng. "Étude des conséquences de la déficience génétique en ß1,3-galactosyltransférase 6 (ß3GalT6) sur la pathogénie d’une maladie génétique rare, le syndrome d’Ehlers-Danlos (SED)." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0190/document.
Full textProteoglycans (PGs) play important roles in many physiological processes, including cell proliferation, differentiation and migration. PGs are composed of linear heteropolysaccharide chains, called glycosaminoglycans (GAGs), which are covalently attached to a core protein through a tetrasaccharide linkage. The addition of the third residue (galactose) of the linkage is catalyzed by ß1,3-galactosyltransferase 6 (ß3GalT6), a key glycosyltransferase in GAG initiation. Recently, mutations of ß3GalT6 have been associated to Ehlers-Danlos Syndrome (EDS), a group of rare and severe genetic connective tissue disorders. However, the role of ß3GalT6 defects in EDS pathogeny remains unknown. In my thesis, we showed that ß3GalT6 defective dermal fibroblasts of affected patients exhibited a marked reduction in GAG anabolism associated to a significant delay in wound closure compared to control cells. The ß3GalT6 gain- and loss-of-function studies demonstrated that B3GALT6 gene deletion in control fibroblasts affects the synthesis of GAGs chains. Interestingly, GAG anabolism and cell migration were restored when ß3GalT6 is overexpressed in patient fibroblasts, which could be the starting point to the development of therapeutic strategies against the loss of GAG synthesis and defect of cell migration observed in EDS. This work provides a better understanding of the crucial role of ß3GalT6 in EDS pathogeny
Jolivet, Benjamin. "Rôle de la β1,3-Galactosyltransférase 6 (β3GalT6) dans la pathogénie d’une maladie génétique rare, les syndromes d’Ehlers-Danlos (SED)." Thesis, Université de Lorraine, 2020. http://www.theses.fr/2020LORR0085.
Full textProteoglycans (PGs) are major components of cell plasma membranes and extracellular matrix. These macromolecules play an important role in matrix organization of connective tissues and in cell signaling or embryonic and post-natal development. PGs are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linkage ßGlucuronic acid-ß1,3-Galactose-ß1,3-Galactose-ß1,4-Xylose-ß1-O-ß. The addition of the third residue (galactose) is catalyzed by the ß1,3-Galactosyltransferase 6 (ß3GalT6), a key glycosyltransferase in GAG initiation. Our group and others discovered that mutations of ß3GalT6 are associated to a spondylodysplastic form of Ehlers-Danlos Syndrome (spEDS), a severe connective tissue disorder characterized by skin and bone fragility, musculoskeletal malformations, delayed wound healing, joint hyperlaxity and intellectual disabilities. The objectives of this project is to understand the functional and structural consequences of ß3GalT6 mutations in the development of spEDS, (i) achieving the molecular and functional characterization of the recombinant human β3GalT6 and (ii) to develop cellular models (as ß3GalT6 KO cells) to study the impact of genetic deficiency on cells metabolism, precisely on GAGs synthesis. The first part of the project is dedicated to the determination of mutation impact on the ß3GalT6 function. For this, we produce and purify several truncated soluble forms of hß3GalT6 in fusion to Maltose Binding Protein. The enzymatic activity tests have determined a KM of 30 µM and a kcat of 0,05 min-1 on wild-type enzyme. ß3GalT6 mutants will be further analyzed using the same approach. The second part of the project is achieving to develop a ß3GalT6 deficient cell model using the CRISPR/Cas 9 technology. Deficient clones obtained present (i) a low level of RNA expression, (ii) an absence of galactosyltransferase activity and (iii) a defect on endogenous GAG synthesis or with exogenous substrate. We also analyze the capacity for WT β3GalT6 and two mutants (Asp207His and Gly217Ser) to restore GAGs synthesis in deficient cells. From this work, we better understand the implication of β3GalT6 in the pathology of spEDS and relationships between ß3GalT6 loss of function, cellular consequences of genetic defect. Those results linked with the severity of spEDS clinical symptoms observed in patients, would help clinicians with management and clinical monitoring of spEDS patients
Dumanchin-Njock, Cécile. "Les Formes autosomiques dominantes de la maladie d'Alzheimer et des démences frontotemporales associées à un syndrome parkinsonien : analyse moléculaire et fonctionnelle des gènes PS1 et tau." Rouen, 1999. http://www.theses.fr/1999ROUES063.
Full textGouas, Laetitia. "Aspects génétique du risque arythmogène : Polymorphysmes des canaux ioniques cardiaques et identification d' un nouveau locus responsable du syndrome de Brugada." Paris 6, 2005. http://www.theses.fr/2005PA066507.
Full textFaugeroux, Julie. "Caractérisation de modèles murins du syndrome d'Ehlers-Danlos vasculaire." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T032.
Full textVascular Ehlers-Danlos (vEDS) syndrome is a rare, inherited, autosomal dominant disease that results from mutations in the COL3A1 gene, encoding type III collagen. Patients are mostly affected by missense mutations probably acting through a dominant negative mechanism. A few patients present large deletions or nonsense mutations leading to a haploinsufficient mechanism. These mutations are supposed to lead to a defect in the synthesis and secretion of collagen type III, resulting in arterial wall fragility. Consequently, vEDS is mostly characterized by ruptures/dissections in arteries at a young age, which ultimately lead to premature death. While there is currently no surgical or therapeutic treatments available, a recent study reported the beneficial effect of the beta-blocker celiprolol, which prevents vascular complications in patients.To investigate the vascular phenotype of vEDS, a mouse model of this disease has been generated by the complete and ubiquitous inactivation of the COL3A1 gene. Col3a1-/- mice exhibit severe perinatal mortality and die prematurely from spontaneous vascular rupture. However, Col3a1+/- mice are viable and exhibit no obvious vascular phenotype. To determine the susceptibility of Col3a1+/- mice to develop vascular rupture/dissection, an experimental model of aneurysm induction was used, through the chronic infusion of Angiotensin II (Ang II). Our results showed that Ang II infusion led to severe premature mortality in Col3a1+/- compared to wild type. This fragility was characterized by the development of rupture/dissection in the ascending aorta. These lesions could be caused by the elevation of blood pressure and/or the activation of Ang II signaling pathways. We showed that treatment with a beta-blocker (propranolol) and an arterial vasodilator (hydralazine) reduced the mortality induced by Ang II in Col3a1+/- mice. These results suggest the beneficial effect of adding a preventive treatment inhibitor of Ang II to the beta-blocker treatment recommended in human pathology.Meanwhile, given that a majority of human vEDS cases is caused by missense mutations in the COL3A1 gene, we established a knock-in mouse model bearing a point mutation (Gly183Ser) found in vEDS patients. The preliminary characterization of this model showed that Col3a1+/G183S mice die spontaneously as early as 4 weeks of age from a dissection or rupture of the ascending aorta. However, these mice do not showed any changes of their hemodynamic parameters or aortic diameter. Furthermore, about 20 % of mouse Col3a1+/G183S display wounds in the back and legs. This new mouse model is currently the only that mimic more closely the human disease and could therefore be used to test different therapeutic strategies
Lévy, Eva. "Identification de causes génétiques du syndrome d’Evans pédiatrique." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB017/document.
Full textEvans syndrome is defined by the occurence of autoimmune cytopenias, either at the same time or sequential, mainly autoimmune hemolytic anemia and immune thrombocytopenia. In children, it may be secondary to infections, systemic autoimmune disease, or primary immune deficiency, though in most patients, its etiology isn't obvious. Patients affected with Evans syndrome can also present other features, such as autoimmunity toward a particular organ, benign lymphoproliferation or immunodeficiency. The main goal of this work was to identify genetic causes in children presenting an Evans syndrome without a known underlying etiology. We focused our study on severe, early onset forms of the disease, with the hypothesis that a monogenic disease would be more frequent in this group of patients. Taking advantage of high throughput "Next Generation" sequencing (NGS) techniques, we sequenced and analyzed exome from patients and their relatives in search for adequate candidate genes. We identified 4 candidate genes: LRBA, CTLA-4, STAT3 (gain-of-function mutations), and NFKBA. Implication of the first 3 genes in new monogenic diseases with autoimmunity as a key feature was also confirmed by others during the course of this work. For each gene, we pursued 2 complementary goals: First, we sought to validate the implication of the gene in the patients' disease. To do so, we used various techniques and approaches: biochemistry and proteomics to identify protein partners, confocal microscopy to localize proteins and interactions, in vitro cellular assays to bring to light functional defect, flow cytometry to identify changes in lymphocytes subpopulations. We also looked for other mutations of each gene in patients with a similar clinical presentation. Hence we created and explored 3 cohorts of patients presenting with mutations of LRBA, CTLA-4 or STAT3. We constituted a cohort of 18 patients with LRBA mutations within 11 families. We then were able to precise and extend the clinical spectrum of this recently described disease. In particular, we observed patients with severe chronic arthritis associated with diabetes mellitus or enteropathies. We identified 15 new mutations of autosomal recessive transmission in the LRBA gene, coding a protein of unknown function, which absence is responsible for a disease mainly characterized by autoimmune features. We identified 29 candidate protein partners of LRBA and precized LRBA localisation in cell compartiments. We also established a cohort of 12 patients within 10 families presenting CTLA-4 haploinsufficiency. Beyond describing 9 new mutations, we report a family with autosomal recessive transmission.In LRBA and CTLA-4 deficiencies, we showed a decrease of regulatory T lymphocyte subset proportion among PBMC and a decrease of CTLA-4 expression in activated T cells. These results support the interaction between these 2 proteins, described concurrently by another team. We showed that the clinical spectra of these 2 diseases, although widely overlapping in first published reports, could be different despite a role of regulatory T cells in both. Hence, organ-specific autoimmunity and lymphoproliferation are more frequent in LRBA deficiency whereas granuloma and hypogammaglobulinemia are more present in CTLA-4 deficiency. Theses results suggests a role of genetic modifyers, which remain to identify. Among our cohort of patients with Evans syndrome, we also identified 5 patients within 5 families presenting gain-of-function mutations of STAT3. 3 of those mutations were reported by others during our work and appeared de novo in our patients. Functional validation of the 4th one is in progress. The last mutation follows a recessive transmission and could exemplify a new transmission modality of this disease. (...)
Albert, Isabelle. "Inférence bayesienne par les methodes de Monte Carlo par chaînes de Markov et arbres de régression pour l'analyse statistique des données corrélées." Paris 11, 1998. http://www.theses.fr/1998PA11T020.
Full textDemontis, Fabio [Verfasser]. "Modeling human Usher syndrome during Drosophila melanogaster development / von Fabio Demontis." 2006. http://d-nb.info/980672007/34.
Full text