Academic literature on the topic 'Urine analysi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Urine analysi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Urine analysi"
Örd, Lenna, Toomas Marandi, Marit Märk, Leonid Raidjuk, Jelena Kostjuk, Valdas Banys, Karit Krause, and Marika Pikta. "Evaluation of DOAC Dipstick Test for Detecting Direct Oral Anticoagulants in Urine Compared with a Clinically Relevant Plasma Threshold Concentration." Clinical and Applied Thrombosis/Hemostasis 28 (January 2022): 107602962210843. http://dx.doi.org/10.1177/10760296221084307.
Full textClark, D. R., and T. M. Hajar. "Detection and confirmation of cocaine use by chromatographic analysis for methylecgonine in urine." Clinical Chemistry 33, no. 1 (January 1, 1987): 118–19. http://dx.doi.org/10.1093/clinchem/33.1.118.
Full textJuhariah, Jujuk, and Margaretha Praba Aulia. "Analisis Pertumbuhan Tanaman Cabai Keriting dalam Polybag menggunakan Pupuk Fermentasi Urin Sapi." METANA 17, no. 2 (November 16, 2021): 49–54. http://dx.doi.org/10.14710/metana.v17i2.42565.
Full textRegeniter, Axel, André Scholer, and Werner H. Siede. "Die quantitative Analyse von Markerproteinen im Urin Quantitative analysis of marker proteins in urine." LaboratoriumsMedizin 29, no. 5 (January 1, 2005): 309–16. http://dx.doi.org/10.1515/jlm.2005.042.
Full textvan Kuilenburg, André B. P., Henk van Lenthe, Monika Löffler, and Albert H. van Gennip. "Analysis of Pyrimidine Synthesis “de Novo” Intermediates in Urine and Dried Urine Filter- Paper Strips with HPLC–Electrospray Tandem Mass Spectrometry." Clinical Chemistry 50, no. 11 (November 1, 2004): 2117–24. http://dx.doi.org/10.1373/clinchem.2004.038869.
Full textStarcher, Barry, and Marti Scott. "Fractionation of Urine to Allow Desmosine Analysis by Radioimmunoassay." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 29, no. 1 (January 1992): 72–78. http://dx.doi.org/10.1177/000456329202900111.
Full textPeelen, G. O., J. G. de Jong, and R. A. Wevers. "HPLC analysis of oligosaccharides in urine from oligosaccharidosis patients." Clinical Chemistry 40, no. 6 (June 1, 1994): 914–21. http://dx.doi.org/10.1093/clinchem/40.6.914.
Full textHamid Saad Mohmoud1, Marai. "Dipstick urine analysis screening among asymptomatic dogs of k9 units." Iraqi Journal of Veterinary Medicine 42, no. 1 (2018): 61–64. http://dx.doi.org/10.30539/011.
Full textWU, Jun, Chao Yan ZHOU, Ming Keong WONG, Hian Kee LEE, Hua CHI, and Choon Nan ONG. "Speciation of Aluminum in Urine." Analytical Sciences 12, no. 4 (1996): 641–45. http://dx.doi.org/10.2116/analsci.12.641.
Full textKustyorini, Tri Ida Wahyu, and Permata Ika Hidayati. "Pengaruh perendaman benih pada berbagai jenis larutan urin terhadap daya tumbuh kecambah kaliandra (calliandra calothyrsus)." Jurnal Sains Peternakan 6, no. 01 (June 29, 2018): 47–52. http://dx.doi.org/10.21067/jsp.v6i01.2815.
Full textDissertations / Theses on the topic "Urine analysi"
PADOAN, ANDREA. "Statistical methods for mass spectrometry data analysis and identification of prostaste cancer biomarkers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50248.
Full textRocha, Diogo Librandi da. "Desenvolvimento de procedimento analítico em fluxo com multicomutação para a determinação espectofotométrica de ácido úrico em urina." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/46/46133/tde-05102009-105307/.
Full textMechanization of analytical procedures in clinical analysis brings advantages such as minimization of systematic errors and analysis time. Multicommuted flow systems attain the requirements to mechanization of analytical procedures in a versatile and robust way, minimizing reagent consumption and waste generation, due to the low solution volumes handled by electronically controlled devices, such as solenoid micro-pumps. The pulsed flow characteristic of the micro-pumps and the binary sampling approach improve sample and reagent mixing. Uric acid is the main end product of purine metabolism and its determination in urine shows clinical importance, because its concentration can be related to human organism dysfunctions, such as gout and renal disorders. An analytical procedure employing a flow system with solenoid micro-pumps was developed, aiming the determination of uric acid in urine samples. Cu(II) ions are reduced by uric acid to Cu(I) ions that can be quantified by spectrophotometry in the presence of 2,2´-biquinoline 4,4´-dicarboxylic acid (BCA). Linear analytical response was observed between 10 and 100 µmol L-1 uric acid and the analytical curve corresponds to the equation A=(0.0063±0.0002) CUA + (0.0285±0.0040), r = 0.999, in which CUA is the uric acid concentration in µmol L-1. The detection limit was estimated as 3.0 µmol L-1 (99.7% confidence level; n = 20). The coefficient of variation was estimated in 1.2% with 20 replicates of a 75 µmol L-1 uric acid solution and sampling rate of 150 h-1 was achieved. The main concomitant species does not interfere in uric acid determination in concentrations up to 5-fold higher than that usually found in urine samples. Recoveries from 91 to 112% were estimated and the results for 4 urine samples agreed with those obtained by the commercially available enzymatic kit for determination of uric acid (95% confidence level). The 100-fold sample dilution minimizes sample consumption and matrix effects. A simple system reconfiguration and a re-optimization of volumetric fractions attained on-line sample dilution by zone sampling. Linear response was observed up to 5.0 mmol L-1 uric acid and the analytical curve corresponds to the equation A=(0.105±0.001) CUA\' + (0.023±0.003), r = 0.999, in which CUA\' is the uric acid concentration in mmol L-1. The coefficient of variation, detection limit and sampling frequency were estimated as 1.0%, 0.2 mmol L-1 and 95 h-1, respectively. The results of the analysis of 3 urine samples also agreed with those obtained with the enzymatic procedure at the 95% confidence level
Lough, Patricia Schechter. "Use of urine samples for ethanol analysis." CSUSB ScholarWorks, 1989. https://scholarworks.lib.csusb.edu/etd-project/446.
Full textPaquin, Olivier. "La microalbuminurie chez le sujet âgé." Bordeaux 2, 1994. http://www.theses.fr/1994BOR2M113.
Full textJansson, Emelie. "Gaskromatografisk metod för analys av GHB i urin." Thesis, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19651.
Full textEn metod för detektering och kvantifiering av gamma-hydroxysmörsyra (GHB) i urin med gaskromatografi (GC) är framtagen på Sahlgrenska universitetssjukhuset. Metoden är relativt unik då den inte kräver upparbetning i form av derivatisering, indunstning eller extraktion. Urinen surgörs med koncentrerad saltsyra och internstandard, gamma-valerolakton, tillsätts. GHB övergår då till laktonformen, gamma-butyrolakton (GBL). Därefter injiceras provet direkt på en GC-FID med en kapillärkolonn för glykoler och alkoholer. Detektion ner till 100 μmol/L är möjligt med en variationskoefficient mellan 6 och 12 %. Provsvar erhålls efter 6,5 minuter. Metoden är dock inte fullständig då en del frågetecken kvarstår. Bland annat bör det undersökas om andra föreningar, som kan förekomma i urin, kan eluera samtidigt som GHB. Om ja så bör vidare analyser genomföras för att separera GHB och den andra föreningen. Metoden kan däremot användas i nuläget som en screeninganalys för att snabbt få ett svar på om GHB finns närvarande eller inte. Verifiering kan sedan ske med GC-MS.
A method for determination and quantification of gamma-hydroxyburyric acid (GHB) in urine samples is developed at Sahlgrenska universitetssjukhus. No time consuming procedures as derivatization and exctration is required, which makes the method fairly unique. Hydrochloric acid and internal standard, gamma-valerolakton, is added to the urine sample before the sample is injected to a gas chromatograph with a flame ionization detector and a column for glycols and alcohols. The hydrochloric acid makes the GHB convert into gamma-butyrolactone (GBL) which is easier to separate in the gas chromatograph. Limit of detection was found to be 100 μmol/L and test result is received after 6,5 minutes. There are still some question marks around the method, for example, there is a possibility that another substance elute at the same time as GHB. More tests are required to determine whether or not it is so. For now the method can be used as a screening analysis to hastily detect GHB presence. Verification can be done with GC-MS.
Cooper, Mark Thomas. "A chromatographic method for detecting phenolic metabolites of carbosulfan in urine." Thesis, Queensland University of Technology, 1989. https://eprints.qut.edu.au/35977/1/35977_Cooper_1989.pdf.
Full textChen, Hui-Chuen. "The urinary excretion of mercapturic acids in free-living adult males." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-12052009-020010/.
Full textAllen, Robert Douglas III. "Development of an assay for the detection of cytomegalovirus in urine." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/25410.
Full textHoang, Tiffany Truc. "Speciation and identification of low molecular weight organoselenium metabolites in human urine." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30671.
Full textSilva, Júnior Jarbas Miguel da. "Excreção urinária de derivados de purinas e de compostos nitrogenados de zebuínos em pastejo." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/5825.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study aimed evaluating the excretion of purine derivatives and nitrogen compounds in zebu cattle grazing, on different days and times within days. The experiment was conducted in the cattle department of the Federal University of Viçosa / MG, using five Nelore heifers with an average body weight of 300 ± 15 kg and 20 months of age, in 5x5 Latin square design. The experimental treatments were defined to represent those commonly used in the dry season, as follows: control (mineral salt), concentrated with 20.31% crude protein (CP) on dry matter (DM) being offered (OF) level of 0.5 to 1% of body weight fasted (BWF) OF5 and OF10, respectively; and two concentrated self- regulating (SR) consumption, containing 69.38% CP on a DM basis (20% urea and 20% salt) offered ad libitun (SR70) and other concentrate containing 39.73% CP based on MS being offered ad libitum (SR40). The experimental periods was 18 days, with one day to perform 14 hours of fasting for weighing and adjustment of the quantities supplied, 12 days for adaptation to the experimental diets and five for total collection of urine and stool sample at the times of 0h00a.m. to 4h00a.m, 4h00a.m. to 8:00a.m., 8:00a.m. to 12:00p.m., 12:00p.m. to 4:00p.m., 4:00p.m. to 8:00p.m. and 20:00p.m. to 0:00a.m. For total collection of urine was used probe Folley number 26, coupled to polyethylene hose leading to a urine collection bag for urine closed system, which was emptied every two hours in the range of 8:00a.m. to 8:00p.m., and every four hours in the range from 8:00p.m. to 8:00a.m. and subsequently homogenized and cooled. The collected urine sampling was performed every four hours, measuring the volume, and withdrawing one sample were diluted in H 2 SO 4 at 0,036N and another don't diluted. To estimate fecal output, used the titanium dioxide, provided the total daily amount of 15g, between 9 th and 18 th day of each period. To estimate the intake of pasture, used the indigestible neutral detergent fiber (iNDF) as internal indicator. Was performed by collecting pasture technique for determining the square potentially digestible dry matter (PDDM) on the third day of each experimental period, and on days 14 th and 18 th was held grazing simulation to estimate the consumption of constituents of diets. In urine samples the concentrations of creatinine, total nitrogen, urea, uric acid and allantoin. For statistical analysis we used the statistical program SAS Proc Mixed. Dry matter intake 10was higher (P<0.05) for the treatment OF10 compared to SR70, SR40 and control treatments but was not different (P>0.05) treatment OF5. The CP intake increased by supplementation (P<0.05), which caused no effect on DM intake from pasture. Excretions of creatinine did not change treatment, day and sampling period (P>0.05) and had a mean of 23.03 ± 0.30 mg / kgPC. Urinary relations of allantoin (Al) and uric acid (UA) with creatinine were not affected (P>0.05) by treatments, collection days and times of collection. The total nitrogen relations:creatinine and urea nitrogen:creatinine in urine showed interaction (P<0.05) between treatment and sampling period. The relationship between urea nitrogen:total nitrogen was influenced (P<0.05) only at time of collection. The nitrogen balance (NB) in g/day did not differ between treatments OF10, SR70 and SR40, however these had higher retention of N (P<0.05) than treatments OF5 and control, which were not different. The NB, in g/ging, showed differences (P<0.05) between treatments with concentrated, which did not differ (P> 0.05), and control treatment, with the lowest NB. The production of microbial N was not affected (P>0.05) by treatments. The microbial efficiency gPBmic/kgMOD and gPBmic/kgNDT was affected (P<0.05) by supplementation, being higher (P<0.05) for OF5, OF10 and SR70 treatments, which did not differ. The control and OF5, treatments had the lowest values were similar. The lack of effect of day and the collection period on allantoin and uric acid compared with creatinine has wide practical application, enabling use spot urine sample to calculate the excretion of purine derivatives at any time of day or night, and consequently the microbial production. Depending on the variations observed for total nitrogen and urea nitrogen relations with creatinine over 24 hours is not recommended the use of a single spot urine sample for determination of these nitrogen compounds.
O presente trabalho foi desenvolvido com os objetivos de avaliar a excreção dos derivados de purinas e de compostos nitrogenados em zebuínos em pastejo, em diferentes dias e períodos dentro de dias. O experimento foi conduzido no setor de gado de corte da Universidade Federal de Viçosa/MG, utilizando-se cinco novilhas Nelore com peso corporal médio de 300 ± 15kg e 20 meses de idade, distribuídas em quadrado latino 5x5. Os tratamentos experimentais foram definidos para representar aqueles normalmente utilizados na época seca do ano, sendo eles: controle (sal mineral), concentrado com 20,31% de proteína bruta (PB) com base na matéria seca (MS) sendo oferecido (OF) em nível de 0,5 e 1% do peso corporal em jejum (PCJ), OF5 e OF10, respectivamente; e dois concentrados autorreguladores (AR) de consumo, um contendo 69,38% PB com base na MS (20% de ureia e 20% de sal) ofertado ad libitun (AR70) e outro concentrado contendo 39,73% PB com base na MS sendo ofertado ad libitum (AR40). Os períodos experimentais possuíram 18 dias, sendo o dia um para realização de jejum de 14 horas para pesagem e ajuste das quantidades fornecidas, 12 para adaptação dos animais às dietas experimentais e cinco para a coleta total de urina e amostral de fezes, nos horários das 0h00 às 4h00, 4h00 às 8h00, 8h00 às 12h00, 12h00 às 16h00, 16h00 às 20h00 e 20h00 às 24h00. Para a coleta total de urina utilizou-se sonda de Folley no26, acoplada a mangueira de polietileno que conduziu a urina até uma bolsa coletora de urina por sistema fechado, que foi esvaziada a cada duas horas no intervalo das 8h00 às 20h00, e a cada quatro horas no intervalo das 20h00 às 8h00, sendo posteriormente homogeneizadas e resfriadas. A amostragem da urina coletada foi realizada a cada 4 horas, medindo-se o volume e retirando-se duas amostras, uma diluída com solução H2SO4 0,036N e não diluida. Para determinação da excreção fecal, utilizou-se o dioxido de titânio, fornecido na quantidade total diária de 15g, entre os dias 9 e 18 de cada período. Para estimativa do consumo de pasto, utilizou-se a fibra indigestível em detergente neutro (FDNi), como indicador interno. Realizou-se coleta de pasto pela técnica do quadrado para determinação da matéria seca potencialmente digestível (MSpd) no terceiro dia de cada período experimental, e nos dias 14o e 18o realizou-se simulação de pastejo para estimar os consumos dos constituintes das dietas. Nas amostras de urina foram determinadas as concentrações de creatinina, nitrogênio total, ureia, acido úrico e alantoína. Para análise estatística utilizou-se o programa estatístico Proc Mixed do SAS. O consumo de MS foi superior (P<0,05) para o tratamento OF10 em relação aos tratamentos AR70, AR40 e controle, mas não diferiu (P>0,05) do tratamento OF5. O consumo de PB aumentou com a suplementação (P<0,05), que não causou efeito sobre o consumo de MS do pasto. As excreções de creatinina não sofreram efeito de tratamento, dia e período de coleta (P>0,05) e apresentaram média de 23,03 ± 0,30 mg/kgPC. As relações urinárias da alantoína (Al) e do ácido úrico (AU) com a creatinina não foram influenciadas (P>0,05) pelos tratamentos, dias de coleta e horários de coleta. As relações nitrogênio total:creatinina e nitrogênio ureico:creatinina na urina apresentaram interação (P<0,05) entre tratamento e período de coleta. A relação entre nitrogênio ureico:nitrogênio total foi influenciada (P<0,05) apenas pelo horário de coleta. O balanço de compostos nitrogenados (BN), em g/dia, não diferiu entre os tratamentos OF10, AR70 e AR40, contudo esses apresentaram maiores retenções de N (P<0,05) que os tratamentos OF5 e controle, que não foram diferentes. O BN, em g/ging, apresentou diferença (P<0,05) entre os tratamentos com concentrado, que não diferiram entre si (P>0,05), e tratamento controle, que apresentou o menor BN. A produção de compostos nitrogenados microbianos não foi alterada (P>0,05) pelos tratamentos. A eficiência microbiana, em gPBmic/kgMOD e gPBmic/kgNDT foi afetada (P<0,05) pela suplementação, sendo maior (P<0,05) para os tratamentos OF5, OF10 e AR70, que não diferiram entre si. Os tratamentos controle e OF5, apresentaram os menores valores e foram semelhantes entre si. A ausência de efeito de dia e do período de coleta sobre a relação alantoína e ácido úrico com a creatinina tem grande aplicação prática, possibilitando utilizar a amostra spot de urina para calcular a excreção de derivados de purinas em qualquer horário do dia ou da noite, e consequentemente a produção microbiana. Em função das variações observadas para as relações nitrogênio ureico e nitrogênio total com a creatinina ao longo do período de 24 horas não se recomenda o uso de uma única amostra spot de urina para determinação destes compostos nitrogenados.
Books on the topic "Urine analysi"
Fundamentals of urine & body fluid analysis. 3rd ed. St. Louis, Mo: Elsevier/Saunders, 2013.
Find full text), Dranow Merilee (Tr, ed. The Golden Fountain: Complete Guide to Urine Therapy. Bath: Gateway Books., 1998.
Find full textG, Newall R., and Howell R, eds. Clinical urinalysis: The principles and practice of urine testing in the hospital and community. Stoke Poges: Ames Division, Miles, 1990.
Find full textFundamentals of urine and body fluid analysis. Philadelphia: Saunders, 1994.
Find full textAssociations, American Trucking, ed. The Correct collection of urine samples. Alexandria, VA (2200 Mill Rd., Alexandria 22314-4677): American Trucking Associations, 1989.
Find full textThe urinary proteome: Methods and protocols. New York, NY: Humana Press, 2010.
Find full textKabīruddīn, Muḥammad. Risālah-yi qārūrah. 3rd ed. Lāhaur: Idārah-yi Mat̤būʻāt-i Sulaimānī, 1995.
Find full textStewart, Cameron J., and Fogazzi G. B, eds. The urinary sediment: An integrated view. London: Chapman & Hall Medical, 1994.
Find full textCregan, S. P. Bioassay techniques for 55Fe in urine samples. Chalk River, Ont: Health Physics Branch, Chalk River Laboratories, 1993.
Find full textV, Canfield Dennis, White Vicky L, and United States. Office of Aviation Medicine., eds. The analysis of benzodiazepines in forensic urine samples. Washington, D.C: U.S.Dept. of Transportation, Federal Aviation Administration, Office of Aviation Medicine, 1996.
Find full textBook chapters on the topic "Urine analysi"
Liu, Yongtao, and Jianrui Yin. "Application of Peptide Level and Posttranslational Modifications to Integrative Analyses in Proteomics." In Urine, 49–63. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9109-5_6.
Full textNeuendorf, Josefine. "Microscopic Urine Sediment: Analysis and Findings." In Urine Sediment, 159–222. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15911-5_12.
Full textHenderson, Scott R., and Mark Harber. "Urine Analysis." In Practical Nephrology, 19–28. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5547-8_2.
Full textSharkey, Leslie. "Urine Analysis." In Interpretation of Equine Laboratory Diagnostics, 383–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118922798.ch57.
Full textHenderson, Scott R., and Mark Harber. "Urine Analysis." In Primer on Nephrology, 29–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76419-7_2.
Full textGässler, Norbert, Harald Schlebusch, and Peter B. Luppa. "Urine and stool analyses." In Point-of-Care Testing, 181–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54497-6_19.
Full textRidley, John W. "Fecal Analysis." In Fundamentals of the Study of Urine and Body Fluids, 341–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_15.
Full textRidley, John W. "Cerebrospinal Fluid Analysis." In Fundamentals of the Study of Urine and Body Fluids, 251–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_11.
Full textRidley, John W. "Serous Fluids Analysis." In Fundamentals of the Study of Urine and Body Fluids, 301–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_13.
Full textShao, Chen. "Applications of Peptide Retention Time in Proteomic Data Analysis." In Urine Proteomics in Kidney Disease Biomarker Discovery, 67–75. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9523-4_7.
Full textConference papers on the topic "Urine analysi"
Anthimopoulos, Marios, Sidharta Gupta, Spyridon Arampatzis, and Stavroula Mougiakakou. "Smartphone-based urine strip analysis." In 2016 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2016. http://dx.doi.org/10.1109/ist.2016.7738253.
Full textMahdy, Tarek, Abdulaziz Al-Sulaiti, Yasser Abdelqader, Abdelrahman Fikry, Gaffar Hag, and Mohammad I. Ahmad. "A Validated and Applicable Direct Injection LC/MS/MS Method of Fourteen Drugs of Abuse in Urine Samples to Avoid the False Positive/Negative Results of Immunoassay Techniques in Forensic Cases." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0146.
Full textSilveira, A. M. V., B. Hessel, and B. Blombäck. "VON WILLEBRAND FACTOR (VWF) ANTIGENS IN URINE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644083.
Full textChicea, D., R. Chicea, L. M. Chicea, Madalin Bunoiu, and Iosif Malaescu. "Using DLS for Fast Urine Sample Analysis." In Proceedings of the Physics Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3482223.
Full textZaylaa, Amira J., Rania Ghotmi, and Samara Barakat. "Urine Analysis Device from Research to Design." In 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). IEEE, 2020. http://dx.doi.org/10.1109/mecbme47393.2020.9265127.
Full textChun-Yan Li, Bin Fang, Yi Wang, Guang-Zhou Lu, Ji-Ye Qian, and Lin Chen. "Automatic detecting and recognition of casts in urine sediment images." In 2009 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2009. http://dx.doi.org/10.1109/icwapr.2009.5207456.
Full textWalendziuk, Wojciech, Aleksander Sawicki, and Adam Idźkowski. "The use of DTW method as an effective way of uroflowmetry data screening analysis." In Biomdlore. VGTU Technika, 2016. http://dx.doi.org/10.3846/biomdlore.2016.12.
Full textHuda, Thorikul, Durotun Nafisah, Suryati Kumorowulan, and Sri Lestari. "Quality control of test iodine in urine by spectrophotometry UV–Vis." In INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS (ICWOMAA 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5016017.
Full textJones, K., P. Akrill, R. Guiver, and J. Cocker. "56. Biological Monitoring of Nitroglycerin Exposure by Urine Analysis." In AIHce 2002. AIHA, 2002. http://dx.doi.org/10.3320/1.2766408.
Full textKavita and Sahil Sharma. "Study of reliability of urine sample in forensic analysis." In ADVANCEMENTS IN CIVIL ENGINEERING: COSMEC-2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0120044.
Full textReports on the topic "Urine analysi"
Mirocha, Chester J., Young B. Kim, Urooj Mirza, Weiping Xie, and Hamed K. Abbas. Analysis of Saxitoxin from Urine Using Dynamic FAB/MS. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244960.
Full textMirocha, Chester J., Won J. Cheong, and Hamed Abbas. Analysis of Saxitoxin from Urine Using Dynamic FAB/MS. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226474.
Full textPiraner, Olga, Rose T. Preston, Sonoya Toyoko Shanks, and Robert Jones. 90Sr liquid scintillation urine analysis utilizing different approaches for tracer recovery. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1097198.
Full textSun, L. C., A. R. Moorthy, E. Kaplan, J. W. Baum, and C. B. Meinhold. Assessment of plutonium exposures in Rongelap and Utirik populations by fission track analysis of urine. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10181822.
Full textWong, C., and L. Collins. TECHNICAL EQUIVALENCE BETWEEN PERKIN-ELMER DRCe AND ELAN 6000 FOR THE ANALYSIS OF 238U IN URINE BIOASSAY SAMPLES. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/924967.
Full textMayer, B., A. Williams, R. Leif, R. Udey, and A. Vu. Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1165796.
Full textZhu, Zhihong, Yue Zhuo, Haitao Jin, Boyu Wu, and Zhijie Li. Chinese Medicine Therapies for Neurogenic Bladder after Spinal Cord Injury: A protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0084.
Full textMayer, B. P., A. M. Williams, R. N. Leif, and A. K. Vu. Extraction of Phosphonic Acids from Urine Samples and Analysis by Gas Chromatography with Detection by Mass Spectrometryand Flame Photometric Detection. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1116967.
Full textBotchkina, Galina I., and Howard L. Adler. Validation of Quantitative Multimodality Analysis of Telomerase Activity in Urine Cells as a Noninvasive Diagnostic and Prognostic Tool for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada468571.
Full textWrenn, M. E., N. P. Singh, and Ying-Hua Xue. Fission track analysis of plutonium in small specimens of biological material: Ultrasensitive analysis for sup 239 Pu in 50 urine samples from the Marshall Islands furnished by Brookhaven National Laboratory. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6315643.
Full text