To see the other types of publications on this topic, follow the link: Urbanization – Germany – Berlin.

Journal articles on the topic 'Urbanization – Germany – Berlin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 journal articles for your research on the topic 'Urbanization – Germany – Berlin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Seongeun. "Land Reform Movement in Germany (II): Focusing on Land Reform Legislation." Korean Institute for Aggregate Buildings Law 44 (November 30, 2022): 157–77. http://dx.doi.org/10.55029/kabl.2022.44.157.

Full text
Abstract:
In Germany, the population of large cities such as Berlin has increased rapidly due to industrialization and urbanization since modern times. The rental apartments for workers in large cities built during this period were called “rental barracks”(Mietskaserne), and the living conditions were very poor. As such, the demand for residential space in large cities continued to increase, and this resulted in an increase in demand for land, leading to a rapid rise in land prices. In the midst of this, American economist Henry George argued that the land value should be shared by society through the land value taxation, which collects land rent as a tax, and through this, the land problem could be solved. Influenced by Henry George's argument, Adolf Damashke appeared in Germany and the German Land Reformers Association (Bund Deutscher Bodenreformer) was formed. Due to their efforts, the Hereditary Land Rights Act was enacted in 1919, and Article 155 of the Weimar Constitution contained the content of the return of development profits. However, even if the constitution stipulates the return of development profits, the subsequent legislation was not implemented. This experience of Germany's past legislation can be used as a reference in Korea's current legislation related to land-rental housing for sale and the issue of stipulating the concept of land public in the Constitution.
APA, Harvard, Vancouver, ISO, and other styles
2

Sweeney, D. "Urbanization and Crime: Germany 1871-1914; Strassenpolitik. Zur Sozialgeschichte der offentlichen Ordnung in Berlin 1900 bis 1914." German History 15, no. 2 (April 1, 1997): 287–89. http://dx.doi.org/10.1093/gh/15.2.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lippert, Henry, Ingo Kowarik, and Tanja M. Straka. "People’s Attitudes and Emotions towards Different Urban Forest Types in the Berlin Region, Germany." Land 11, no. 5 (May 7, 2022): 701. http://dx.doi.org/10.3390/land11050701.

Full text
Abstract:
In an era of urbanization, forests are a key component of the urban green infrastructure, providing multiple benefits to urban residents. While emerging forests on urban wasteland could increase the urban forest area, it is unclear how residents view such novel forest types. In a comparative self-administered online survey, we assessed attitudes and emotions of residents (n = 299) from the Berlin region, Germany, towards forest types that represent transformation stages from natural to novel forests: (1) natural remnants, (2) silvicultural plantings, (3) park forests and (4) novel wild forests in wastelands. Respondents expressed positive attitudes and emotions towards all forest types, including the novel wild forest. Ratings were most positive towards natural remnants and least positive towards the novel wild forest. The indicated prevalence of non-native trees (Ailanthus altissima, Robinia pseudoacacia) did not evoke negative responses. Women and younger people were more positive towards the novel wild forest compared to other respondents, and men were most positive towards natural remnants. Place attachment was positively related to the park forest. Results indicate support for a wide range of forest types, including novel wild forests and non-native tree species, which can be used to expand urban forest areas and enhance opportunities for nature experience in cities.
APA, Harvard, Vancouver, ISO, and other styles
4

Dushkova, Diana, Dagmar Haase, Peer von Döhren, Olga Chereshnya, and Vladimir Megorsky. "“An interdisciplinary perspective on ecosystem services and human well-being”: results and potentials of German-Russian cooperation within the project." InterCarto. InterGIS 26, no. 1 (2020): 80–93. http://dx.doi.org/10.35595/2414-9179-2020-1-26-80-93.

Full text
Abstract:
Programs of international cooperation between universities and scientific centres aim to promote not only the achievements in science and education but also contribute to intercultural understanding, as well as to development of efficient human resources, research and innovation. The aim of this paper is to explore the potential of international cooperation in research and higher education between Russia and Germany by examining selected German-Russian projects and their outcomes. In particular, it highlights the experience of summer schools on “An Interdisciplinary Perspective on Ecosystem Services and Human Well-being”, an annual event started in 2014. It is organized under the umbrella of the German Academic Exchange Service (Program of Eastern Partnership), the International Office and Geography Department of Humboldt University of Berlin and the Faculty of Geography at Lomonosov Moscow State University in strong cooperation with other universities, research centres and NGOs from both countries. The summer school addresses relevant contemporary environmental issues of urbanization with special emphasis on ecosystem services, green infrastructure and nature-based solutions and their importance for well-being of the urban population. In this paper we present our experience from this project by providing the theoretical-methodological aspects of such joint educational and training programs and report outcomes, which emerged from them, thereby highlighting the difficulties and advantages and suggest lines of further development and cooperation. It also highlights how geographical perspective can provide new important and critical insights into the place-based approaches to ecosystem assessment and how it relates to the current trends in human-environmental research.
APA, Harvard, Vancouver, ISO, and other styles
5

Sangiorgio, Valentino, Silvana Bruno, and Francesco Fiorito. "Comparative Analysis and Mitigation Strategy for the Urban Heat Island Intensity in Bari (Italy) and in Other Six European Cities." Climate 10, no. 11 (November 17, 2022): 177. http://dx.doi.org/10.3390/cli10110177.

Full text
Abstract:
The presence of higher air temperatures in the city in comparison with the surrounding rural areas is an alarming phenomenon named the urban heat island (UHI). In the last decade, the scientific community demonstrated the severity of the phenomenon amplified by the combination of heat waves. In southern Italy, the UHI is becoming increasingly serious due to the presence of a warming climate, extensive urbanization and an aging population. In order to extensively investigate such phenomenon in several cities, recent research calibrated quantitative indexes to forecast the maximum UHI intensity in urban districts by exploiting multicriteria approaches and open-source data. This paper proposes different mitigation strategy to mitigate the Urban Heat Island Intensity in Bari. Firstly, the research evaluates the absolute max UHI intensity of the 17 urban districts of Bari (a city in southern Italy, Puglia) by exploiting the recent index-based approach IUHII. Secondly, a comparative evaluation of seven European cities (Bari, Alicante, Madrid, Paris, Berlin, Milan and London) is achieved to point out the positives and negative aspects of the different urban districts. In total, the comparison required the analysis of 344 districts of 7 European cities: 17 districts in Bari (Italia); 9 districts in Alicante (Spain); 21 in Madrid (Spain); 80 in Paris (France); 96 in Berlin (Germany); 88 in Milan (Italy) and 33 in London (UK). Finally, the results emphasize some virtuous examples of UHII mitigation in the major European cities useful to draw inspiration for effective mitigation strategies suitable for the urban context of Bari.
APA, Harvard, Vancouver, ISO, and other styles
6

Kuhlemann, Lena-Marie, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby. "Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning." Hydrology and Earth System Sciences 25, no. 2 (February 24, 2021): 927–43. http://dx.doi.org/10.5194/hess-25-927-2021.

Full text
Abstract:
Abstract. In cities around the world, urban green spaces provide a range of benefits and ecosystem services. However, recent years have shown how prolonged warm and dry periods can affect urban water resources and lead to water stress in vegetation in urban green spaces, even in temperate regions. Consequently, quantitative knowledge about ecohydrological partitioning in different types of urban green space is crucial for balancing sustainable water needs in cities during future challenges of increasing urbanization and climate warming. Using isotopic tracers in precipitation and soil water, along with conventional hydrometric measurements in a plot-scale study in Berlin, Germany, we investigated water partitioning under different generic types of urban vegetation (grassland, shrub and trees). This allowed for the assessment of urban vegetation effects on evapotranspiration, subsurface flow paths and storage during a prolonged drought period with episodic rainfall. Despite higher soil evaporation losses under urban grassland, higher interception and transpiration likely contributed to slower turnover of soil water and older groundwater recharge under urban trees. Shrub vegetation seemed to be most resilient to prolonged drought periods, with lower evapotranspiration losses. Our results contribute to a better understanding of ecohydrological partitioning under mixed urban vegetation communities and an evidence base for better adaptive management of urban water and irrigation strategies to sustainably meet the water demands of urban green spaces in the future.
APA, Harvard, Vancouver, ISO, and other styles
7

Gillefalk, Mikael, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby. "Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model." Hydrology and Earth System Sciences 25, no. 6 (June 29, 2021): 3635–52. http://dx.doi.org/10.5194/hess-25-3635-2021.

Full text
Abstract:
Abstract. The acceleration of urbanization requires sustainable, adaptive management strategies for land and water use in cities. Although the effects of buildings and sealed surfaces on urban runoff generation and local climate are well known, much less is known about the role of water partitioning in urban green spaces. In particular, little is quantitatively known about how different vegetation types of urban green spaces (lawns, parks, woodland, etc.) regulate partitioning of precipitation into evaporation, transpiration and groundwater recharge and how this partitioning is affected by sealed surfaces. Here, we integrated field observations with advanced, isotope-based ecohydrological modelling at a plot-scale site in Berlin, Germany. Soil moisture and sap flow, together with stable isotopes in precipitation, soil water and groundwater recharge, were measured over the course of one growing season under three generic types of urban green space: trees, shrub and grass. Additionally, an eddy flux tower at the site continuously collected hydroclimate data. These data have been used as input and for calibration of the process-based ecohydrological model EcH2O-iso. The model tracks stable isotope ratios and water ages in various stores (e.g. soils and groundwater) and fluxes (evaporation, transpiration and recharge). Green water fluxes in evapotranspiration increased in the order shrub (381±1mm)<grass(434±21mm)<trees(489±30 mm), mainly driven by higher interception and transpiration. Similarly, ages of stored water and fluxes were generally older under trees than shrub or grass. The model also showed how the interface between sealed surfaces and green space creates edge effects in the form of “infiltration hotspots”. These can both enhance evapotranspiration and increase groundwater recharge. For example, in our model, transpiration from trees increased by ∼ 50 % when run-on from an adjacent sealed surface was present and led to groundwater recharge even during the growing season, which was not the case under trees without run-on. The results form an important basis for future upscaling studies by showing that vegetation management needs to be considered within sustainable water and land use planning in urban areas to build resilience in cities to climatic and other environmental change.
APA, Harvard, Vancouver, ISO, and other styles
8

Sweeney, D. "Book Reviews : Urbanization and Crime: Germany 1871-1914. By Eric A. Johnson. Cam bridge : Cambridge University Press. 1995. x + 246 pp. 35.00: Stra enpolitik, Zur Sozialgeschichte der offentlichen Ordnung in Berlin 1900 bis 1914. By Thomas Lindenberger. Bonn: Dietz. 1995. 431 pp. DM62." German History 15, no. 2 (January 1, 1997): 287–89. http://dx.doi.org/10.1177/026635549701500223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ylimaunu, Timo, Paul R. Mullins, James Symonds, Titta Kallio-Seppä, Hilkka Heikkilä, Markku Kuorilehto, and Siiri Tolonen. "MEMORY OF BARRACKS: World War II German ‘Little Berlins’ and post-war urbanization in Northern Finnish towns." Scandinavian Journal of History 38, no. 4 (September 2013): 525–48. http://dx.doi.org/10.1080/03468755.2013.822457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kohler, Stefan, and Stefan N. Willich. "Lessons from the development of a web portal on prevention and health promotion." Public Health Forum 23, no. 3 (September 1, 2015): 149–52. http://dx.doi.org/10.1515/pubhef-2015-0055.

Full text
Abstract:
Abstract A modern urban lifestyle can be a risk factor for developing non-communicable diseases and mental health problems (Eckert S, Kohler S. Urbanization and health in developing countries: A systematic review. World Health Popul. 2014;15:7–20; Penkalla AM, Kohler S. Urbanicity and mental health in Europe: a systematic review. Eur J Ment Health 2014;9:163–77). Two non-commercial, state-funded web portals in the German states of Berlin and Brandenburg are attempting to support the residents in realizing a healthier lifestyle. The initial portal is named Präventionsatlas [Atlas of Prevention] and has existed since 2008. The second portal, called Stadtplan Gesundheitsförderung [Health Promotion Map], went online in 2014 and has become the successor to the former. Both web portals provide health information as well as searchable databases with locally available health promotion courses and projects. Since internet portals and knowledge management through Internet portals have become more and more frequently used as public health tools (see, e.g. Quinn E, Huckel-Schneider C, Campbell D, Seale H, Milat AJ. How can knowledge exchange portals assist in knowledge management for evidence-informed decision making in public health? BMC Public Health 2014;14:443), we share our lessons learned during the development and revision of the health portal www.praeventionsatlas.de in this article.
APA, Harvard, Vancouver, ISO, and other styles
11

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, Ngo Sy Cuong, Tran Dinh Lan, Nguyen Van Thanh, and Dang Thanh Le. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (January 19, 2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
12

Christmann, Tina, Ingo Kowarik, Maud Bernard-Verdier, Sascha Buchholz, Anne Hiller, Birgit Seitz, and Moritz von der Lippe. "Phenology of grassland plants responds to urbanization." Urban Ecosystems, November 4, 2022. http://dx.doi.org/10.1007/s11252-022-01302-y.

Full text
Abstract:
AbstractUnderstanding phenological responses of plants to changing temperatures is important because of multiple associated ecological consequences. Cities with their urban heat island can be used as laboratories to study phenological adaptation to climate change. However, previous phenology studies focused on trees and did not disentangle the role of micro-climate and urban structures.We studied reproductive phenology of dry grassland species in response to micro-climate and urbanization in Berlin, Germany. Phenological stages were recorded weekly at the individual plant level for five native grassland species across 30 dry grassland sites along an urbanization and temperature gradient. We estimated 50% onset probabilities for flowering and seed maturation of populations, and analysed variation in onset dates using regression models.Early flowering species significantly advanced flowering phenology with increasing mean air temperature but were little influenced by urbanization. By contrast, late-flowering species showed significant phenological responses to both air temperature and urbanization, possibly because micro-climate was most affected by urbanization in late summer. Surprisingly, not all grassland species showed an advanced phenology with increasing intensity of urbanization.This contradicts observed patterns for urban trees, indicating that phenological shifts in urban areas cannot be generalized from the observation of one growth form or taxonomic group. Growth form appears as a possible determinant of phenological responses. Results suggest that the phenology of dry grassland species may directly respond to the urban heat island, albeit with variable direction and magnitude. This has implications for ecosystem services, shifted allergy seasons, changes of biogeochemical cycles and potential ecological mismatches.
APA, Harvard, Vancouver, ISO, and other styles
13

Schneider, Christoph, Burkhard Neuwirth, Sebastian Schneider, Daniel Balanzategui, Stefanie Elsholz, Daniel Fenner, Fred Meier, and Ingo Heinrich. "Using the dendro-climatological signal of urban trees as a measure of urbanization and urban heat island." Urban Ecosystems, December 22, 2021. http://dx.doi.org/10.1007/s11252-021-01196-2.

Full text
Abstract:
AbstractUsing dendroclimatological techniques this study investigates whether inner city tree-ring width (TRW) chronologies from eight tree species (ash, beech, fir, larch, lime, sessile and pedunculate oak, and pine) are suitable to examine the urban heat island of Berlin, Germany. Climate-growth relationships were analyzed for 18 sites along a gradient of increasing urbanization covering Berlin and surrounding rural areas. As a proxy for defining urban heat island intensities at each site, we applied urbanization parameters such as building fraction, impervious surfaces, and green areas. The response of TRW to monthly and seasonal air temperature, precipitation, aridity, and daily air-temperature ranges were used to identify climate-growth relationships. Trees from urban sites were found to be more sensitive to climate compared to trees in the surrounding hinterland. Ring width of the deciduous species, especially ash, beech, and oak, showed a high sensitivity to summer heat and drought at urban locations (summer signal), whereas conifer species were found suitable for the analysis of the urban heat island in late winter and early spring (winter signal).The summer and winter signals were strongest in tree-ring chronologies when the urban heat island intensities were based on an area of about 200 m to 3000 m centered over the tree locations, and thus reflect the urban climate at the scale of city quarters. For the summer signal, the sensitivity of deciduous tree species to climate increased with urbanity.These results indicate that urban trees can be used for climate response analyses and open new pathways to trace the evolution of urban climate change and more specifically the urban heat island, both in time and space.
APA, Harvard, Vancouver, ISO, and other styles
14

Kuhlemann, Lena-Marie, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby. "The imprint of hydroclimate, urbanization and catchment connectivity on the stable isotope dynamics of a large river in Berlin, Germany." Journal of Hydrology, August 2022, 128335. http://dx.doi.org/10.1016/j.jhydrol.2022.128335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Seitz, Birgit, Sascha Buchholz, Ingo Kowarik, Johann Herrmann, Leonie Neuerburg, Julian Wendler, Leonie Winker, and Monika Egerer. "Land sharing between cultivated and wild plants: urban gardens as hotspots for plant diversity in cities." Urban Ecosystems, January 24, 2022. http://dx.doi.org/10.1007/s11252-021-01198-0.

Full text
Abstract:
AbstractPlant communities in urban gardens consist of cultivated species, including ornamentals and food crops, and wild growing species. Yet it remains unclear what significance urban gardens have for the plant diversity in cities and how the diversity of cultivated and wild plants depends on the level of urbanization. We sampled plants growing within 18 community gardens in Berlin, Germany to investigate the species diversity of cultivated and wild plants. We tested species diversity in relation to local and landscape-scale imperviousness as a measure of urbanity, and we investigated the relationship between cultivated and wild plant species within the gardens. We found that numbers of wild and cultivated plant species in gardens are high – especially of wild plant species – independent of landscape-scale imperviousness. This suggests that all community gardens, regardless of their urban contexts, can be important habitats for plant diversity along with their role in urban food provision. However, the number of all species was negatively predicted by local garden scale imperviousness, suggesting an opportunity to reduce imperviousness and create more habitats for plants at the garden scale. Finally, we found a positive relationship between the number of cultivated and wild growing species, which emphasizes that community gardens present a unique urban ecosystem where land sharing between cultivated and wild flora can transpire. As the urban agriculture movement is flourishing worldwide with gardens continuously and spontaneously arising and dissipating due to urban densification, such botanical investigations can support the argument that gardens are places for the reconciliation of plant conservation and food production.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography