Journal articles on the topic 'Uranium imido complexes'

To see the other types of publications on this topic, follow the link: Uranium imido complexes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Uranium imido complexes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Maria, Leonor, Nuno A. G. Bandeira, Joaquim Marçalo, Isabel C. Santos, and John K. Gibson. "CO2 conversion to phenyl isocyanates by uranium(vi) bis(imido) complexes." Chemical Communications 56, no. 3 (2020): 431–34. http://dx.doi.org/10.1039/c9cc07411b.

Full text
Abstract:
U(vi) trans-bis(imido) complexes [U(κ4{(tBu2ArO)2Me2-cyclam})(NPh)(NPhR)] react with CO2 to afford U(vi) trans-[OUNR]2+ complexes with elimination of isocyanates. These are unprecedented examples of CO2 cleavage mediated by U(vi) imido complexes.
APA, Harvard, Vancouver, ISO, and other styles
2

Maria, Leonor, and Joaquim Marçalo. "Uranyl Analogue Complexes—Current Progress and Synthetic Challenges." Inorganics 10, no. 8 (August 18, 2022): 121. http://dx.doi.org/10.3390/inorganics10080121.

Full text
Abstract:
Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes, and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety. This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ- and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but also references gas-phase and low-temperature-matrix experiments, as well as computational studies that may lead to valuable insights.
APA, Harvard, Vancouver, ISO, and other styles
3

Hayton, Trevor W., James M. Boncella, Brian L. Scott, and Enrique R. Batista. "Exchange of an Imido Ligand in Bis(imido) Complexes of Uranium." Journal of the American Chemical Society 128, no. 39 (October 2006): 12622–23. http://dx.doi.org/10.1021/ja064400j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spencer, Liam P., Ping Yang, Brian L. Scott, Enrique R. Batista, and James M. Boncella. "Imido Exchange in Bis(imido) Uranium(VI) Complexes with Aryl Isocyanates." Journal of the American Chemical Society 130, no. 10 (March 2008): 2930–31. http://dx.doi.org/10.1021/ja7107454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brennan, John G., Jennifer C. Green, and Catherine M. Redfern. "A photoelectron study of pentavalent uranium imido complexes." Inorganica Chimica Acta 139, no. 1-2 (December 1987): 331–33. http://dx.doi.org/10.1016/s0020-1693(00)84111-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomson, Neil C., Nickolas H. Anderson, Aaron M. Tondreau, Brian L. Scott, and James M. Boncella. "Oxidation of uranium(iv) mixed imido–amido complexes with PhEEPh and to generate uranium(vi) bis(imido) dichalcogenolates, U(NR)2(EPh)2(L)2." Dalton Transactions 48, no. 29 (2019): 10865–73. http://dx.doi.org/10.1039/c9dt00680j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perales, Diana, Nathan J. Lin, Michaela R. Bronstetter, Shannon A. Ford, Matthias Zeller, and Suzanne C. Bart. "Conversion of Uranium(III) Anilido Complexes to Uranium(IV) Imido Complexes via Hydrogen Atom Transfer." Organometallics 41, no. 5 (February 18, 2022): 606–16. http://dx.doi.org/10.1021/acs.organomet.1c00680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spencer, Liam P., Robyn L. Gdula, Trevor W. Hayton, Brian L. Scott, and James M. Boncella. "Synthesis and reactivity of bis(imido) uranium(vi) cyclopentadienyl complexes." Chemical Communications, no. 40 (2008): 4986. http://dx.doi.org/10.1039/b806075d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsoureas, Nikolaos, and F. Geoffrey N. Cloke. "Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour." Journal of Organometallic Chemistry 857 (February 2018): 25–33. http://dx.doi.org/10.1016/j.jorganchem.2017.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spencer, Liam P., Ping Yang, Brian L. Scott, Enrique R. Batista, and James M. Boncella. "Uranium(VI) Bis(imido) Chalcogenate Complexes: Synthesis and Density Functional Theory Analysis." Inorganic Chemistry 48, no. 6 (March 16, 2009): 2693–700. http://dx.doi.org/10.1021/ic802212m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mullane, Kimberly C., Patrick J. Carroll, and Eric J. Schelter. "Synthesis and Reduction of Uranium(V) Imido Complexes with Redox-Active Substituents." Chemistry - A European Journal 23, no. 24 (April 6, 2017): 5748–57. http://dx.doi.org/10.1002/chem.201605758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Graves, Christopher R., Ping Yang, Stosh A. Kozimor, Anthony E. Vaughn, David L. Clark, Steven D. Conradson, Eric J. Schelter, et al. "Organometallic Uranium(V)−Imido Halide Complexes: From Synthesis to Electronic Structure and Bonding." Journal of the American Chemical Society 130, no. 15 (April 2008): 5272–85. http://dx.doi.org/10.1021/ja711010h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Swartz II, Douglas L., Liam P. Spencer, Brian L. Scott, Aaron L. Odom, and James M. Boncella. "Exploring the coordination modes of pyrrolyl ligands in bis(imido) uranium(vi) complexes." Dalton Transactions 39, no. 29 (2010): 6841. http://dx.doi.org/10.1039/c002440f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Spencer, Liam P., Ping Yang, Brian L. Scott, Enrique R. Batista, and James M. Boncella. "Uranium(VI) bis(imido) disulfonamide and dihalide complexes: Synthesis density functional theory analysis." Comptes Rendus Chimie 13, no. 6-7 (June 2010): 758–66. http://dx.doi.org/10.1016/j.crci.2010.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Meskaldji, Samir, Abdelmalik Belkhiri, Lotfi Belkhiri, Abdou Boucekkine, and Michel Ephritikhine. "Magnetic exchange coupling in imido bimetallic uranium(V) complexes. A relativistic DFT study." Comptes Rendus Chimie 15, no. 2-3 (February 2012): 184–91. http://dx.doi.org/10.1016/j.crci.2011.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Graves, Christopher R., Brian L. Scott, David E. Morris, and Jaqueline L. Kiplinger. "Facile Access to Pentavalent Uranium Organometallics: One-Electron Oxidation of Uranium(IV) Imido Complexes with Copper(I) Salts." Journal of the American Chemical Society 129, no. 39 (October 2007): 11914–15. http://dx.doi.org/10.1021/ja074889w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jilek, Robert E., Neil C. Tomson, Brian L. Scott, and James M. Boncella. "[2 + 2] cycloaddition reactions at terminal imido uranium(IV) complexes to yield isolable cycloadducts." Inorganica Chimica Acta 422 (October 2014): 78–85. http://dx.doi.org/10.1016/j.ica.2014.07.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhao, Siwei, Yuxi Zhong, Yuanru Guo, Hongxing Zhang, and Qingjiang Pan. "A Relativistic DFT Study of Mixed Oxo-Imido Uranium Complexes of Polypyrrolic Macrocycle: Structure, Vibrational Spectrum and Oxo/Imido Exchange Reaction." Acta Chimica Sinica 74, no. 8 (2016): 683. http://dx.doi.org/10.6023/a16060294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guo, Yuan-Ru, Qian Wu, Samuel O. Odoh, Georg Schreckenbach, and Qing-Jiang Pan. "Theoretical Study of Structural, Spectroscopic and Reaction Properties of trans-bis(imido) Uranium(VI) Complexes." Inorganic Chemistry 52, no. 15 (July 8, 2013): 9143–52. http://dx.doi.org/10.1021/ic401440w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Seed, John A., Letitia Birnoschi, Erli Lu, Floriana Tuna, Ashley J. Wooles, Nicholas F. Chilton, and Stephen T. Liddle. "Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states." Chem 7, no. 6 (June 2021): 1666–80. http://dx.doi.org/10.1016/j.chempr.2021.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Spencer, Liam P., Ping Yang, Brian L. Scott, Enrique R. Batista, and James M. Boncella. "Oxidative Addition to U(V)−U(V) Dimers: Facile Routes to Uranium(VI) Bis(imido) Complexes." Inorganic Chemistry 48, no. 24 (December 21, 2009): 11615–23. http://dx.doi.org/10.1021/ic901581r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Straub, Thomas, Walter Frank, Guido J. Reiss, and Moris S. Eisen. "Uranium(IV) bis(amido), imido and bis(acetylide) complexes: synthesis, molecular structure, solution dynamics and interconversion reactions." Journal of the Chemical Society, Dalton Transactions, no. 12 (1996): 2541. http://dx.doi.org/10.1039/dt9960002541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Anderson, Nickolas H., Haolin Yin, John J. Kiernicki, Phillip E. Fanwick, Eric J. Schelter, and Suzanne C. Bart. "Investigation of Uranium Tris(imido) Complexes: Synthesis, Characterization, and Reduction Chemistry of [U(NDIPP)3(thf)3]." Angewandte Chemie 127, no. 32 (July 3, 2015): 9518–21. http://dx.doi.org/10.1002/ange.201503771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Anderson, Nickolas H., Haolin Yin, John J. Kiernicki, Phillip E. Fanwick, Eric J. Schelter, and Suzanne C. Bart. "Investigation of Uranium Tris(imido) Complexes: Synthesis, Characterization, and Reduction Chemistry of [U(NDIPP)3(thf)3]." Angewandte Chemie International Edition 54, no. 32 (July 3, 2015): 9386–89. http://dx.doi.org/10.1002/anie.201503771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Warner, Benjamin P., Brian L. Scott, and Carol J. Burns. "A Simple Preparative Route to Bis(imido)uranium(VI) Complexes by the Direct Reductions of Diazenes and Azides." Angewandte Chemie International Edition 37, no. 7 (April 20, 1998): 959–60. http://dx.doi.org/10.1002/(sici)1521-3773(19980420)37:7<959::aid-anie959>3.0.co;2-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tatebe, Caleb J., Matthias Zeller, and Suzanne C. Bart. "[2π+2π] Cycloaddition of Isocyanates to Uranium(IV) Imido Complexes for the Synthesis of U(IV) κ2-Ureato Compounds." Inorganic Chemistry 56, no. 4 (February 6, 2017): 1956–65. http://dx.doi.org/10.1021/acs.inorgchem.6b02547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Guo, Yuan-Ru, Ning Qu, and Qing-Jiang Pan. "A theoretical probe for pentavalent bis-imido uranium complexes containing diverse axial substituents and equatorial donors: UN multiple bond and structural/electronic properties." Computational and Theoretical Chemistry 1082 (April 2016): 21–28. http://dx.doi.org/10.1016/j.comptc.2016.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jilek, Robert E., Neil C. Tomson, Ryan L. Shook, Brian L. Scott, and James M. Boncella. "Preparation and Reactivity of the Versatile Uranium(IV) Imido Complexes U(NAr)Cl2(R2bpy)2 (R = Me, tBu) and U(NAr)Cl2(tppo)3." Inorganic Chemistry 53, no. 18 (August 29, 2014): 9818–26. http://dx.doi.org/10.1021/ic5014208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Evans, William J., Christopher A. Traina, and Joseph W. Ziller. "Synthesis of Heteroleptic Uranium (μ−η6:η6-C6H6)2−Sandwich Complexes via Facile Displacement of (η5-C5Me5)1−by Ligands of Lower Hapticity and Their Conversion to Heteroleptic Bis(imido) Compounds." Journal of the American Chemical Society 131, no. 47 (December 2, 2009): 17473–81. http://dx.doi.org/10.1021/ja9075259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bowmaker, G. A., A. Goerling, O. Haeberlen, N. Roesch, G. L. Goodman, and D. E. Ellis. "A molecular orbital study of bonding and ionization energies in pentavalent uranium imide/amide complexes." Inorganic Chemistry 31, no. 4 (February 1992): 577–81. http://dx.doi.org/10.1021/ic00030a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cannes, Céline, Claire Le Naour, Philippe Moisy, and Philippe Guilbaud. "Specific Interaction between Uranium Anionic Complexes and the Cations of Bis(trifluoromethylsulfonyl)imide Based Ionic Liquids." Inorganic Chemistry 52, no. 19 (September 10, 2013): 11218–27. http://dx.doi.org/10.1021/ic4014653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Du, Jingzhen, Iskander Douair, Erli Lu, John A. Seed, Floriana Tuna, Ashley J. Wooles, Laurent Maron, and Stephen T. Liddle. "Evidence for ligand- and solvent-induced disproportionation of uranium(IV)." Nature Communications 12, no. 1 (August 10, 2021). http://dx.doi.org/10.1038/s41467-021-25151-z.

Full text
Abstract:
AbstractDisproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.
APA, Harvard, Vancouver, ISO, and other styles
33

Du, Jingzhen, Carlos Alvarez-Lamsfus, Elizabeth P. Wildman, Ashley J. Wooles, Laurent Maron, and Stephen T. Liddle. "Thorium-nitrogen multiple bonds provide evidence for pushing-from-below for early actinides." Nature Communications 10, no. 1 (September 13, 2019). http://dx.doi.org/10.1038/s41467-019-12206-5.

Full text
Abstract:
Abstract Although the chemistry of uranium-ligand multiple bonding is burgeoning, analogous complexes involving other actinides such as thorium remain rare and there are not yet any terminal thorium nitrides outside of cryogenic matrix isolation conditions. Here, we report evidence that reduction of a thorium-azide produces a transient Th≡N triple bond, but this activates C-H bonds to produce isolable parent imido derivatives or it can be trapped in an N-heterocycle amine. Computational studies on these thorium-nitrogen multiple bonds consistently evidences a σ > π energy ordering. This suggests pushing-from-below for thorium, where 6p-orbitals principally interact with filled f-orbitals raising the σ-bond energy. Previously this was dismissed for thorium, being the preserve of uranium-nitrides or the uranyl dication. Recognising that pushing-from-below perhaps occurs with thorium as well as uranium, and with imido ligands as well as nitrides, suggests this phenomenon may be more widespread than previously thought.
APA, Harvard, Vancouver, ISO, and other styles
34

Xin, Xiaoqing, Iskander Douair, Yue Zhao, Shuao Wang, Laurent Maron, and Congqing Zhu. "Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex." National Science Review, July 22, 2022. http://dx.doi.org/10.1093/nsr/nwac144.

Full text
Abstract:
Abstract The Haber–Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber–Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido μ2-NH ligands and one nitrido μ3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride (TMSCl). The isolation of this trinuclear imido-nitrido product implies that a multimetallic uranium assembly plays an important role in the activation of N2.
APA, Harvard, Vancouver, ISO, and other styles
35

Elkechai, Aziz, Farida Kias, Fazia Talbi, and Abdou Boucekkine. "Redox properties of biscyclopentadienyl uranium(V) imido-halide complexes: a relativistic DFT study." Journal of Molecular Modeling 20, no. 6 (May 31, 2014). http://dx.doi.org/10.1007/s00894-014-2294-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography